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ABSTRACT
Background. With the development of DNA sequencing technology, static omics
profiling in microbial communities, such as taxonomic and functional gene compo-
sition determination, has become possible. Additionally, the recently proposed in situ
growth rate estimation method allows the applicable range of current comparative
metagenomics to be extended to dynamic profiling. However, with this method, the
applicable target range is presently limited. Furthermore, the characteristics of coverage
depth during replication have not been sufficiently investigated.
Results. We developed a probabilistic model that mimics coverage depth dynamics.
This statistical model explains the bias that occurs in the coverage depth due to
DNA replication and errors that arise from coverage depth observation. Although our
method requires a complete genome sequence, it involves a stable to low coverage
depth (>0.01×). We also evaluated the estimation using real whole-genome sequence
datasets and reproduced the growth dynamics observed in previous studies. By utilizing
a circular distribution in the model, our method facilitates the quantification of
unmeasured coverage depth features, including peakedness, skewness, and degree of
density, around the replication origin. When we applied the model to time-series
culture samples, the skewness parameter, which indicates the asymmetry, was stable
over time; however, the peakedness and degree of density parameters, which indicate
the concentration level at the replication origin, changed dynamically. Furthermore,
we demonstrated the activity measurement of multiple replication origins in a single
chromosome.
Conclusions. We devised a novel framework for quantifying coverage depth dynamics.
Our study is expected to serve as a basis for replication activity estimation fromabroader
perspective using the statistical model.

Subjects Bioinformatics, Microbiology, Statistics, Data Mining and Machine Learning
Keywords Growth rate estimation by metagenome sequence, Coverage depth, DNA replication
model, Von mises generalized linear model, Peak to trough ratio, Metagenomics, Microbiome

INTRODUCTION
The development of high-throughput DNA sequencers has enabled massive and exhaustive
microbiome analyses. By mapping fragmented reads onto databases, the taxonomic and
functional gene composition of a sample can be measured. Several researchers have utilized
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this procedure to investigate samples from various environments, such as those of human
and animal bodies as well as those of other types of environmental samples (Hildebrand
et al., 2013; Kato et al., 2015; Zhu et al., 2015; Higashi et al., 2018). One possible means to
progressing beyond the profiling of static information involves investigating microbial
dynamics. Although time-series microbiome profiling via quantitative polymerase chain
reaction (PCR) or cell-sorting may allow dynamics measurement, such methods do not
easily provide a comprehensive understanding of growth dynamics from the single sample
involved therein (Tourlousse et al., 2017; Vandeputte et al., 2017). Meanwhile, the peak-to-
trough ratio (PTR) of the coverage of whole genome sequencing (WGS) reads mapped
to a reference genome sequence provides an estimate of growth; notably, this approach
uses WGS reads from just a single sample (Korem et al., 2015). This method is based on
the considerable increase in DNA around the replication origin via bidirectional DNA
replication (Cooper & Helmstetter, 1968; Bremer & Churchward, 1977). As quantitative
pipelines continuously undergo re-evaluation and extension, a draft quality genome
sequence may be applied. Few methods have been proposed to quantify the growth of
bacteria from genomic data. iRep uses a mechanism in which the slope of the sorted
coverage on contig sequences was correlated with the growth rate (Brown et al., 2016).
GRiD enables more robust estimation by sorting the coverage depths of multiple contigs
(Emiola & Oh, 2018). DEMIC performed accurate estimation by using the coverage depths
of multiple samples and estimating the appropriate position via principal component
analysis (Gao & Li, 2018). Some studies using such pipelines have revealed associations
between growth estimates and factors such as disease, 24-hour oscillations, and diet (Olm
et al., 2017; Forsyth et al., 2018). Thus, such an approach quantifying the growth of bacteria
from coverage depth is expected to facilitate the investigation of new fields of microbial
research. However, some questions associated with coverage depth modeling remain
unresolved.

The first challenge regarding growth estimation from coverage depth is related to the
application scope of the method. Previous studies have enabled growth estimation for a
broad range of samples, but the range of applicability remains limited. Taking coverage
depth as an example, even the most robust method currently requires 0. 05× average
coverage with a complete sequence or 0. 2× with a de novo-assembled sequence. A novel
growth rate estimation method that is less sensitive to decreases in coverage depth could
be utilized in broader applications. Second, the previously proposed pipelines are not
applicable to microbes with multiple replication origins as these pipelines use a model
based on a single peak and trough. This approach narrows the range of measurement
targets as some taxa such as archaea have two or more replication origins in a single
replicon (Lundgren et al., 2004; Robinson et al., 2004; Andersson et al., 2010). It has also
been suggested that some bacteria have multiple replication origins (Gao, 2015; Ohbayashi
et al., 2016). In addition to growth estimation based on coverage depth, it is also difficult
to predict replication origins from sequence features such as GC-skew in some microbes
(Gao & Zhang, 2008; Sernova & Gelfand, 2008; Vieira-Silva & Rocha, 2010). To overcome
this challenge, a previous report proposed a method for predicting the positions of multiple
replication origins based on the amount of chromosomal DNA (Xu et al., 2012). However,
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no method with a statistical background has been introduced. Third, the characteristics
of coverage depth distributions themselves have not been sufficiently investigated. Some
previous studies have reported non-linear DNA quantity trends (Hawkins et al., 2013; Pelve
et al., 2013; Wu et al., 2014; Akiyama et al., 2016), such as those including a significant
increase around the replication origin. Based on these studies, it has been suggested that
replication affects not only the ratio of maximum to minimum depth, but also changes
the degree of density around the replication origin. Modeling this phenomenon could
be useful for both molecular biologists and microbiologists, enabling them to quantify
the extra dynamics of replication. Furthermore, it is unclear whether the coverage depth
trend is skewed toward the 5′direction, is skewed toward the 3′direction, or is symmetric.
As some previous studies have suggested that the asymmetry of replisome progression
is associated with the phenotype (Rodriguez-Lopez et al., 2002), it would be valuable to
develop a method of symmetric level detection.

Here, we propose a method of modeling coverage depth dynamics using probabilistic
statistics. Focusing on data generation when mapping fragmented reads to a circular
genome sequence, we combined multinomial and directional distributions to mimic the
read sampling process and bias of the DNA quantity. When applied to a dataset from a
culture experiment, our method provided a stable and robust estimation of even a small
number of reads and mutated reference sequences. To observe the degree of correlation
between the growth estimates and experimental growth rates, we applied our method
to WGS reads, which were obtained from a previous time-series culture experiment
(Korem et al., 2015); this led to the observation of a high degree of correlation between the
growth estimates and experimental growth rates. In vivo data sets were used to confirm
the reproducibility of the growth dynamics in previous studies. Using the previous in
vitro and in vivo samples, we ensured that our method is sufficiently robust to coverage
and noise. Furthermore, by extending these models to enable them to form tapered and
skewed coverage depth shapes, we designed a method of measuring coverage depth bias.
Using a mixture of directional distributions allows growth estimation to be applied to
sequences with multiple replication origins. We also demonstrate such estimations in
relation to genome sequences of Sulfolobus solfataricus and Haloferax volcanii (McCarthy
et al., 2015).

MATERIALS & METHODS
Circular distributions and statistics
The distributions and statistics used in this study are shown in Table 1. The location
parameter has the highest probability and corresponds to the replication origin in
the chromosome in this model. We changed the character of the concentration
parameter by changing the distribution, as it can be aligned by ρc. = tanh(κ)

2 or
ρw.C. = tanh

(
κ
2

)
(Jones & Pewsey, 2005; Pewsey, Neuhäuser & Ruxton, 2013). In addition

to major distributions, we introduced a linear cardioid distribution and exponential
linear cardioid distribution to evaluate the coverage depth trend. These functions are
symmetric around the location parameter, and the integral around a unit circle is 1; i.e.,
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Table 1 Circular distributions for modeling coverage depth dynamics.

