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Multivariable Mendelian randomization (MVMR) is a form of instrumental
variable analysis which estimates the direct effect of multiple exposures on
an outcome using genetic variants as instruments. Mendelian randomization
and MVMR are frequently conducted using two-sample summary data where
the association of the genetic variants with the exposures and outcome are
obtained from separate samples. If the genetic variants are only weakly asso-
ciated with the exposures either individually or conditionally, given the other
exposures in the model, then standard inverse variance weighting will yield
biased estimates for the effect of each exposure. Here, we develop a two-sample
conditional F-statistic to test whether the genetic variants strongly predict each
exposure conditional on the other exposures included in a MVMR model. We
show formally that this test is equivalent to the individual level data conditional
F-statistic, indicating that conventional rule-of-thumb critical values of F > 10,
can be used to test for weak instruments. We then demonstrate how reliable esti-
mates of the causal effect of each exposure on the outcome can be obtained in
the presence of weak instruments and pleiotropy, by repurposing a commonly
used heterogeneity Q-statistic as an estimating equation. Furthermore, the min-
imized value of this Q-statistic yields an exact test for heterogeneity due to
pleiotropy. We illustrate our methods with an application to estimate the causal
effect of blood lipid fractions on age-related macular degeneration.
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1 INTRODUCTION

Instrumental variables (IV) is a form of regression analysis which estimates the causal effect of an exposure on an outcome
in the presence of unobserved confounding. Mendelian randomization (MR) is a rapidly expanding application of the
IV method in the field of epidemiology in which genetic variants are used as instruments. If genetic variants—usually
single nucleotide polymorphisms (SNPs)—are available which reliably predict the exposure and are not associated with
the outcome through any other pathway, then they are valid IVs. These genetic variants can then be used as instruments
to obtain an estimate for the causal effect of a modifiable health exposure on a disease outcome.1,2 The results of such
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an analysis can inform the development of public health, or even pharmaceutical, interventions. MR is often conducted
with summary-level data on the SNP-exposure and SNP-outcome associations obtained from genome-wide association
studies (GWAS) without the need to have individual level data on the genetic variants, exposure and outcome available
to the researcher conducting the MR study.

Multivariable Mendelian randomization (MVMR) is a recently developed extension of MR that can be applied with
either individual or summary level data to estimate the effect of multiple, potentially related, exposures on an outcome.3,4

The three core assumptions that define a set of SNPs, G, as valid IV’s for the purpose of an MVMR analysis are;

IV1: G must be strongly associated with each exposure given the other exposures included in the model;
IV2: G is independent of all confounders of any of the exposures and the outcome; and
IV3: G is independent of the outcome given all of the exposures.4

These assumptions are shown in Figure 1. A violation of IV1 induces ‘weak instrument bias’ in the resulting
estimates.5,6 In a conventional (univariable) MR analysis, the definition of instrument strength is straightforward and
unambiguous. Assumption IV1 can be tested with an F-statistic, which tests the association between the SNP and
the exposure. When univariable MR analysis based on individual level data from a single sample, if the F-statistic is
larger than the rule-of-thumb value of 10 then the SNPs are said to be a “strong” instrument. We can then reject the
null hypothesis that the instruments are weak in the sense that the bias of the MR estimate is equal to or greater
than 10% of the observational (or ordinary least squares, OLS) association.5,6 In any MVMR analysis it is necessary
that there are at least as many instruments as exposures and that this F-statistic is large for each exposure included,
however this is no longer sufficient; the SNP’s used as IV’s also need to predict each exposure conditional on the
other predicted exposures included in the estimation. This additional condition ensures that there is sufficient varia-
tion in association between the SNPs and each exposure, to avoid a problem of weak instrument bias in the MVMR
model. Unlike in univariable MR, in MVMR weak instrument bias can bias the estimated effect of each exposure
either towards or away from the null. This makes testing for weak instruments in any MVMR estimation particularly
important.

With individual level data, weak instruments can be tested in MVMR using the Sanderson-Windmeijer conditional
F-statistic, denoted FSW.4,7 Under weak instruments FSW has the same distribution as the conventional F-statistic and
so can be compared with the same critical values.5,6 Therefore, when testing for weak instruments, verifying that FSW is
greater than the rule-of-thumb of 10 means that we can reject the null hypothesis that the average bias of the MVMR
estimates is at least 10% of the bias of the equivalent multivariable OLS estimates.

