
Original Article Antiviral Chemistry and Chemotherapy

3,7-Dideazaneplanocin: Synthesis and
antiviral analysis

Xue-Qiang Yin and Stewart W Schneller

Abstract

Objective: To synthesize 3,7-dideazaneplanocin and evaluate its antiviral potential.

Methods: The target 3,7-dideazaneplanocin has been prepared in five steps from a readily available cyclopentenol.

A thorough in vitro antiviral analysis was conducted versus both DNA and RNA viruses.

Results: A rational synthesis of 3,7-dideazaneplanocin was conceived and successfully pursued in such a way that it can

be adapted to various analogs of 3,7-dideazaneplanocin. Using standard antiviral assays, no activity for 3,7-dideazane-

planocn was found.

Conclusion: Two structural features are necessary for adenine-based carbocyclic nucleosides (like neplanocin)

for potential antiviral properties: (i) inhibition of S-adenosylhomocysteine hydrolase and/or (ii) C-50 activation

via the mono-nucleotide. These two requisite adenine structural features to fit these criteria are not present in in

the target 3,7-dideazaneplanocin: (i) an N-7 is necessary for inhibition of the hydrolase and the N-3 is claimed

to be essential for phosphorylation at C-50. Thus, it is not surprising that 3,7-dideazaneplaoncin lacked antiviral

properties.
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Introduction

Since the synthesis of aristeromycin [1]1 and its subse-
quent discovery in nature,2 carbocyclic nucleosides
have received considerable attention as a source of
therapeutic agents.3 Those efforts have led to the
clinically useful antivirals entecavir [2]4 and abacavir [3]
(Figure 1).5

Neplanocin A [4], also a naturally occurring
adenine-based carbocyclic nucleoside,6,7 has served a
cornerstone framework due to the presence of the
cyclopentenyl unit that offers unique conformationally
and chemically attractive features for expanding the
carbocyclic nucleoside antiviral toolbox. While numer-
ous variations of this center have been productive in
the antiviral drug pursuit, modification of the purine
ring has been rewarding. In that direction, results
from 3-deazaneplanocin [5]8 and 7-deazaneplanocin
[6]9 has been encouraging as anti-Ebola,10 antiortho-
pox,11 and anti-HBV and -HCV candidates.12 Several
years ago we sought to combine these two leads with
the synthesis and antiviral analysis of 3,7-dideazane-
planocin [7]. The results from this investigation are
presented here.

Results and discussion

Synthesis

The synthesis of target [7] began by, first, converting
the requisite trityl protected cyclopentenol [8]13 into
mesylate [9]. This product was, in turn, reacted with
4-chloro-1H-pyrrolo[3,2-c]pyridine14,a,b in the presence
of sodium hydride to provide [10], which was
converted directly to the hydrazine derivative [11].
Raney nickel promoted reduction of [11] to [12] fol-
lowed by acid catalyzed deketalization resulted in the
desired [7] (Scheme 1).
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Antiviral results

Compound [7] was evaluated15 versus a number of

viruses and found to be inactive.c

Conclusion

Two structural features are necessary for adenine-

based carbocyclic nucleosides to demonstrate

potential antiviral properties: (i) inhibition of
S-adenosylhomocysteine hydrolase16 and/or (ii) C-50

activation via the mono-nucleotide.16 These two req-
uisite adenine structural features that fit these criteria
are not present in [7]: (i) an N-7 is necessary for
inhibition of the hydrolase9 and (ii) the N-3 is
claimed to be essential for phosphorylation at C-
50.16 These observations may account for the lack
of antiviral activity for [7].

Figure 1. Aristeromycin, neplanocin A and related synthetic analogs.

Scheme 1. Synthesis of [7]. a, MsCl, Et3N, CH2Cl2; b, 4-chloro-1H-pyrrolo[3,2-c]-pyridine, NaH, DMF; c, hydrazine monohydrate,
2-methoxyethanol; d, Raney Ni, H2O, 30% (from 8); e, 0.5 N HCl, MeOH, 92%.
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Experimental section

Chemistry

The combustion analyses were performed at Atlantic
Microlab, Norcross, GA. 1H and 13C NMR spectra
were recorded on either a Bruker AV 600 spectrometer
(600 MHz for proton and 150 MHz for carbon) or a
Bruker AV 400 spectrometer (400 MHz for proton and
100 MHz for carbon), referenced to internal tetrame-
thylsilane at 0.0 ppm. The reactions were monitored by
thin-layer chromatography using 0.25 mm Whatman
Diamond silica gel 60-F254 precoated plates with visu-
alization by irradiation with a Mineralight UVGL-25
lamp. Column chromatography was performed on
Whatman silica, 230–400 mesh, and 60 Å using elution
with the indicated solvent system.

1-((3aS,4R,6aR)-2,2-dimethyl-6-((trityloxy)methyl)-
3a,6a-dihydro-4H-cyclopenta[d][1,3]dioxol-4-yl)-1H-
pyrrolo[3,2-c]pyridin-4-amine [12]). To a solution of
[8]13 (400 mg, 2.56 mmol) and triethylamine (0.46 ml)
in anhydrous CH2Cl2 (20 ml) was added MsCl (0.2 ml,
2.56 mmol) at 0 �C. The reaction mixture gave a yellow
solution after stirring 1 h at room temperature. It was
then diluted with CH2Cl2 (20 ml) and washed with icy
water (20 ml), dried (Na2SO4), and filtered.
Evaporation of filtrate provided [9] as a sticky yellow
oil, which was directly used for the next step.