Name (Probability density) function pPTR Parameters Ref.

von Mises (vM) exp(κ cos(θ−µ))
2π I0(κ)

exp(2κ) µ,κ

Cardioid (c) 1+2ρc cos(θ−µ)
2π

1+2ρc
1−2ρc

µ,ρc

Wrapped Cauchy (wC) 1−ρ2wC
2π(1+ρ2wC−2ρwC cos(θ−µ))

(1+ρwC)2

(1−ρwC)2
µ,ρwC

Jones-Pewsey (JP) (cosh(κψ)+sinh(κψ)cos(θ))
1
ψ

2πP 1
ψ
(cosh(κψ)) exp(2κ) µ,κ,ψ Jones & Pewsey (2005)

Linear cardioid (lc) 1+2ρlc(||θ−µ|−π |− π2 )
2π

1+πρlc
1−πρlc

µ,ρlc

Exponential linear cardioid (elc) ρelc exp(2ρelc||θ−µ|−π |− π2 )
exp(πρelc)−exp(−πρelc)

exp(2πρelc) µ,ρelc

Mean resultant length (mrl)

√(∑T
t=1 cosθt

)2
+

(∑T
t=1 sinθt

)2
T

Notes.
µ, location parameter; κ or ρ, concentration parameter; ψ , shape parameter; I 0, modified Bessel function of the first kind of order 0; P 1

ψ
, the associated Legendre function of

the first kind of degree 1
ψ
; θ , an angle converted from the observed position; T , total number of observations.∫ π

−π
P (θ |µ,ρ)dθ =

∫ 2π
0 P (θ |µ,ρ)dθ = 1. For each distribution, the probabilistic PTR can

be analytically defined as the ratio between the maximum and minimum value of the
probability density function (see the Statistical model to estimate replication rate section for
details).

Some of the models (von Mises, cardioid, wrapped Cauchy, and Jones-Pewsey) were
symmetrically or asymmetrically extended with or without inverse transformation, as
previously described (Abe, Pewsey & Shimizu, 2013; Pewsey, Neuhäuser & Ruxton, 2013;
Abe, Pewsey & Fujisawa, 2013). To make the shape near the mode of a distribution variable,
we used Batschelet or inverse-Batschelet transformation. Batschelet transformation
(symmetric extension; SE) transforms the angular variable into gλ(θ)= (θ−µ)+
λsin(θ−µ), where λ is the peakedness parameter. Using this transformation, the
normalization constant was calculated using the composite Simpson’s law as the integral
around a unit circle cannot be maintained as 1. Inverse-Batschelet transformation
(inverse symmetric extension; InvSE) transforms the angular variable into gλ(θ)=
1−λ
1+λθ +

2λ
1+λ t

−1
1,λ (θ), where t1,λ(θ)= θ −

1
2(1+λ)sin(θ −µ). This transformation does

not change the normalization constant. To make the distribution asymmetric with mode-
invariance, we used the mode-invariance asymmetric transformation extension (MIAE) or
inverse-transformed mode-invariance asymmetric transformation extension (InvMIAE).
These transformations satisfy the requirement that asymmetricity be analyzed in replication.
As replication begins at the origin irrespective of the rapidity of bacterial growth, the
highest coverage depth position is preserved regardless of the asymmetry level. The
skewness parameter must not affect the pPTR when the pPTR and skewness are measured
independently. In these transformations, the symmetricity around the mode changes via
an additional skewness parameter, while the location parameter, concentration parameter,
and pPTR remain unchanged even if the skewness parameter changes. MIAE transforms
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the angular variable into gν (θ)= θ −ν sin2(θ−µ), where ν is the skewness parameter.
This transformation also requires a normalization constant. InvMIAE transforms the
angular variable into gν (θ)= s−1ν (θ), where sν (θ)= θ+ν sin2(θ−µ). This transformation
does not change the normalization constant, and the position of the mode is preserved.
To compute the inverse transformation, we used several root-finding algorithms (see
Parameter estimation section). The significance of fitness improvement via additional
parameters was evaluated using the likelihood ratio test with a chi-squared distribution
based on the theorem of Wilks in addition to the Akaike Information Criterion (AIC)
and the Bayes Information Criterion (BIC). To compute the likelihood ratios, the original
distribution was compared with the extended distributions. The Jones-Pewsey distribution
was compared with the von Mises distribution.

Statistical model to estimate replication rate
A statistical model that simulates the coverage depth dynamics along the genome position
was constructed. Let di,s be the coverage depth of the i th position obtained when mapping
theWGS reads of sample s onto the genome sequence. Here i represents the binned position
of coverage. If the coverage depth is not compressed or binned, i matches a nucleotide
position. We fit a generalized linear model (GLM) for each di,s as follows.

The starting point of ourmodel is the conversion of di,s into the frequency of observation
of the i th position. Here, the total number of observations Ts for sample s is calculated
as the sum of di,s over sequence length, I, i.e., Ts=

∑I
i=1di,s. We did not directly fit the

coverage depth to a model because it could fail to fit with a low coverage depth dataset.
Instead, wemodeled a bias to observe the base positions bymapping reads with a probability
distribution P and parameter set ω, which defines the potential of observation probability,
it ,s∼ P (ωs), where t is a unique identifier of nucleotides for all readsmapped to the genome.
Focusing on the genome structure of bacteria and archaea, the observation probability is
supposed to be circular. For compatibility with the structure, the position i is converted
into an angle θ , following θ = i

I 2π . Here, the coverage depths di are stacking counts of the
observed angle θ . Circular statistics, instead of an ordinal real-value approach, are required
to quantify the bias based θ . In circular statistics, the first possible means of analyzing
an angle dataset involves expressing the bias as a simple statistic without any model. For
example, themean resultant length (MRL) represents how data are concentrated around the
samplemean direction. The second approach, which wasmainly used in this study, involves
the modeling of a phenomenon via probability distributions that generate positions. We
introduced the following four distribution types from the circular distribution family: von
Mises, wrapped Cauchy, cardioid, and Jones-Pewsey distributions. These distributions
are widely used in circular statistics and are versatile in terms of implementation and
inference (Jones & Pewsey, 2005; Pewsey, Neuhäuser & Ruxton, 2013). Additionally, these
distributions are useful for representing known coverage depth characteristics. For example,
some researchers have described non-linear coverage depth trends over genome sequences
in both bacteria and archaea (Chen et al., 2005; Watanabe et al., 2012; Hawkins et al.,
2013; Pelve et al., 2013; Rudolph et al., 2013; Wendel, Courcelle & Courcelle, 2014; Wu et al.,
2014; Maduike et al., 2014; Yang et al., 2015; Akiyama et al., 2016; Ohbayashi et al., 2016;
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Forsyth et al., 2018; Retkute et al., 2018). It was expected that this trend could be quantified
by extension for the distributions proposed in the previous studies. For these circular
distributions with likelihood Ldist., the overall log-likelihood logL of the model can be
calculated as follows:

logL(ω|θ,d,I ,S)=
S∑

s=1

I∑
i=1

di,s logLdist.(ω|θi). (1)

As θ is considered to be continuous rather than discrete for the purpose of these
distributions, we confirmed that the parameters could be estimated appropriately (Text
S1). Equation (1) coincides with a term that changes with the probability parameter in the
log-likelihood equation of the multinomial distribution shown in Eq. (2) although the sum
of the probability over all nucleotides is not 1 because the distribution is not discrete:

logMultinomial
(
d|T ,p

)
=

S∑
s=1

Ts∑
t=1

logt−
S∑

s=1

I∑
i=1

ds,i∑
j=1

logj+
S∑

s=1

I∑
i=1

ds,i logpi. (2)

Following the model with the likelihood represented by Eq. (1), the location parameter
corresponds to the position of the replication origin as long as the concerned chromosome
does not have multiple replication origins. Contrastingly, the concentration parameter
is associated with growth as it determines the shape of the distribution. Therefore, we
allowed the location parameter to be shared among all of the samples and the concentration
parameter for each sample to be independent. For the concentration parameters, we set the
half-Student’s t -distribution as a prior distribution (Gelman, 2006). We set 2.5 as the shape
parameter; 0 as the location parameter; and 0.2 (von Mises, Jones-Pewsey), 0.1 (cardioid),
0.17 (wrapped Cauchy), 0.105 (linear cardioid), and 0.1103(exponential linear cardioid) as
the scale parameters. These were selected such that the value of the cumulative probability
density function became nearly 0.8 when the PTR was 2.0. This characteristic suggests that
most of the PTRs are distributed between 1.0 and 2.0 in an environment. The distribution
of the coverage depth PTR in a previous study rationalizes this suggestion (Korem et
al., 2015). For the degree of density of the Jones-Pewsey distribution, the peakedness
of the symmetric extended distribution, and the skewness parameter of the asymmetry
extended distribution, we set the Gaussian distribution with a location parameter of 0 and
a scale parameter of 1.0 as the prior distribution to avoid overfitting. From the model, we
introduced an estimate that expresses the degree of growth. It is known that manymicrobes
in prokaryotes replicate their chromosomal DNA on both sides from the origin such that
the apparent amount of DNA increases near the origin. This behavior introduces a latent
bias thatmakes DNAnear the originmore likely to be observed during replication. This bias
is simply expressed by the concentration parameter in a circular distribution. However,
for consistency with the previous study (Korem et al., 2015), we defined a probabilistic
PTR (pPTR), which is the ratio of the maximum of probability density function to the
minimum, i.e., PTRprobability=

pmax(θ)

pmin(θ)
, as a growth dynamics index. This score represents the

latent bias of the probability for the position at which a nucleotide is observed around the
replication origin. Unlike the original PTR, which is directly estimated from the coverage
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depth, pPTR is obtained by modeling the bias based on a circular distribution and the
probability framework of interest. Following the model, in which the coverage depth is a
result of discrete sampling expressed as in Eq. (2), the coverage depth at a given position
can be modeled by the binomial distribution by formula (3):

di,s∼Binomial
(
Ts,P

(
θ =

i
I
2π |ωs

))
. (3)

This equation hints at the benefit of using probability rather than coverage depth directly
(Text S2; Fig. S1).