When individual level data on the genetic variants, exposure and outcome are not available two-sample MVMR can
be conducted using summary data estimates of SNP-exposure and SNP-outcome associations. In two-sample MR, weak
instruments bias the causal estimates towards the null rather than the observational association.8 In this article, we con-
sider testing for weak instruments and estimation in the presence of weak instruments in the summary-data MVMR
setting. Sanderson et al4 derived a Q statistic (Qxj ) to test for underidentification (ie, where the SNPs explain none of the
variation in an exposure) in two-sample MVMR. We formally show in this article that a transformation of this statistic
has the same distribution as FSW and therefore can also be compared with standard weak instrument critical values, or
rule-of-thumb of F>10, to test for weak instruments in the two sample setting.

F I G U R E 1 Assumptions for a MVMR analysis: DAG illustrating the assumptions required for MVMR. Dashed lines represent
associations that must not exist for the SNPs to be valid instruments for the set of exposures. DAG, directed acyclic graph; MVMR,
multivariable Mendelian randomization; SNP, single nucleotide polymorphism
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We then go on to consider horizontal pleiotropy in MVMR. Horizontal pleiotropy is a major threat to the validity of
an MR analysis. It occurs when the SNPs have an effect on the outcome (either directly or through another exposure
not included in the model) that is not via the exposure of interest, as illustrated by the dashed arrow from G to Y in
Figure 1. This violates assumption IV3 and can lead to biased estimates of the causal effect of each exposure on the
outcome from an MR analysis.9 Horizontal pleiotropy can be either “balanced,” where the pleiotropic effects of the SNPs
in the estimation are evenly distributed between having positive and negative effects on the outcome and so have no
overall directional effect, or “unbalanced” where on average these pleiotropic effects act in one direction on the outcome.
IVW estimation and MVMR-IVW estimation are robust to balanced pleiotropy when the instruments are strong. However,
this no longer holds if the exposures are only weakly predicted by the SNPs. A number of methods currently exist for
univariable MR estimation that are robust to pleiotropy under different assumptions.10-13 MVMR can mitigate horizontal
pleiotropy via known pleiotropic pathways through the inclusion of multiple exposures, however limited methods are
available for pleiotropy robust MVMR models.4,14,15 Furthermore, in the presence of weak instruments standard tests
are increasingly likely to detect pleiotropy when in truth none is present. The major contribution of this article is to
extend weak instrument and pleiotropy robust estimation to two sample MVMR with an arbitrary number of exposures.
Furthermore, we show that a heterogeneity statistic derived within this estimation procedure provides an exact test for the
presence of pleiotropy in the presence of weak instruments. The methods presented here therefore provide the statistical
framework for accurate and reliable MVMR model fitting, with potentially large numbers of exposures, in the presence
of weak instruments and pleiotropy.

We apply our methods to determine whether particular subsets of metabolites can be strongly predicted by 150 SNPs
associated with at least one of 118 metabolites using data first presented by Kettunen et al16 and estimate the causal effect
of those traits on age-related macular degeneration (AMD). The two-sample conditional F-statistic calculated for these
data highlights that it is not possible to strongly predict multiple metabolites from the same subgroup despite each lipid
fraction having a moderately high individual F-statistic and that any MVMR estimates including these is likely to be
biased. Any analyst naively applying MVMR methods to such data without the correct diagnostic statistics to hand is in
danger of generating poor quality results.

Finally, we present an R package (“MVMR”) that can conduct MVMR-IVW estimation and calculate all of the test
statistics and estimators discussed in this article.

2 A TEST FOR WEAK INSTRUMENTS

Let X = (X1,X2, … ,XK) be a set of K exposure variables and let G be a set of L instruments G = (G1,G2, … ,GL). Define
the K × L matrix of associations between each exposure and each instrument as;

Π =

⎛⎜⎜⎜⎜⎜⎝

𝜋11 𝜋12 … 𝜋1L

𝜋21 𝜋22 … 𝜋2L

⋮ ⋮ ⋱ ⋮

𝜋K1 𝜋K2 … 𝜋KL

⎞⎟⎟⎟⎟⎟⎠
, (1)

where for example 𝜋32 represents the association between exposure 3 and SNP 2. Without loss of generality, test-
ing whether the instrument set G can explain variation in a single exposure, X1, conditional on all other exposures
(X2, … ,XK) is equivalent to testing whether model (2) below is identified

X1 = 𝛿01 + 𝛿1X−1 + 𝜖1 (2)

Xm = 𝜋0m +
L∑

j=1
𝜋mjGj + 𝜖m, m = 2, … ,K (3)

Here: 𝛿01 and each 𝜋0m are scalar parameters; 𝛿1 is a K − 1 vector of parameters, and 𝜖1 and 𝜖m are random error
terms. Collecting 𝜋2, … , 𝜋K into a single (K − 1) × L matrix, define Π−1 as the matrix Π minus its first row. This model
considers only the exposures, and not the outcome, of the main estimation of interest as we wish to test whether the
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instruments explain any variation in X1 over and above the variation explained in all of the other exposures. If this model
is overidentified then the rank of Π−1 is strictly greater than K − (L − 1) and the instruments can strongly predict X1
conditional on all other exposures included in the estimation.