To a solution of 4-chloro-1H-pyrrolo[3,2-c]pyridi-
ne14a,b (479 mg, 3.13 mmol) in dry DMF (20 ml) was
added NaH (74.0 mg, 3.13 mmol). This mixture
became a clear dark solution after 0.5 h at room tem-
perature and the above oil [9] in DMF (20 ml) was
added. The reaction mixture was then kept at 80 �C
for 36 h and the DMF removed and evaporated to
give a black residue. Water (20 ml) was added and
the aqueous phase extracted with EtOAc (2� 20 ml).
The combined organic layers were dried (anhyd.
Na2SO4), filtered, and evaporated under reduced pres-
sure. The residue [10] as a white foam was used directly
in the next step.

To a solution of [10] from the last process in
2-methoxyethanol (10 ml) was added hydrazine mono-
hydrate (10 ml). The reaction mixture was then refluxed
overnight. The solvents were evaporated in vacuo to
give a sticky oil [11]. This oil was then suspended in
H2O and N2 was bubbled into this mixture for 20 min.
Raney nickel (2.0 g in H2O) was added and the mixture
was stirred at reflux for 3 h. The hot solution was filtered
through a pad of Celite that was repeatedly washed with
MeOH. TheMeOHwas then evaporated under reduced
pressure to give a pink residue. Column chromatogra-
phy of this material using hexanes–EtOAc (4:1) gave
[12] (550 mg, 30% in four steps from [8]) as white
foam, mp 179–181 �C; 1H NMR (CDCl3, 400 MHz)

d 7.75 (d, J¼ 6.4 Hz, 1 H), 7.50–7.46 (m, 6 H), 7.35–

7.22 (m, 9 H), 6.92 (m, 2 H), 6.54 (d, J¼ 3.2 Hz, 1 H),

6.11 (s, 1H), 5.50 (brs, 2H), 5.42 (s, 1H), 5.16 (d, J¼ 5.78

Hz, 1H), 4.50 (d, J¼ 5.78Hz, 1H), 3.99 (d, J¼ 15.2Hz, 1

H), 3.87 (d, J=15.2 Hz, 1 H), 1.44 (s, 3 H), 1.26 (s, 3 H);
13CNMR(CDCl3, 400MHz) d 152.2, 149.4, 143.9, 140.4,
136.5, 128.7, 128.2, 127.4, 124.3, 122.9, 112.7, 111.7,

100.5, 98.8, 87.5, 85.2, 84.1, 77.4, 67.1, 27.6, 26.1. Anal.

Calcd for C35H33N3O3�H2O: C, 74.77; H, 6.23; N, 7.48;

Found: C, 74.85; H, 6.40; N, 7.24.
(1S,2R,5R)-5–(4-amino-1H-pyrrolo[3,2-c]pyridin-1-yl)-

3-(hydroxymethyl)cyclopent-3-ene-1,2-diol [7]).

Compound [12] (520 mg, 1.92 mmol) was dissolved in

1 N HCl (20 ml) in MeOH. This mixture was stirred at

room temperature for 0.5 h and then evaporated to

dryness under reduced pressure. The residue was then

dissolved in MeOH and neutralized with IRA-67 resin

and then purified by column chromatography (MeOH–

EtOAc, 1:5) to give [7] (92%) as a white solid, mp

>187 �C (dec); 1H NMR (DMSO, 400 MHz) d 8.25

(brs, 2 H), 7.59 (d, J =7.0 Hz, 1 H), 7.31(d, J =3.2

Hz, 1 H), 7.17 (d, J =7.0 Hz, 1 H), 7.06 (d, J =3.21

Hz, 1 H), 5.71 (s, 1 H), 5.41 (s, 1 H), 5.28 (d, J =7.40

Hz, 1 H), 5.14 (m, 1 H), 5.02 (m, 1 H), 4.35 (s, 1 H),

4.13 (m, 2 H), 3.88 (q, J =5.8 Hz, 1 H); 13C NMR

(DMSO, 400 MHz) d 151.0, 150.0, 139.5, 127.9, 125.9,

123.0, 109.6, 103.2, 99.1, 78.7, 72.0, 66.5, 58.6; Anal.

Calcd C13H15N3O3�0.8 H2O: C, 56.58; H, 6.02; N,

15.23; Found: C, 56.78; H, 5.81; N, 14.91.

Antiviral assays

These assays are presented in Chen et al.15
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Notes

a. Using modification of a reported procedure.
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b. Recently commercially available (Sigma-Aldrich, 28 June
2017).

c. There was no activity for [7] (host cell) for toward (EC50
values in mM): cowpox (HFF, >300), vaccinia (HFF and
E6SM, >300), rhinovirus (Hela Ohio-1, >100), adenovirus
(A-549, >100), respiratory syncytial virus (HeLa and MA-
104, >200), influenza A (H3N2) (MDCK, >100), PIV
(MA-104, >100), SARS corona (Vero 76, >100), dengue
(Vero,>52), West Nile (Vero,>100), hepatitis C (Huh-5-2,
>52), HSV 1 and 2 (E6SM,>60), Tacaribe (BS-C-1,>100),
HCMV AD 169 and Davis (HEL, >100), VZV TKþ and

TK- (HEL >60), HIV-1 and HIV-2 (CEM, >50), parain-
fluenza virus 3 (Vero, >200), reovirus-1 (Vero, >200),
Sindbis virus (Vero, >200), Coxsackie virus B4 (Vero,
>200), Punto Toro virus (Vero, >200), vesicular stomatitis
virus (E6SM, >200), HBV (HepG2 2.2.15, >10), yellow
fever (Vero, >100), and measles (CV-1, >100).
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