Extending the model to multiple origins of replication
We constructed a statistical model for multiple origins of the replication-based mixture
model and circular distributions. Let αm be the ratio of the mixture to the m th replication
origin andM be the number of the replication origin, then the probability of obtaining the
angle θ from the sample s is formulated to P(θ |ωs,α)=

∑M
m=1αmPcircle(θ |ωs,m) with the

circular distribution Pcircle. Note that the sum of the ratio is 1, i.e.,
∑M

m=1αm= 1. Based on
the model, the overall log-likelihood logL can be calculated as follows:

logL(ω,a|θ,d,I ,S)∝
S∑

s=1

I∑
i=1

di,s log(
M∑

m=1

αmLdist.(ωm,s|θ =
i
I
2π,s= s)). (4)

The equation is compatible with a genome sequence with a single replication origin
as it takes the same form as Eq. (1) when we set α1 = 1 and M = 1. We set a Dirichlet
distribution as the prior distribution of α as α ∼Dirichlet(A) and employed 50/M as
A, as previous studies have implied that each replication origin shows similar activity
(Robinson et al., 2004; Andersson et al., 2010; Hawkins et al., 2013). Then, the ratio is likely
to assume a similar value, which defines the equality of the mixture. As the activity index
for multiple replication origins, we defined a weighted pPTR (wPTR) and mean-weighted
pPTR (mwPTR). The wPTR of the m th replication origin is computed via a weighted
concentration parameter using a mixture ratio, where mwPTR is the average of these. For
example, the wPTR of the von Mises-based model is given by exp(2αmκm), and mwPTR
is given by 1

M
∑M

m=1wPTRm. These scores are based on the model that replication stops if
the replisome comes across another replisome, as mainly reported in prokaryotes (Leman
& Noguchi, 2013; Wendel, Courcelle & Courcelle, 2014); however, this model has not been
sufficiently investigated in archaea or eukaryotes. This model assumes that the effect of
multiple origins at each location can be expressed as their sum. Following the mixed
effects of multiple origins, the coverage depth is probabilistically sampled. This assumption
results in the probability of regions that are not related to the origin approaching low values.
Hence, the probability distribution of each origin becomes very steep, with increases in
the concentration parameter and unweighted PTR. By weighting the parameters, we
approximated the degree of activity in the case in which only the single origin worked
in the chromosome. We used the average of the wPTR as the representative score of the
chromosome because a previous study reported that the growth rate decreased when a
replication origin on the chromosome was knocked out, whereas the deviation of the DNA
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amount between the origins and terminus did not change significantly (Wu et al., 2014).
By using the average, the effect of activation on multiple origins could be determined.

Parameter estimation
For all data, we estimated the model parameters using an implemented software package.
This package fits the parameters to the data by maximizing the joint posterior (optimizing
mode) or generating samples from the posterior distribution of the parameters (sampling
mode). Briefly, after maximizing the log-likelihood of the model for the data via each
method, we adopted the value that yielded the maximum log-likelihood via the optimizing
mode or the expected a posteriori (EAP) of the parameter posterior distribution via the
sampling mode. Unless otherwise noted, we used the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) algorithm for the optimizing mode and the No-U-Turn
Sampler (NUTS) algorithm (Hoffman & Gelman, 2014), which is the quasi-Markov chain
Monte Carlo (MCMC) method, for the sampling mode. For sampling, we set the number
of chains to 1 and the number of iterations to 500; the first 300 iterations were considered
a warm-up and discarded. From the samples, we calculated the EAP as a representative
model parameter. The convergence of the sampling was checked using Rhat statistics. If
the statistics were equal to or less than 1.1, the result was accepted (Gelman et al., 2013).
We used composite Simpson’s algorithm with 20 subintervals to calculate the integrals
in the models. We computed the inverse transformation of the functions using Newton’s
method when the skewness ν or peakedness parameter λ was less than or greater than
0.8. These thresholds were evaluated by performing manual simulations such that the
transformations did not oscillate. We checked the convergence of the function as to
whether the error was less than the machine precision of a float-type variable defined
using Stan. The Illinois method was used in other cases (Dowell & Jarratt, 1971). Then, we
checked the convergence of the function, as to whether the error was less than 1. 0×10−13.
In both methods, we defined a maximum iteration count that terminated the calculation
at 30 iterations for Newton’s method and 100 iterations for the Illinois method. We set the
mathematics transformation to reasonably estimate the parameters. If a location parameter
is estimated directly from 0 to 2π , and the true location parameter is located near the
edge of the range, the parameter estimation is likely to fail as it does not detect cyclicity.
We re-parameterized the location parameter as µ= arctan2

(
Eθµ

)
for the two-dimensional

unit vector Eθµ to overcome this estimation difficulty (Pewsey, Neuhäuser & Ruxton, 2013).
The unit vector can be estimated directly as each element has continuity from -1 to 1. To
calculate information criteria, 1+number of the sample ×2 was used as the number of
parameters for the Jones-Pewsey distribution-based model, and 1+number of the samples
was used for the others.

Coverage depth calculation
The coverage depth was calculated by aligning the WGS reads to the template genome
sequence. We downloaded WGS via the SRA Toolkit. After converting the WGS reads
into the FASTQ format, we aligned them to the genome sequence using Bowtie2 with a
‘‘–very-sensitive’’ parameter set (Langmead & Salzberg, 2012). We sorted the resulting SAM
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files and calculated the depth using SAMtools (Li et al., 2009). Next, a moving median filter
with a 100 nt window size and a 100 nt stride length was applied. The moving median filter
runs through the coverage depths, replacing each coverage with the median of neighboring
locations. We applied the moving median filter for the following two reasons: to reduce
the noise and outliers and to reduce the data size, which affects the computational time
of the model fitting. If the coverage depth seemed to have noise regions that increased the
coverage due to highly conserved regions such as ribosomal genes, an additional filtering
for outliers was performed; specifically, the top 1% of the coverage depth was removed
and replaced with blank coverage. This decision and the threshold, which were determined
based on a previous study (Brown et al., 2016), were independently evaluated using a
frequency histogram of the coverage depth containing a noise region, which increases the
coverage in multiple datasets (Text S3). Certain regions that remained blank following
filtering were filled with 0. As the WGS reads of H. volcanii were separated into multiple
FASTQ files, we concatenated them into a single file based on growth conditions prior
to alignment. To evaluate the error in the sequence edge parts, we copied 263 nt in the
head portion of the genome sequence to the tail portion. We also constructed a graph
genome sequence, circularized it, and mapped WGS reads to the graph genome sequence
using the variation graph toolkit (vg) with the default parameter set (Garrison et al., 2018).
We omitted the GC-content correction procedure to simplify the pipeline as the method
using the full-length genome sequence seemed to be robust (Brown et al., 2016) against
the local coverage depth bias attributed to the GC-content (Ross et al., 2013). If a user
requires greater accuracy, we recommend using the correction method or PCR-free library
preparation (Benjamini & Speed, 2012; Brown et al., 2016; Gao & Li, 2018).

Growth rate evaluation with experimental growth rate
The accuracy of the growth estimates was evaluated via comparisons with experimental
growth rates. Unless otherwise noted, the experimental growth rates were calculated from
the colony formation unit (CFU)/ml, optical density (OD), or relative abundance using
gri =

log2(abuni+1)−log2(abuni−1)
ti+1−ti−1

following the approach taken in a previous study (Korem
et al., 2015); e.g., the experimental growth for Fig. S3C uses this equation. For relative
abundance, we used the mOTUs2 pipeline with the default parameter set (Milanese et al.,
2019). When comparing methods, we additionally calculated the experimental growth rate
(shown in Fig. S3D) in a differential manner to obtain the dynamics in a short time span;
i.e., gri=

log2(abuni+1)−log2(abuni)
ti+1−ti

. For comparison, we performed growth estimation using
tools developed in previous studies (Korem et al., 2015; Brown et al., 2016; Emiola & Oh,
2018; Gao & Li, 2018). We added a time delay for the correlation coefficient between the
experimental and growth estimates following the approach of the previous study (Korem
et al., 2015). The time delay, which provided three or more combinations of the growth
estimates and experimental growth rates and yielded the highest correlation coefficient,
was accepted.