In two sample summary data settings we do not directly observe exposures X1, … ,XK , only estimates for the K × L
SNP-exposure associations that define Π̂ the estimated value of Π obtained through regression of each exposure on each
SNP. However, we can use these association estimates to define an analogous formula to (2)

�̂�1 = 𝛿1Π̂−1 + v1

The Q statistic for exposure 1 based on the summary data estimates can be written as;

Qx1 =
L∑

j=1

(
1
𝜎2

x1j

)(
�̂�1j − 𝛿1Π̂−1j

)2 (4)

where the variance term 𝜎2
x1j is given by;

𝜎2
x1,j

= 𝛿
∗ΣV ,j(𝛿

∗)′

Where j represents an individual SNP and 𝜋1j andΠ−1j represent column j of 𝜋1 andΠ−1, respectively. 𝛿∗ is the K by 1 vector
(−1 𝛿2 … 𝛿K), and 𝛿k is a consistent estimator for 𝛿k, for example estimated through an inverse variance weighted
(IVW) least squares regression of �̂�1 on Π̂−1. The matrix ΣV ,j defines the covariance of the estimated effects of snp j on
each of the exposures:

ΣV ,j =

⎛⎜⎜⎜⎜⎜⎝

𝜎2
1,j 𝜎12,j … 𝜎1K,j

𝜎12,j 𝜎2
2,j … 𝜎2K,j

⋮ ⋮ ⋱ ⋮

𝜎1K,j 𝜎2K,j … 𝜎2
K,j

⎞⎟⎟⎟⎟⎟⎠
(5)

If each �̂�kj is obtained separately via univariable regressions with an intercept, then the error terms are obtained from
the expressions:

𝜎2
k,j =

(
GT

j Gj

)−1

n

n∑
i=1

v̂2
ki, and 𝜎km,j =

(
GT

j Gj

)−1

n

n∑
i=1

v̂kiv̂mi, k ≠ m (6)

Where vk,i and vm,i are the residual error terms for univariable regressions of SNP i on exposures k and m, respec-
tively. Under the null hypothesis that the instruments do not contain enough information to predict both exposure
variables, Qx1 will be asymptotically 𝜒2

L−1 distributed where L is the number of SNPs in the estimation. Reject-
ing the null hypothesis indicates that the SNPs can predict X1 conditional on X2. Dividing the Q-statistic described
above by the number of instruments, adjusted for the number of exposures, in the model gives a test statistic
that is equivalent to the one sample conditional F statistic FSW . Two-sample MVMR-IVW estimation is asymptoti-
cally equivalent to individual level two-stage least squares estimation and therefore this test statistic can be applied
to test for weak instrument in two-sample MVMR in the same way as the conditional F-statistic for individual
level data.17

FTS,k =
Qxk

L − (K − 1)

∼
𝜒2
(L−(K−1))

L − (K − 1)
(7)

Where Qxk is the expression given in Equation (4).



5438 SANDERSON et al.

T A B L E 1 Critical values for
conditional weak instrument tests

Relative bias

kZ 5% 10% 20%

25 21.37 11.44 6.19

50 21.26 11.14 5.86

100 21.02 10.84 5.64

200 20.79 10.61 5.46

300 20.62 10.52 5.38

400 20.56 10.45 5.32

500 20.50 10.40 5.29

2.1 Critical values

Comparing this statistic to standard critical values from the F-distribution provides a test for a lack of identification.
However, even if the genetic instruments explain some of the variation in the exposure they could still be “weak.” In this
case the estimates obtained from the MVMR estimation could still be considerably biased. The one sample conditional
F-statistic (FSW) has the same distribution as the Stock-Yogo weak instrument test.6 Therefore, we can apply its weak
instrument critical values to identify weak instrument bias for univariable and multivariable two-sample MR.5-7 The weak
instrument critical values derived by Stock and Yogo for the bias of the 2SLS estimator relative to the OLS estimator are
derived under the definition that the instruments are weak when the bias of the IV estimator relative to the OLS estimator
is at least 10%. The measure of relative bias used is the squared bias of the IV estimator (𝛽IV ) relative to the squared bias
of the OLS estimator (𝛽OLS). This is given by the equation;

B2 =
(E𝛽IV − 𝛽)′ΣX (E𝛽IV − 𝛽)

(E𝛽OLS − 𝛽)′ΣX (E𝛽OLS − 𝛽)