Effect of normalization on the model
We evaluated the effect of normalization on the parameter estimation by checking the
difference between an estimated distribution and the true one. For the evaluation datasets,
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we generated continuous angles from the vonMises distribution. These angles were binned
into discrete angles following the defined discrete length.We selected the location parameter
from −π , −π2 , 0, and

π
2 ; the concentration parameter from 0.1, 0.4, and 0.7; the discrete

length to be segmented from 5, 10, 30, 120, 600, and 1,000; and the average coverage depth
to be observed from 0. 5×, 1. 0×, 2. 0×, 4. 0×, 8. 0×, and 16. 0×. Next, we fitted the
unnormalized and normalized von Mises distribution-based models to the simulated data.
Finally, we evaluated the error of the estimated distribution using the Kullback–Leibler
divergence (Kullback & Leibler, 1951). When evaluating the parameter of interest, the
other parameters were fixed to 0 for the location parameter, 0.7 for the concentration
parameter, 30 for the discrete length, and 16 for the average coverage depth. For the
distribution with the true parameter, we set 10,000 as the discrete length. Calculations
were performed 10 times with different seeds for each parameter set. This part of the
procedure was performed using Scipy (Virtanen et al., 2019). We introduced a constraint
cω to normalize the continuous circular distribution, i.e.,Pdiscrete(θn|ω)= 1

cω
Pcontinuous(θ |ω)

for discrete circular data θn(n= 1,2,...,N ) and the parameter set ω. For the von Mises
and wrapped Cauchy distributions, we calculated the sum of the likelihood directly as
log(cω)= log

(∑N
n=1P (θn|ω)

)
because we could not have a closed-form equation. For

the cardioid distribution, it was formulated as cω =
∑N

n=1
1
2π (1+2ρcos(θn−µ))=

N
2π

owing to
∑N

n=1cos(θ)= 0. For the linear cardioid distribution, it was formulated as
cω=

∑N
n=1

1
2π

(
1+2ρ

(
||θ−µ|−π |− π

2

))
=

N+2
2π . The rearrangement of the formulas was

performed using Sympy (Meurer et al., 2016).

Simulation of skewness after coverage depth sorting and
investigation of the causes
The cause of the skewed shapes appearing at both ends of the coverage depth after sorting
required investigation. The probable phage and duplicate gene regions are considered
to generate outliers and to form the skewed shape. Thus, the probable regions on the
chromosomal sequence were annotated. To identify probable phage regions in the genome,
we used PHAST (Zhou et al., 2011). For the duplicate gene regions, first, we used Prokka to
predict the coding sequences (Seemann, 2014). Next, we mapped these predicted sequences
to the genome sequence of Lactobacillus gasseri using Bowtie2 and annotated regions as
overlapping if two or more hits were obtained. The parameter set of Bowtie2 was ‘‘-a
–very-sensitive.’’ Thereafter, we extracted the partial coverage depth from 1.0–1.4 Mnt
regions in which annotated features did not exist. To obtain the odds ratio, 36metagenomic
sequences obtained from the previous study (Korem et al., 2015) were mapped, and the
coverage depth was calculated via themethod described above. Next, the coverage depth for
each sample was sorted, and the number of annotated bases in 5% of the upper, lower, and
total sequence was counted. We modeled the number n to follow a binomial distribution
with the total number of bases N of the target sequence and the appearance probability p
as parameters: n∼ Binomial(N ,p). The odds ratio was calculated as odds= p

1−p from the
appearance probability p. To estimate these parameters, we employed anMCMC algorithm
with NUTS using PyStan. Four chains were utilized, and 20,000 iterations were performed,
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where the first 1,000 of these were discarded as warm-ups. The posterior distribution of
the EAP was used as the representative.

Evaluation of robustness in terms of coverage depth using
culture dataset
To investigate the robustness of our proposed method, we compared the growth estimates
calculated using a sufficient amount of reads and those using rarefied reads. To evaluate
coverage depth dynamics from a single origin, we first used L. gasseri WGS samples with
an average of more than 20× coverage (n= 20). After confirming that many variations
occur at lower than 5. 0× coverage, we selected Escherichia coli, Enterococcus faecalis, or L.
gasseriWGSs reads with more than 5× coverage from the dataset by Korem and colleagues.
To evaluate multiple origins of replication data, the WGS of S. solfataricus was used. We
randomly sampled reads from the FASTQ files using seqtk (Li, 2013) such that the average
coverage depth would be 0. 001×, 0. 005×, 0. 01×, 0. 05×, 0. 1×, 0. 5×, 1×, or 5×. In the
first evaluation of a replication dataset from a single origin, we additionally sampled 10×
and 20× coverage. In the evaluation of multiple origins, we additionally sampled 100×
coverage. The pPTR, wPTR, and mwPTR were calculated using the rarefied reads and
compared with those obtained from 20× and the full coverage depth. For the S. solfataricus
dataset, we specified the number of components as three and performed estimation via
the optimizing mode using 30 different seeds. We selected representative results with
the highest likelihood and compared pPTR and mwPTR with those corresponding to no
modifications. As DEMIC cannot work with a single genome sequence even if it is complete,
we used a genome sequence obtained by co-assembling all of the reads using MEGAHIT
with the default parameter set (Li et al., 2015). We utilized the default parameter set for
PTRC, DEMIC, bPTR, iRep, and GRiD. Finally, we calculated the error rates as∣∣∣∣Estimatemodified−Estimatereference

Estimatereference

∣∣∣∣ (5)

The results from original WGS reads were used for reference estimates. To validate the
error rate, we defined 15% as a threshold, as was done in a previous study (Brown et al.,
2016).

Evaluation of robustness in terms of coverage depth using
metagenomics reads
To evaluate the robustness using metagenomic datasets, we employed the inflammatory
bowel disease (IBD) dataset from a previous study (Franzosa et al., 2018). We searched for
combinations of species and WGSs with an average cover depth of 20× or more. In order
for the first screening to satisfy the scope of the method, we used Kraken2 (Wood, Lu &
Langmead, 2019) and Bracken (Lu et al., 2017) with the default parameters; the objective
of this was to count the number of reads to be assigned to the genome sequences. As a
collection of complete chromosomal sequences, we constructed a database with species-
level resolution (see Complete genome sequence database section). Based on the taxonomic
profile, the combinations with more than 0. 1× coverage depth were selected as candidates
(n= 16,413 combinations from 220 WGS samples) in the first screening. Next, we aligned
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the WGS reads of the datasets to the database using Bowtie2 and calculated the coverage
depth using SAMtools. After applying the moving median filter and outlier elimination, we
calculated the average coverage depth. If the combination had more than 20. 0× average
coverage and passed the first screening, we concluded that the combination was eligible
to serve as an evaluation target (n= 676). For the targets, we extracted paired-end aligned
reads using SAMtools with the ‘‘view -f 2′′option for PTRC. This procedure was required
because the GEM-mapper, which is used in PTRC, did not allow singletons to be aligned.
After that, we rarefied the reads using SAMtools with the ‘‘view -s’’ option and converted
the alignment result into a FASTQ file for the input. For our method, we counted the
coverage depth from the alignment result using SAMtools. After applying each method,
we calculated the error rate following (5). We used PTRC as a benchmark method, as it
provided the most stable estimation with low coverage in the culture WGS dataset.

Evaluation of robustness in terms of mutation rate
The robustness of our method in terms of the mutation rate with a single replication origin
was assessed by evaluating how much of the value was maintained when the reference
genome was used for mutation estimation. The reference genome sequence was mutated
in three ways. The first involved nucleotide-level mutation at random positions in the
genome sequence. Based on the length of the genome sequence, every 5% portion, ranging
from 5 to 30% of the nucleotides, was randomly selected and mutated to an ambiguous
nucleotide N. The second way involved block-level mutation at random positions in the
genome sequence. We used msbar in EMBOSS to create block-level mutated sequences
(Rice, Longden & Bleasby, 2000). Based on the length of the genome sequence, every 5%
portion, ranging from 5 to 50% of the nucleotides, was randomly mutated. We used 5,000
nt as the block size. The third way involved mutation at the block level at a specific region
in the genome sequence. We randomly selected the position to be mutated. The size of
the region was determined based on the sequence length. After that, every 5% portion,
ranging from 5 to 30% of the nucleotides, was mutated to an ambiguous nucleotide N. As
the positional relationship of the contig sequence was unknown, the evaluation of DEMIC
in this regard was not performed. The first and third mutations were performed using
in-house scripts with Biopython. After constructing pseudo-mutated genome sequences,
we estimated and compared the growth following the above procedure. We assessed the
robustness of the estimation with multiple replication origins, mutating the S. solfataricus
genome sequence using the first and second methods. The estimations and evaluations
for multiple origins of replication were performed in the same manner as the robustness
evaluation with low coverage depth.

Evaluation of robustness in terms of peak noise
To investigate the influence of peak noise, we generated an artificial dataset. We used
the short-read sequence of E. faecalis, L. gasseri, and S. solfataricus published previously
(Korem et al., 2015; Payne et al., 2018). Firstly, a 100 bp region was randomly selected from
a reference genome sequence using the seqkit sample command. The sequence was copied
every 10 times from 10 to 100 times and added to the FASTQ files. We set 93 as the quality
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score. Using the mixed file, we calculated the coverage depth and estimated the growth
in optimization mode following the procedure described above. For filtering, the top 1%
of the depth was removed. Following this step, we computed the error rate using Eq. (5)
and compared the results with the noiseless results. The evaluation for multiple replication
origins was performed in the same manner as the evaluation for low coverage depth.
Secondly, we randomly selected 1,000 bp regions from the reference genome sequence
every 10 regions from 10 to 100 regions. This length was determined based on the average
gene length of prokaryotes. These sequences were mixed with the WGS such that the
coverage depth amounted to 20×, 40×, 60×, 80×, and 100× in each region. Finally, we
evaluated the error of the estimates following the same procedure.

Evaluation of robustness in terms of sample size
To assess the effect of the sample size on the estimates, partial sample sets were generated
from the full sample set, and the results were compared. We used the short-read sequences
of E. coli, E. faecalis, and L. gasseri published previously (Korem et al., 2015). The partial
set was configured to include 1, 4, 8, 12, 16, and 20 samples. Each set was distributed in a
manner that avoided duplication of the same sample. Except for the sample set with only
one sample, the sets were constructed to contain each sample at least 10 times. For each
sample set, preprocessing and inference were conducted according to the above procedure,
and the error rate was calculated in comparison with the results obtained when all of the
samples were used simultaneously.

Skewness in Watson and Crick strands
To count the coverage depth in Watson strands and Crick strands, we used the SAMtools
view command with the ‘‘-f’’ option set to 0 for the Watson strand and 16 for the
Crick strand. This was done after mapping reads to the template genome sequence. The
procedures that followed were the same for both strands. Finally, the highest log-likelihood
in 30 independent trials was used as a representative estimate.

Growth estimation of species with multiple replication origins
We used the von Mises distribution for mixing because it has an intermediate degree of
density around the mode and an open range of concentration parameters; i.e., κ > 0. Both
genomic and short-read sequences were obtained according to the procedures described
previously (Ausiannikava et al., 2018; Payne et al., 2018). The coverage depth was calculated
according to the above-mentioned procedure. As the deletion was confirmed in the genome
sequence of S. solfataricus by the Integrative Genomics Viewer (Robinson et al., 2011), we
deleted regions from 1,443,200 nt to 1,485,069 nt on CP011055, from 1,443,192 nt to
1,485,075 nt on CP011056, and from 1,443,197 nt to 1,485,072 nt on CP011057. We used
Dfast to annotate cdc6 in the genome sequences (Tanizawa, Fujisawa & Nakamura, 2018).
The number of components M was determined by using AIC and Widely Applicable
Information Criterion (WAIC) as the mixture model was a singular model, and there
was a possibility that a decision based only on AIC could produce incorrect results. The
MCMC algorithm was applied to the constructed model, and WAIC was calculated from
the log-likelihood (Watanabe, 2010; Gelman et al., 2013). The calculation was performed
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using an in-house Stan script and CmdStan with the threading option. The sampling was
performed 1,500 times on a single chain, where the first 1,000 samplings were excluded
as warm-ups. We fitted the model to the data assuming a number from 1 to 4 for the
distribution. To calculate the AIC, we used the EAP of the posterior distribution to
represent the log-likelihood.

Growth rate estimation for infected Citrobacter rodentium
x WGS reads of mice fecal samples from the original growth dynamics analysis study were
used (Korem et al., 2015). These sequences were aligned to a complete genome sequence
database (see Complete genome sequence database section) to validate the applicability of
using multiple reference genome sequences using Bowtie2 with the ‘‘–very-sensitive’’
option. After that, we counted the coverage depth by SAMtools. After extracting the
coverage of the C. rodentium chromosome sequence, we cleaned and compressed the
coverage using the moving median filter after removing the top 1%. Finally, we fitted the
von Mises model to the coverage. The pPTRs were compared via Welch’s t -test.

Complete genome sequence database
The Genome Taxonomy Database version 89.0 was used to control the fineness of the
taxonomy on the species level (Parks et al., 2018). For each species, when the representative
species had a complete genome, it was used. When it did not, the sequence with the highest
CheckM completeness score (Parks et al., 2015) and largest genome size was used. Species
without complete genome sequences or those with multiple chromosome sequences were
excluded. Mobile genetic elements were excluded from the database by checking the
sequence label using seqkit; we filtered out the sequences labeled ‘‘plasmid,’’ ‘‘Plasmid,’’
‘‘phage,’’ ‘‘chromid,’’ ‘‘pMLa,’’ and ‘‘Linear.’’

Growth estimate evaluation on metagenomic dataset
The growth dynamics were estimated at species-level resolution. We filtered low-quality
reads in WGS via Trimmomatic and then removed human-derived reads by aligning
them to the GRCh38 reference human genomic sequence using Bowtie2. We used
‘‘SLIDINGWINDOW:4:15 MIN LEN:36’’ as a parameter in Trimmomatic. After quality
control, we aligned qualified metagenomic reads with the complete genome sequence
database using Bowtie2 with the ‘‘–very-fast’’ option. After extracting the alignment results
of the target reference sequence, we counted the coverage depth. As the metagenomic
sequences were not clean compared to the culture datasets, we performed additional
filtering as described in the coverage depth calculation method. After preprocessing was
completed, we fitted the model to the coverage depth of each sequence via the optimizing
mode. For the estimations, we selected samples with greater than or equal to 0.0001%
relative abundance of the taxon and greater than 0. 01× average coverage depth. We used
Kraken2 and Bracken with the complete genome sequence database to estimate the relative
abundance of the species. After filtering out the ultra-low coverage depth samples, we
excluded the samples that might not achieve random sampling from the chromosomal
DNA sequence. This is because the estimates of these samples would have an error. To
detect the invalid samples, we focused on the difference of actual zero coverage fraction f
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and a theoretical score f̂ based on the Lander-Waterman theory (Text S4). This theoretical
score can be obtained as f̂ ≈ exp(−a), where a denotes the average coverage depth. For
samples with average coverage less than 5. 0×, we excluded samples with log-scale fractions
greater than 0.56 times the theoretical score. Assuming there to be uneliminated noise
coverage depth, samples with estimated PTRs greater than or equal to 3.0 were excluded.
Welch’s t -test for independent groups was used to examine the differences between the
growth estimates, and Hedges’ g was used to evaluate the effect size for the two groups.

Software
We implemented the statistical model using Stan (Carpenter et al., 2017). Wrapped by
Python scripts, this model is available for use in the command-line environment. This
package also contains a moving median filter, a visualizer, a statistics profiler based
on directional statistics, an information criterion calculator with estimated results,
an asymmetric test calculator using Pewsey’s method, and other utilities required to
analyze the coverage depth over replicon. Other software versions are summarized
in Table S1. Our package for growth estimation is available from https://github.com/
TaskeHAMANO/SPHERE. This software was implemented using Python3 (≥3.6) and Stan.
The wrapper software used in this study for PTRC, DEMIC, and GRiD is available from
https://github.com/TaskeHAMANO/PTRC-in-cwl, https://github.com/TaskeHAMANO/
DEMIC-in-cwl, and https://github.com/TaskeHAMANO/GRiD-in-cwl, respectively. This
software is distributed under the BSD-3-Clause license. The wrapped software of msbar
in EMBOSS is available from https://github.com/TaskeHAMANO/msbar-in-cwl This
software is distributed under the GPL-3.0 license. These wrapper scripts were implemented
using the Common Workflow Language (CWL) v1.1. These scripts have been tested on
Linux and macOS.

Availability of data and material
The WGS data of time-series-cultured E. coli, E. faecalis, L. gasseri, S. solfataricus, and
H. volcanii are available from BioProject (PRJEB9718, PRJNA250819, PRJNA250820,
PRJNA250827, PRJNA346830, PRJNA250832, PRJNA250833, and PRJNA422812). The
genome sequences of E. coli NMC3722, E. faecalis ATCC 29212, L. gasseri ATCC33323,
S. solfataricus SULA, SARC-B, SARC-C, USLG, SARC-H, SARC-I, and H. volcanii DS2
are available from GenBank and RefSeq (CP011495, CP008816, NC_008530, CP011057,
CP011055, CP011056, CP033235, CP033236, CP033237, and NC_013967). The genome
sequence of H. volcanii H26 was modified from DS2 as previously described (Hawkins
et al., 2013). The genome and metagenome sequences used in the cohort studies analysis
are listed in Table S2. The final chromosome sequences we used to construct the genome
sequence database are listed in Table S3.