Where ΣX = p lim 1
n

X ′X and X here represents the n × K matrix of all of the exposures included in the estimation, n is
the sample size. Calculating the bias in this way standardizes the exposures X so they are orthogonal and have unit SD.
However, it means that the bias of the estimated effect of any particular exposure may differ from 10% and could act in the
opposite direction to the bias of the model as a whole. If FTS is larger than the relevant Stock-Yogo critical value we can
reject the null hypothesis that the exposure is only weakly predicted by the instruments. These critical values have only
been derived for models including up to 30 instruments, therefore in Table 1 we provide critical values for a larger range
of instruments to test for a 5%, 10%, or 20% relative bias. These critical values are often approximated to a rule of thumb
of F > 10 to test a null hypothesis that the bias is at least 10% of the bias of the OLS estimator. The critical values given
above also show that the rule of thumb of 10 is slightly smaller than the true critical value for this test and would lead
to the null hypothesis being rejected more frequently. The two sample FTS statistic tests the bias of the model as a whole,
this means that the sign of the bias of an individual causal parameter may differ from that of the model’s bias, which is
averaged across all of its constituent parameters. It also indicates that some weakly predicted exposures could be biased
away from the null hypothesis.

3 WEAK INSTRUMENT ROBUST TWO-SAMPLE MVMR

3.1 Estimation in the presence of weak instruments

In the presence of weak instruments, standard IVW estimation of the MVMR mode, which we refer to as MVMR-IVW, is
biased. The LIML estimator has previously been proposed as an alternative estimator for individual-level MR as it is less
biased when there are many weak instruments.18 In the two-sample summary data setting, Bowden et al19 and Zhao et al20
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show that weak instruments can be effectively mitigated through minimization of an appropriate heterogeneity statistic
using weights that account for the variance of the SNP-exposure associations is analogs to one-sample LIML estimation.
It gives results that are substantially less biased than conventional regression based IVW estimates in the presence of a
nonzero causal effect. The weak instrument robust estimation proposed by Bowden et al can be extended to the MVMR
setting as a minimization of;

QA =
L∑

j=1

(
1
𝜎2

A,j

)(
Γ̂j − 𝛽′�̂�j

)2 (8)

over 𝛽. Where 𝛽 is a vector of causal parameters (to be estimated), Γ̂j is the estimated effect of SNP j on the outcome, �̂�j is
a vector of effects of SNP j on each exposure included in the estimation (ie, a column of the matrix Π) and;

𝜎2
A,j = 𝜎2

y,j + 𝛽′ΣV ,j𝛽. (9)

Here, 𝜎2
y,j is the variance of the estimated effect of the SNPs on the outcome, and ΣV ,j is the variance-covariance matrix

defined in Equation (5). This is equivalent to minimization of the QA statistic to test for heterogeneity described in Sander-
son et al4 extended to a model with more than two exposures. We label estimates for 𝛽 obtained in this manner as 𝛽Q. The
standard MVMR-IVW estimate is vunerable to weak instrument bias because instead of minimizing QA in (8) using the
full weights defined in (9) it incorrectly assumes that 𝜎2

Aj
= 𝜎2

yj
. This ignores the component of variation from 𝛽′Σj𝛽 and

is only valid if either all elements of 𝛽 are zero or Σj is negligible in comparison to 𝜎2
yj.

3.2 Testing for pleiotropy in the presence of weak instruments

Horizontal pleiotropy, where genetic variants influence the outcome through multiple phenotypes, can lead to a violation
of the IV assumptions if they are not included as exposures in the MVMR estimation. Under the assumption that not all
the SNPs included in the estimation have a pleiotropic effect on the outcome through the same pathway, this will lead
to greater variation in the estimated causal effect of the exposures on the outcome than would be expected by chance.
This excess heterogeneity can be reliably tested for using the minimized QA statistic. More formally if all SNPs used
in the MVMR analysis are valid instruments, in the sense that they identify a common set of causal parameters 𝛽, we
would expect the QA statistic in (6) evaluated at 𝛽 = 𝛽Q to follow a Chi-squared distribution with L-K degrees of freedom.
Crucially, the test is exact in the sense that it will achieve its nominal type I error rate, even in the presence of weak
instruments.21 The standard Q-statistic used to generate the MVMR-IVW estimate by setting 𝜎2

A,j = 𝜎2
y,j, referred to here

as QIVW, will generally have an inflated type 1 error rate (ie, will detect pleiotropy too often when none is present) unless
all 𝛽′Σj𝛽 terms are negligible.