RESULTS
Creating an artificial coverage depth
We constructed a statistical model for coverage depth dynamics based on circular
distributions. To validate our model visually, we generated an artificial coverage depth
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Figure 1 Effects of growth, sequence feature, and outliers on coverage depth shape.We characterized
the coverage depth of chromosomal DNA using statistical models. The shape of the probability distri-
butions (solid lines) and artificial coverage depth (blue lines) obtained using the (A) von Mises, (B) car-
dioid, (C) wrapped Cauchy, (D) Jones-Pewsey, and (E) linear cardioid distribution model with multino-
mial distribution. Zero (0) was used as a location parameter, while 0.34657 (von Mises and Jones-Pewsey),
0.16666 (cardioid), 0.17157 (wrapped Cauchy), and 0.1061 (linear cardioid) were used as concentration
parameters to align the pPTR with 2.0. The nucleotide number was set to 1 Mnt, and the average cover-
age depth was set to 20× in the multinomial distribution. For the Jones-Pewsey distribution, 0.5 was used
as the shape parameter. Sorted shapes of the distributions and pseudo-coverage depths from the (F) von
Mises, (G) cardioid, (H) wrapped Cauchy, (I) Jones-Pewsey, and (J) linear cardioid distribution model
with multinomial distribution. (B) Coverage depth and sequence features that can cause strong noise in
the coverage depth of L. gasseri (ERR969426). (K) Overall coverage depth, (L) suspected feature-free re-
gion, (M) sorted overall coverage depth, and (N) sorted feature-free region.

Full-size DOI: 10.7717/peerj.8722/fig-1

using the above-mentioned circular distributions (Text S5). The generated coverage depth
reproduced high variance and concentration at the replication origin, expressed as the
location parameter of the circular distribution. Interestingly, when sorted, this artificial
coverage depth showed a distorted trend in both the upper and lower orders regardless of
the circular distribution type (Fig. 1A). The same shape was visualized previously (Brown
et al., 2016), wherein it was stated that this shape was formed by a specific sequence feature,
such as a phage. However, our model generated artificial depths from smooth probability
trends and did not include any artificial noise. To investigate in detail the cause of the
distorted regions seen at both ends, potential prophage sequences and duplicate genes in
the genome sequence of Lactobacillus gasseri were analyzed. Among them, only the intact
prophage region was abundant at the lower end (Table S4). Moreover, a similar distorted
structure was reproduced on a partial genome sequence that did not contain suspicious
regions (Fig. 1B).We evaluated the best model for this distribution and used it to determine
the threshold for outlier removal (Table S5; Text S3).
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Figure 2 Probabilistic model for generating coverage depth. Summary of procedures and distributions
with coverage. (A) Overall flowchart of our method. The green parallelogram represents the data, and
the pink rectangle represents the procedure. (B) Coverage depth on the circumference. Focusing on the
genome structure of prokaryotes, we developed a model that conducted circular regression. The green and
pink plots represent the peak and the trough estimated from the model, respectively. (C) Correlation with
experimental growth rate by time series aerobic cultured E. coli. pPTR is correlated with the experimental
growth rate with a Pearson correlation of 0.964. The dataset was obtained previously (Korem et al., 2015).

Full-size DOI: 10.7717/peerj.8722/fig-2

Performance evaluation with experimental growth rates
Using a statistical model based on a circular distribution, we first evaluated the model’s
accuracy by estimating the correlation between the computational and experimental growth
rates, as had been done previously (Korem et al., 2015). We estimated the coverage depth
by mapping the WGS reads to the genome sequence and counting the coverage depth
(Fig. 2A). After reducing the variance, outliers, and data size with a moving median filter,
the proposed model was fitted to the cleaned coverage depths (Fig. 2B). To evaluate the
accuracy of the method, we used the WGSs of the three species (E. coli, E. faecalis, and
L. gasseri) previously obtained from culture experiments under aerobic and anaerobic
conditions (Korem et al., 2015). These data were accompanied by CFU/ml or OD in time
series for evaluation. As substantiated in the previous study, we observed a high correlation
coefficient between the growth estimates and experimental growth rates (Fig. 2C; Figs.
S2A and S2B). Regardless of the culture state, E. coli and E. faecalis exhibited high degrees
of correlation, without requiring time delay adjustments (r ≥ 0.5). In contrast, L. gasseri
required a time delay adjustment of 90–120 min. Our growth estimates yielded correlation
coefficients equivalent to those obtained using the previous methods, with experimental
growth rates of both 60min (Fig. S2C) and 30min (Fig. S2D). Our estimates were correlated
with the temporal growth based on the relative abundance (r = 0.76 ± 0.04, n= 4, each
with 10 timepoints; Fig. S2E) previously obtained (Korem et al., 2015) even when the
samples originated from mixed cultures with multiple intestinal species.

Secondly, we tuned the parameters of interest. The window and stride size of the moving
median filter were optimized to 100 bp by comparing the growth estimates with the
experimental growth rates (Figs. S3 and S4; Texts S5 and S6). Our pipeline, which used
a sequence aligner that did not take circular structures into account, confirmed that the
decrease in coverage at both edges, termed the edge effect in a previous study (Brown et
al., 2016), exerted only a small effect on the estimation (Fig. S5; Text S7). Our method
performed well regarding memory usage and computation time with the exception of the
Jones-Pewsey distribution-based model (Fig. S6).
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Finally, we evaluated the applicability of the method using artificial datasets. When
applied to modified datasets from culture experiments, most methods, including those
used in previous studies, have performed adequately with low coverage depth WGSs until
at least 0. 5×, whereas our growth estimates remained stable even at coverage depths
of 0. 01× (Fig. 3A and 3S and Fig. S7 a). According to the bPTR in the coverage depth
mode, the error percentage was not correlated with the number of reads. Although GRiD
seemed to maintain a low error rate from 0. 005× to 0. 01× coverage depth, the number of
samples with growth estimated as 1.0 increased (0. 005×: 10/20, 0. 01×: 17/20). As DEMIC
requires multiple contigs for estimation and thus is not applicable to a single template
genome sequence even when the sequence is complete, we performed the evaluation using
assembled genome sequences. Moreover, this approach cannot be applied to low coverage
less than or equal to 1.0× coverage. Given the culture dataset results, we also performed the
evaluation on metagenomic reads and confirmed that the error rate was less than 15% on
average until 0. 01× coverage (Fig. 3B). Our method was also stable for mutations at both
the 5,000 bp block and single nucleotide levels (Figs. S7B and SC). Because the approach
uses the entire sequence structure, the results obtained from a sequence mutated on a single
specific region deviated from those of full-length sequences (Fig. S7D). To evaluate the
effect in human intestine WGS reads, we quantified the deletion size on the chromosome
sequences in a metagenomic dataset (Fig. S8; Text S8). Our estimates were as stable as
those generated using the previous methods when a single peak noise was contaminated
(Fig. S7E). With more noise, although the error rate of our estimates remained less than
15% on average, some samples showed substantial error as the amount of artificial noise
increased (Fig. S7F). To address this, we investigated the relationship between the error rate
and the zero coverage fraction (Lander & Waterman, 1988; Roach, 1995) and determined
the threshold to exclude invalid samples with an error rate of more than 15%. As a result,
we detected the noise-contaminating coverage samples with a recall score of 0.81 (Texts
S4 and S9; Figs. 9 and S10; Table S6). Finally, the number of samples was related to the
variation, but the effect was not substantial compared with those of the other factors (Fig.
S7G).

Performance evaluation using in vivo dataset
To evaluate the accuracy, we compared the growth estimates with the known growth
dynamics using previous datasets. For the in vivo sample setting, we tuned the window size
of the moving median filter based on the coefficient of variance and concluded that 100 nt
was the best (Fig. S11). First, we checked the reproducibility of the growth estimates using
C. rodentium-infected mice fecal samples. As was also reported previously (Korem et al.,
2015), tir mutantC. rodentium had a higher pPTR than the wild-type (WT) strain (Fig. S12;
p-value by Welch’s t -test between WT and mutant on days 6–9: 8. 72×10−5, nWT= 12,
n1tir = 12). Second, we evaluated the growth dynamics in the fecal microbiome in IBD
patients (Franzosa et al., 2018). When we compared the estimates between Crohn’s disease
subjects and healthy volunteers, we reproduced the significant high growth estimates of
Eggerthella lenta in the patients (p-value: 1. 26×10−7, Hedges’ g =−1.21, nhealthy = 42,
nCrohn = 49). Although this difference was limited to the remission and active patients in
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Figure 3 Error rates of growth estimates from various coverage depths with respect to the full cover-
age depth. The error rates for each average coverage depth were calculated with respect to the full coverage
depth. (A) Only the E. coli, E. faecalis, and L. gasseriWGSs with greater than 5.0× coverage, or (B) species
with more than 20× coverage in human fecal WGS datasets were used (Franzosa et al., 2018). The hori-
zontal bar represents the 15% threshold of the error rate threshold. The black crosses on the bar represent
the unavailability of the methods with respect to the coverage depth. The proposed models and statistics
are shown in the black rectangle within the legend.