3.3 Estimation with pleiotropic and weak instruments

Estimation of 𝛽 through minimization of (8) will give estimates of the direct effect of each exposure on the outcome that
are robust to weak instruments. However, these estimates will still be biased in the presence of pleiotropy. In order to
account for heterogeneity due to pleiotropy, we extend the estimation of 𝛽 by adding a pleiotropy variance parameter 𝜏2

to the multivariable Q estimation and finding the joint value of (𝛽, 𝜏2) which minimizes;

L∑
j=1

(
1
𝜎2

A,j

)(
Γ̂j − 𝛽′�̂�j

)2 − (L − K) = 0

𝜎2
A,j = 𝜎2

y,j + 𝛽′Σj𝛽 + 𝜏2

subject to;

𝜕
∑L

j=1

(
1
𝜎2

A,j

)(
Γ̂j − 𝛽′�̂�j

)2

𝜕𝛽
= 0
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We refer to the causal estimates derived in this way as 𝛽Q,het. This is an extension of the method described in Bowden
et al for univariable MR to the MVMR setting.19 This method will account for balanced pleiotropy which biases the
MVMR-IVW estimates further in the presence of weak instruments by accounting for excess heterogeneity in the per SNP
estimated effects that is not related to the variance in the SNP-exposure associations or SNP-outcome associations. It will
not however account for directional pleiotropy where the pleiotropic effects of the SNPs on the outcome all, or mostly, act
in one direction to either increase or decrease the outcome. However, it is possible to look at the individual contribution
of each SNP to QA to identify the largest outliers. If a small number of SNPs are observed to have a large effect on QA they
can potentially be removed as a sensitivity analysis and the MVMR model reestimated without them.

3.4 Confidence intervals for estimated effects

Estimation of 𝛽 and 𝜏2 through minimization of QA, does not provide readily available and reliable standard errors (SEs).
We therefore suggest that SEs are obtained, and confidence intervals calculated, through a Jackknife procedure.

We propose the use of Jackknife rather than a bootstrap as with a moderate number of SNPs the repeated sampling
in a bootstrap can lead to very weak instruments in any particular iteration even when the model has relatively strong
instruments as a whole. A jackknife procedure estimates the model leaving out each SNP in turn and then calculates the
SD of the effect estimate from these results. As each iteration includes all but one of the SNPs and includes each SNP only
once this is unlikely to be affected by weak instruments due to the exclusion of some SNPs. When the number of SNPs
used in the estimation is very small neither a Jackknife or bootstrap approach will calculate appropriate SEs however
many applications of MVMR include 100 to 200 SNPs as instruments and with this number of SNPs a jackknife approach
will be feasible.

4 ESTIMATION OF 𝚺Vj

So far we have assumed that the pairwise covariance between a set of SNP’s estimated association with any two exposures
is known for all exposures and all SNPs. However, this data is not generally reported by GWAS summary statistics. Sim-
ilarly, it would not be feasible for these studies to report this data due to the large number of potential covariances that
could be required for all potential future MVMR analyses. Excluding these covariances will give the correct estimation
only under the global null (𝜷 = 0).

Therefore, in this section we suggest three different solutions for dealing with the lack of covariances in the GWAS
summary results in order to estimate 𝜎km,j: the covariance between �̂�k,j and �̂�m,j with respect to exposure, k, exposure, m
(k ≠ m) and SNP j which form the elements of ΣV ,j.

4.1 Estimate 𝝈km,j from the individual level data

If some or all of the individual level data that was used in the GWAS to estimate the SNP—exposure associations is
available then the covariances for the effect of each SNP on each exposure can be calculated from Equation (6).

4.2 Estimate the phenotypic correlation between the exposures from individual level
data

The covariance for each SNP can then be approximated as;

𝜎km,j = 𝜌km𝜎k,j𝜎m,j, (10)

where 𝜌km is the correlation between Xk and Xm (or phenotypic correlation). 𝜎kj and 𝜎mj are the SE for the effect of SNP
j on exposures k and m, respectively. Although ideally this information would be calculated from the data used for the
GWAS study, 𝜌km could also be estimated from only part of the data used in the GWAS or from an alternative dataset
which is thought to have a similar structure.
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4.3 Estimate the effect of the SNPs on each exposure from separate samples

Estimating the effect of the SNPs on each exposure in this manner means that the covariances will be zero and so excluding
this information will not affect the statistics calculated. For an MVMR analysis involving K exposures, this would require
K + 1 separate samples and so is likely to only be practicable in a limited number of cases.

In any given scenario some of these solutions may be impossible (due to a lack of data) and of the solutions that
are possible, one may be the most reasonable. We suggest that estimation of 𝜌km from phenotypic data, from which the
appropriate covariances can then be calculated, is likely to be the most feasible and appropriate approach in many cases.
Under the assumption that each SNP explains a small proportion of the variation in the exposure, the accuracy of the
estimate of 𝜎km,j will depend on the accuracy of the estimate of 𝜌km. Therefore, when 𝜌km is estimated from data that does
not closely match that used to estimate the SNP exposure associations exploration of how sensitive FTS and 𝛽Q,het are to
that estimate should also be conducted. This could be done through estimation of FTS and 𝛽Q,het at the limits of or across
the range of reasonable values of 𝜌km. These results should then be used to determine whether the interpretation of the
results changes over plausible values of 𝜌km.