Full-size DOI: 10.7717/peerj.8722/fig-3

the small sample size dataset used in the previous study (Korem et al., 2015), we observed
this difference in the large cohort dataset even by PTRC (p-value: 1. 31×10−2, Hedge’s
g =−0.57, nhealthy = 35, nCrohn = 57). Finally, we confirmed the growth dynamics of
Bifidobacterium breve and Bifidobacterium adolescentis in the neonates and their mothers
fecal microbiome cohort (Bäckhed et al., 2015). It is well known that B. breve is abundant
in infant guts, whereas B. adolescentis is abundant in adult guts. Moreover, a previous
experimental study demonstrated that B. breve grows well in a medium containing formula
based on soy, milk, or casein hydrolysate. These biological signals were also reproduced in
the estimates obtained using our model (Fig. S13; Table S7).

Shape, peakedness, and skewness of coverage depth
As an additional application of our model, we investigated the shape of the coverage depth
by comparing the kinds of circular distributions (Tables S8 and S9). In a comparison of
the fitness of multiple models, the Jones-Pewsey distribution model exhibited the highest
fitness among the vanilla models (those without argument transformation) on average.
The shape parameter of the Jones-Pewsey distribution in the datasets of Korem et al.
(2015) changes considerably with time (Fig. S14A). For example, in the E. faecalis dataset,
the distribution was dense around the replication origin in the first phase; however, it
gradually dispersed over time. In contrast, the trend was reversed in the anaerobically
cultured L. gasseri.

To evaluate the coverage depth concentration phenomenon further, we implemented
the InvSE von Mises distribution model. Along with the Jones-Pewsey distribution model,
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nt

E. faecalis

Figure 4 Replication peakedness. The InvSE von Mises distribution-based model exhibits a tapered
shape of the coverage depth trend. The Jones-Pewsey distribution-based model also shows a concentrated
shape.

Full-size DOI: 10.7717/peerj.8722/fig-4

the peakedness parameter of the InvSE von Mises distribution changed considerably with
time (Fig. S14B). Comparing the model with the vanilla von Mises-based model, the InvSE
von Mises-based model exhibits a lower AIC and BIC (Table S8). As in the Jones-Pewsey
model case, the peakedness was initially high. However, in E. faecalis, it became lower
later on (Fig. 4). These parameters in the Jones-Pewsey and InvSE von Mises distributions
showed high correlation coefficients, but their trends were not identical (min r =−0.793,
p= 2. 93×10−7; Fig. 15).

Next, we evaluated the symmetricity of replication. Although several methods that
extend circular probability densities toward asymmetricity have been described (Batschelet,
1981; Pewsey, 2002; Abe, Pewsey & Fujisawa, 2013), a few requirements must be satisfied
to adapt to replication dynamics. Therefore, the InvMIAE von Mises distribution-based
model was used in this study. First, we evaluated the robustness of the asymmetric extended
method (Text S10; Fig. S16). As a result, we concluded that this extension was not suitable
for use with the short-read sequences that were largely mutated from the template genome
sequence. We therefore determined the applicability of the dataset by estimating the
mutation rate from the frequency of the zero-coverage depth using a zero-inflated model
(Supplementary Text S11). The results indicated that the E. faecalis dataset did not satisfy
the criteria (Fig. S17A). Finally, we fitted the model to the actual coverage depth. The
skewness parameter had a low variance with time and was nearly 0 except for the E. faecalis
data (Fig. S14B). Although E. faecalis showed high skewness, the InvMIAE model fitted
0 or outlier coverage depths rather than the skewness of the whole sequence (Fig. S17B).
Furthermore, we measured skewness using only Watson and Crick strands. The skewness
parameters showed strong correlations, and no specific skewness in any specific strand was
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found (Fig. S18). These results support the hypothesis that coverage depth is symmetrical,
contrary to our expectations.

Extension of the model to multiple replication origins
To demonstrate the extendibility of our method, we modeled the coverage depth behavior
of multiple replication origins, using a mixture of circular distributions. To validate our
model, we applied it to WGS data of Sulfolobus solfataricus and Haloferax volcanii, which
contain three replication origins (Ausiannikava et al., 2018; Payne et al., 2018). Based on
the AIC and WAIC, we determined the number of components in both datasets to be
three because this number yielded the best score on average (Table S10). Of the seven
datasets, five matched the true number of active replication origins. The estimated location
parameters of S. solfataricus were distributed close to cdc6, which is a marker gene for the
replication origin (the average error rate of the location parameter with respect to the
marker gene is 6.55 ± 4.48%, n= 6) (Figs. S19A–S19F) (Lundgren et al., 2004; Robinson et
al., 2004). In contrast, although there is a distinct peak around 2 Mbp, cdc6 is not evident
in the H. volcanii genome sequence (Figs. 5A and 5B). We compared the weighted PTRs
between the exponential growth and stationary phases. All of the origins in the exponential
growth phase increased the estimates (exponential growth phase: 3.59, 3.18, and 2.66;
stationary phase: 1.64, 2.26, and 1.43). We also checked the difference in the wPTR among
multiple origins. Notably, the middle of the replication origin position nearly coincided
with the position at which the genomes were split by the ratio of wPTR (Figs. 5C and 5D;
Figs. S19G–S19L). As was done when the model was applied for a single replication origin,
the robustness of the estimates was evaluated using the artificially modified dataset, which
was an S. solfataricus dataset in this case. As a general trend, the individually weighted PTRs
were more sensitive to the modifications than the mean weighted PTRs. When the number
of reads was limited to 0. 1× coverage depth on average, the error of the estimates was less
than 15% at the median (Fig. 19SM). Although it was more susceptible to noise than the
model for a single origin of the replication origin, this estimate was robust so long as the
mutation rate was less than 7% at the point level or 4% at the block level (Figs. S19N and
S19O). Our method avoided the effect of a single noise region which increases coverage in
the conserved region (Fig. S19P).

DISCUSSION
Here, we introduced a generative statistical model of coverage depth based on circular
statistics and evaluated the estimated growth dynamics, replication trend, and differences
in wPTR among multiple origins. In directional statistics, the simplest approach to
expressing angular bias may be the use of the MRL. Although the MRL of the coverage
depth was correlated with the experimental growth rate in the culture datasets, it is not
as robust as estimates obtained via statistical models. This statistic can be easily calculated
even with poor computational resources, but is not suitable for metagenomic datasets.
Our proposed method was as accurate as the previous methods when compared with the
experimental growth rates, and furthermore, it was robust against random mutations in
the reference sequence and decreases in the coverage depth. Conversely, it was sensitive
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(a) (b)

(c) (d)

Figure 5 Extension to multiple replication origins. The plots in A and B represent the coverage depth
and probability distributions estimated using a mixture of the von Mises distribution models for Haloferax
volcanii in the (A) exponential growth phase, and (B) stationary phase. The blue lines represent the cov-
erage depth processed using a median filter with 100 nt for both the stride and window length. The black
arrows indicate the position of cdc6 in the genome. The lines inside the circular plot express the magni-
tude of the weighted pPTR for H. volcanii in the (C) exponential growth phase and (D) stationary phase.
The circles represent positions of replication origins, and the crosses represent the positions of the cen-
ters of gravity of the replication origins. The lines inside the circles represent the relative magnitudes of the
weighted pPTR.

Full-size DOI: 10.7717/peerj.8722/fig-5

to a decrease in coverage depth due to mutations concentrated in a specific direction as
well as to an increase in coverage depth due to conserved regions. In future research, it is
expected that the rapid increase or decrease in coverage depth will be modeled to more
accurately estimate the dynamics of the coverage depth. The simplest approach is not to use
coverage depth in regions that are expected to be ineligible, as has been done in previous
studies. However, this filtering approach alone does not provide a reasonable estimation
for the proposed model as it also uses the absence of observation for parameter estimation.
If a valid region [a,b] can be assumed, ineligible regions could be excluded by normalizing
the likelihood function to satisfy

∫ b
a p(θ)dθ = 1. In applying the proposed method to the

coverage depth obtained from the metagenomic sequence, the average coverage depth and
random sampling properties must be examined, as was done here. Although we did not
utilize it in this study, one of the advantages of a GLM is its ability to incorporate covariate
effects into the model. If one wants to evaluate the relationship between the covariates x
and pPTR, it is suitable to use a link function for the concentration parameter. For example,
when the von Mises distribution model is used, let β be the coefficient of the covariates;
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then κ = exp(β0+β1x1+···) satisfies the requirement, i.e., κ > 0. For a wrapped Cauchy
distribution, the inverse logit function is appropriate to satisfy 0<ρ < 1.