5 SIMULATION RESULTS

To illustrate the methods presented so far give here results from simulating and fitting MVMR models with 200 SNPs and
either two or three exposures.

5.1 MVMR model with two exposures

First, we simulated a MVMR model with two exposures and 200 SNPs. The SNP-exposure associations where con-
structed in two ways; first so that each exposure was individually and conditionally weakly predicted by the set of SNPs
(ie, weak instruments) and second so that the exposures were strongly individually predicted, but weakly condition-
ally predicted by the set of SNPs (ie, conditionally weak instruments). In each case the association of each SNP with
the exposure was drawn from a uniform distribution with the range of association selected to maintain the desired
overall instrument strength. All of the SNPs were associated with both exposures, for the weak instruments there was
no correlation between the association between each SNP and each exposure. Conditionally weak instruments were
generated by increasing the total strength of the instruments but introducing correlation between the effect of each
SNP on each of the exposures following the structure of weak instrument asymptotics first introduced by Staiger and
Stock.5 This reflects a scenario where examination of standard F-statistics for each exposure would not identify weak
instruments. The exposures were simulated to both have a direct effect on the outcome and balanced pleiotropy was
introduced to the model through a direct effect of the SNPs on the outcome. Pleiotropic effects were generated from a
normal distribution with zero mean. A confounder of both exposures and the outcome was also included. The covari-
ance parameter 𝜎i,j, i ≠ j was estimated from calculation of the phenotypic correlation between X1 and X2 as described
in Section 4. The set-up of this model is shown in Figure 2 and results from the simulation are given in Table 2.
Results for the same model without the pleiotropic effect of the SNPs on the outcome are given in Supplementary
Table S1.

F I G U R E 2 Model simulated in Table 2
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T A B L E 2 Simulation results for models with heterogeneity: Two exposures, 200 SNPs

Weak instruments Conditionally weak instruments

x1 x2 x1 x2

One-sample estimation with individual level data

𝛽OLS 1.09 −0.049 0.78 −0.48

(0.033) (0.033) (0.029) (0.026)

𝛽IV 0.585 −0.283 0.548 −0.333

(0.533) (0.533) (0.311) (0.226)

F 8.80 8.80 1602.81 3107.5

(0.61) (0.62) (107.67) (208.06)

FSW 3.40 3.40 9.75 9.78

(0.360) (0.360) (0.94) (0.95)

Two-sample estimation with covariances

𝛽IVW 0.352 −0.128 0.469 −0.276

(0.541) (0.541) (0.316) (0.228)

𝛽Q −7.7x103 6.7x103 −6.6x105 4.7x105

(1.2x105) (1.0x105) (2.3x106) (1.6x106)

�̂�Q,het 0.487 −0.246 0.519 −0.313

(0.777) (0.778) (0.350) (0.253)

FTS 3.35 3.35 9.13 9.15

(0.348) (0.347) (0.814) (0.819)

Two-sample estimation without covariances

𝛽IVW 0.352 −0.128 0.469 −0.276

(0.541) (0.541) (0.316) (0.228)

𝛽Q −6.8x103 6.0x103 −6.0x105 4.3x105

(1.1x105) (9.5x104) (6.5x105) (4.8x105)

𝛽Q,het 0.499 −0.260 −4.5x105 3.2x105

(0.802) (0.803) (1.5x106) (1.1x106)

FTS 3.17 3.17 0.45 0.45

(0.337) (0.336) (0.054) (0.054)

Note: 𝛽1 = 0.5, 𝛽2 = −0.3; 4000 repetitions, 20 000 observations per repetition. Covariances estimated from the
phenotypic correlation between each exposure. Weak instruments shows a scenario where the exposures are
individually weakly predicted by the SNPs. Conditionally weak instruments gives a scenario where the
exposures are strongly predicted by the SNPs individually but are each weakly predicted by the SNPs
conditional on the other exposure.
Abbreviation: IVW, inverse variance weighted.

Results from this simulation show that the two-sample conditional F statistic FTS reliably estimates the strength of
the instruments and is equivalent to the conditional F statistic calculated from the individual level data FSW when the
correlation between the exposures is used to estimate the covariance between the effect of each SNP on each exposure.
These results also show that although 𝛽Q does not reliably estimate the effect of the exposure on the outcome in the
presence of balanced of pleiotropy, 𝛽Q,het which allows for this additional heterogeneity does. This decrease in bias in
𝛽Q,het compared with 𝛽MVMR-IVW when the instruments are weak comes at the cost of increased SEs, reflecting the (true)
lower level of information in the model. Supplementary Table S1 shows that allowing for heterogeneity when it is not
present does not increase the SE of the 𝛽Q,het estimates relative to the SE of the 𝛽Q estimate. The final section of Table 2
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gives FTS and 𝛽Q,het estimated without accounting for 𝜎km.This imposes the assumption that 𝜎km = 0, k ≠ m, but not the
assumption that 𝜎2

k = 0 and so is a point between standard MVMR-IVW estimation and 𝛽Q,het. These results also show
that in the presence of conditionally weak instruments, when there is correlation between the effect of the SNPs on each
exposure, if these correlations are not taken into account FTS,0 does not reliably test the strength of the instruments and
𝛽Q,het,0 produces biased estimates of the effect of each exposure on the outcome.

5.2 Three exposure model

Next, we simulated summary data for three exposures and 200 SNPs. Each of the exposures was simulated to have a
direct effect on the outcome. All of the SNPs included in the estimation are associated with every exposure. The effect
of the SNPs on the second exposure was uncorrelated with the effects on the first or third exposures. However, the
effect of the SNPs on the first and third exposures were correlated, so that the third exposure was only weakly pre-
dicted by the SNPs conditional on the first exposure (and therefore the first exposure is weakly predicted conditional on
the third exposure). This set up means that when only the first two exposures are included in the estimation there is
directional pleiotropy present, however when all three exposures are included there is potential weak instrument bias.
When the two exposures are included they each have mean conditional F-statistics of 45 whereas in the model with
three exposures included exposure 1 has a mean conditional F-statistic of 6.5 and exposure 3 has a mean conditional
F-statistic 3.2. When three exposures are included in the model exposure 2 is still strongly predicted with a mean con-
ditional F-statistic of 17.9. The model under which the data was generated is shown in Figure 3 and results are given in
Table 3.

We give results from estimation of the model first including only two exposures, x1 and x2, and then including all
three exposures. These results show that when only two exposures are included in the model all methods of estimating
𝛽1 and 𝛽2 are biased by the directional pleiotropy present in the model. When all three exposures are included in the
model the MVMR-IVW estimates are biased due to the presence of weak instruments. However, estimation of 𝛽Q through
minimization of QA gives unbiased estimates of the effect of each exposure.

5.3 Heterogeneity testing

Table 4 gives the rejection rates when using QIVW and QA to test for pleiotropy for the model considered in
Figure 2. In addition, we show rejections rates using a third heterogeneity statistic that attempts to improve Q𝜎2

y
by

extending the weights so they take the form 𝜎2
y + 𝛽′Σj𝛽. We call this heterogeneity statistic QIVW, up. These extended

weights are calculated using a multivariable extension of the iterative estimation described in Bowden et al.19 These
results show that when there is no heterogeneity the null hypothesis is over rejected by both QIVW and QIVW, up.
Although the iterative updating improves on standard estimation it does not fully correct for the over rejection
due to weak instruments.19 Estimation of QA using direct minimization controls the type 1 error and when the
null hypothesis is true, that is, when there is no heterogeneity this test statistic rejects approximately 5% of the
time.

F I G U R E 3 Model simulated in Table 3
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T A B L E 3 Simulation results for a model with three exposures

Two exposures Three exposures

included in estimation included in estimation

x1 x2 x1 x2 x3

One-sample estimation with individual level data

𝛽OLS 0.837 −0.065 0.667 −0.176 1.418

(0.020) (0.019) (0.020) (0.018) (0.012)

𝛽IV 0.626 −0.244 0.466 −0.314 0.912

(0.018) (0.018) (0.017) (0.014) (0.064)

F 236.2 235.13 236.22 235.13 14.50

(15.43) (13.67) (15.43) (13.67) (0.89)

FSW 78.49 78.37 6.62 19.81 3.17

(7.10) (6.98) (1.13) (5.38) (0.29)

Two-sample estimation with covariances

𝛽IVW 0.611 −0.228 0.523 −0.277 0.502

(0.021) (0.021) (0.027) (0.021) (0.101)

𝛽Q 0.626 −0.246 0.500 −0.301 0.703

(0.022) (0.021) (0.034) (0.024) (0.149)

�̂�Q,het 0.624 −0.246 0.499 −0.301 0.705

(0.022) (0.021) (0.035) (0.024) (0.154)

FTS 45.01 44.97 6.58 17.94 3.23

(2.39) (2.35) (1.09) (4.32) (0.29)

Note: 𝛽1 = 0.5, 𝛽2 = −0.3, 𝛽3 = 0.7; 4000 repetitions, 20 000 observations per repetition. Covariances estimated from
the phenotypic correlation between each exposure. Two exposures included in estimation refers to estimation of the
model including only exposures 1 and 2. Three exposures included in estimation includes exposures 1, 2, and 3.
Abbreviation: IVW, inverse variance weighted.