We demonstrated the generation of artificial coverage depths using our statistical
model. It was confirmed that the shape after sorting in ascending order was similar to the
experimentally obtained replication profiles, which were presented previously (Brown et
al., 2016). This shape did not depend on the type of circular distribution. These results
demonstrate that the distorted shape could be generated not only by prophage sequences,
strain variations, and highly conserved regions but also by the randomness of observation
(DNA sequencing). When we evaluated this shape using actual data, we observed its
appearance even in partial sequences that did not include these regions. This finding
suggested that the shape is attributable not only to specific regions but also to the variance
in observations, which is modeled by a multinomial distribution in our model. Filtering
these parts out undoubtedly reduces the noise in the coverage depth.

In the evaluation using the in vivo dataset, we successfully confirmed consistency with
previous studies. The species in the Bifidobacterium genus showed growth diversity when
ourmethodwas evaluated using fecalWGS from infants and theirmothers. Previous studies
have revealed that Bifidobacterium adolescentis is abundant in adults and Bifidobacterium
breve is abundant in infants (Turroni et al., 2012; Ruiz-Moyano et al., 2013; Kato et al.,
2017); this trend was also reflected by the growth estimates. Although this finding was
not reproduced by PTRC, previous studies have indicated that B. breve grows faster than
other Bifidobacterium species in formula milk (Dubey & Mistry, 1996) and human breast
milk (Turroni et al., 2011). Since not all of the infants in the dataset had been weaned at
the time of the study (Bäckhed et al., 2015), it is suggested that our method appropriately
interpreted the dynamics.

When we compared the non-extended directional distributions for the replication
trends, the Jones-Pewsey distribution exhibited the best fitness. This result implies
that the additional parameter could contribute to the coverage depth dynamics that
had been overlooked. The additional shape parameter implied that more reads were
concentrated around the replication origin in the early stage of the exponential growth
phase, except for L. gasseri in an anaerobic culture.We additionally applied the InvSEmodel
to evaluate this phenomenon based on another quantification; this model reproduced the
trend obtained using the Jones-Pewsey distribution model. We provide two possible
explanations for the above phenomenon. The first is the effect of multiple replication
forks. As the cell division phase is shorter than the genome replication phase in bacteria,
the genome begins replication before finishing the current replication origin (Cooper &
Helmstetter, 1968; Bremer & Churchward, 1977; Yoshikawa &Wake, 1993; Wallden et al.,
2016), allowing multiple rounds of replication to occur around the replication origin
while rapid replication is occurring. Emiola and Oh also discussed the effect of multiple
fork replication on the coverage depth (Emiola & Oh, 2018). The second hypothesis is
that, as the entire chromosome is not affected at the start of DNA replication, some DNA
appears only around the replication origin. However, this concept does not explain the
generation time of bacteria. Under laboratory conditions, DNA replication of E. coli is
reportedly completed within approximately 30 min (Helmstetter & Cooper, 1968). If the
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second hypothesis was valid, the additional coverage depth concentration around the origin
should be finished within 30 min from the beginning of the culture. However, the degree
of density remained low for an hour in our study. The trend observed in the anaerobic
cultured L. gasseri was the opposite of what was seen in the others; however, it is worth
noting that L. gasseri required 90–120 min of adjustment to have a sufficient correlation
between the experimental growth rate and estimated growth dynamics. This suggests that
both the activation of DNA replication and cell division are required to decrease the degree
of density. Accordingly, we inferred that the degree of density and peakedness may indicate
the activity of multiple replication forks. In contrast, the skewness parameters in E. coli and
L. gasseri did not change dynamically during the experimental duration. Additionally, we
confirmed the presence of a strong correlation between the skewness of the Watson and
Crick strands, implying that the amount of DNA remains symmetric between the Watson
and Crick strands as well as between the leading and lagging strands.

In addition to the application to microbes with a single replication origin, we extended
the model’s application to microbes with multiple origins in a single chromosome.
One interesting finding was the difference in wPTR among multiple origins. From the
relationship between the intermediate position of the origins and the split position of
the chromosome sequence based on wPTR, the efficiency, in terms of the activity of the
origins, was quantitatively confirmed. If only a single replication origin was active in a
chromosome, considerable time could be required for whole-genome replication, which
would be a disadvantage for survival. By properly activating the origins at a distance,
replication may be efficiently completed. However, our results indicated that not all
replication origins exhibit similar activity. There are various characteristics that cause
the activity to differ, such as (a)synchronous initiation (Lundgren et al., 2004), replication
fork speed (Elshenawy et al., 2015), and so on. Therefore, the mechanism underlying the
differences observed for each replication origin must be clarified, and the characteristics of
neighboring genes must be investigated.

The current studywas affected by certain limitations. First, the proposedmethod requires
circular genome sequences for accurate estimation. As several methods involving contig
or scaffold-level sequences have already been proposed for estimating the quasi-growth of
bacteria (Brown et al., 2016; Emiola & Oh, 2018; Gao & Li, 2018), it is recommended that
these methods be properly used depending on the accuracy requirements. It is difficult to
detect trends in the amount of DNA other than the coverage depth bias or to estimate the
bias in chromosomes with multiple replication origins using these methods. We consider
our method to be appropriate for data analyses related to detailed replication profiles.

Second, the taxonomic resolution is limited to the species level in our method, on
account of the first limitation. When the growth estimates of a reference strain were
calculated using metagenome samples containing different but closely related strains,
their growth dynamics were found to be different, indicating that the pPTR distributions
may be mixed. This difficulty regarding the taxonomic resolution has yet to be solved via
growth rate estimation, which may give rise to major challenges in environments such as
soil, wherein many closely related species are contained because of empty niches and/or
microstructures (Dumbrell et al., 2010; Thompson et al., 2017). However, this challenge
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may be less serious in environments devoid of close relatives on account of the filling of
niche space and/or strong selective pressure. The human intestine likely corresponds to
the latter case (Jeraldo et al., 2012; Li & Ma, 2016; Thompson et al., 2017) but may shift to
the former case in situations in which the population is being reconstructed because of
an environmental change (Langenheder & Szekely, 2011). This resolution problem may be
solved by constructing pan-genome sequences from metagenomic reads and allocating
coverage depth appropriately. Third, the evaluation scope of the extended model is limited.
Although we evaluated and eliminated the possibility of overfitting in our dataset, we
cannot deny the possibility that the dynamics of the peakedness and stability of the
skewness around the origin are specific to the three strains we used. External validations
are expected to confirm the variability of the peakedness or stability of the skewness
over the growth phase. Finally, in our method as well as all currently proposed methods
for estimating bacterial growth, the estimate itself is only a proxy of the growth rate.
Theoretically, (p)PTR for a taxon t in a sample s is represented by (p)PTRs,t = 2Ct /τs,t ,
where Ct is the replication period and τs,t is the doubling time (Cooper & Helmstetter,
1968; Bremer & Churchward, 1977; Korem et al., 2015). Our interest is in the doubling
time, but the estimate is also influenced by the replication period. This period may vary
from species to species depending on the genome size and other factors. Therefore, it is
not appropriate to compare estimates between species. It is necessary to analyze the effects
of the replication period C and to propose a method that yields a doubling time that is
comparable between species (Gibson et al., 2018).

CONCLUSIONS
We developed a probabilistic model based on circular statistics to model the coverage
depth behavior in DNA replication using WGS reads. This method was demonstrated to
be robust for a small number of reads (≥0.01×). The probabilistic PTR from our model
demonstrated a significant correlation with the experimental growth rates in the culture
dataset. In addition to facilitating quantification of the ratio differences, this method
enables detailed measurement of DNA quantity changes by using circular distributions in
the model. Moreover, by combining multiple distributions, it became possible to estimate
the growth of organisms with multiple replication origins, such as archaea. Therefore, this
method further extends the applicability of growth estimation from fragmented reads. We
expect that the growth estimation method presented herein will help elucidate factors that
have not yet been observed in studies of microbiome formation.
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al., 2013). The genome and metagenome sequences used in the cohort studies analysis are
listed in Table S2. The final chromosome sequences we have used to construct the genome
sequence database are listed in Table S3.
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