6 APPLICATION

In this section, we illustrate the use of the methods described above through an application to the estimation of the effect
of multiple metabolites to AMD. AMD is disease that causes loss of central vision and is a leading cause of blindness.22

Elevated lipid serum levels have previously been associated with increased risk of AMD.23 We use data from a GWAS of
118 metabolites by Kettunen et al16 as our exposure and from a GWAS of AMD as our outcome.24 The GWAS data for our
exposures included 150 SNPs that were genome-wide signification for at least one of the metabolites. Previous studies
have implicated HDL as being causal for AMD.25-27 In this analysis, we illustrate the issues with weak instrument bias
that can arise from including multiple highly related traits in one MVMR estimation.

The GWAS data included 118 potential metabolite exposures. For the purposes of illustration we restricted the analysis
to 13 metabolites moderately well predicted by a large number of SNPs. Specifically we selected the 13 metabolites that
had 42 or more SNPs with an F-statistic greater than 5 associated with them in our data. From the 150 SNPs included
in the data we retained all SNPs which were associated with at least one of our selected exposures with an F statistic
greater than 5. This gave us 78 SNPs associated with our 13 metabolites for our analysis. From this data, we considered
six different models to estimate and for each one obtained the MVMR-IVW effect estimates and investigated whether the
SNPs included as instruments could conditionally predict the exposures in that model. The models considered were (a)
all selected metabolites (b) to (e) subgroups of metabolites grouped by lipid fraction type and (f) a subgroup including
one metabolite from each group included in (b) to (e).

Table 5 gives results for the estimation of model (a) including all of the selected metabolites. This table also reports
the mean individual F-statistic for the SNPs associated with each metabolite (Find), the mean F-statistic across all of
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T A B L E 4 Estimation of QA

Weak instruments Conditionally weak instruments

𝝉2 = 0 𝝉2 = 0.5 𝝉2 = 0 𝝉2 = 0.5

Estimate Rej. Rate Estimate Rej. Rate Estimate Rej. Rate Estimate Rej. Rate

QIVW 228.37 41.9% 13 366.76 100% 249.71 75.4% 13 032.82 100%

(23.04) (678.27) (24.85) (770.59)

QIVW, up 206.20 12.9% 11 645.15 100% 201.36 7.6% 11 593.22 100%

(21.39) (1699.61) (20.53) (1338.27)

QA 197.16 4.5% 576.93 100% 197.74 5.2% 1788.42 100%

(19.83) (53.92) (19.85) (224.66)

Note: 4000 repetitions, 20 000 observations per repetition. Covariances estimated from the phenotypic correlation
between each exposure.
Abbreviation: IVW, inverse variance weighted.

T A B L E 5 MVMR estimates of a range of metabolites on AMD, all metabolites included in one MVMR
estimation

Estimate SE P-value F FTS

ApoB ApoB 1.673 0.693 .019 10.82 0.197

IDL IDL.PL −4.456 0.969 <.001 11.84 0.011

IDL.P 6.481 3.396 .061 11.76 0.626

IDL.TG 0.437 1.391 .754 11.04 0.003

LDL L.LDL.L −8.695 8.376 .303 11.15 0.001

L.LDL.P 5.223 11.125 .640 11.34 0.001

M.LDL.P 1.794 2.360 .450 10.56 0.011

Small VLDL S.VLDL.PL 1.054 1.530 .493 8.62 0.029

S.VLDL.C 1.346 1.617 .408 8.88 0.005

S.VLDL.FC −1.270 1.331 .343 8.75 0.019

Very small VLDL XS.VLDL.L −6.655 1.982 .001 10.67 0.027

XS.VLDL.P 4.866 1.668 .005 10.19 0.048

XS.VLDL.TG −2.384 1.819 .195 9.14 0.022

Note: F is the mean F-statistic across all SNPs included in the estimation and is the univariable F-statistic for instrument
strength. FTS is the conditional F-statistic accounting for the association between each SNP and all of the other exposures
included in the estimation. 78 SNPs included in the estimation. ApoB is associated with 48 SNPs, IDL.PL, L.LDL.L, L.LDL.p,
M.LDL.P, S.VLDL.PL, and XS.VLDL.L are each associated with 43 SNPs, IDL.P, IDL.TG, S.VLDL.C, S.VLDL.FC, XS.VLDL.P,
and XS.VLDL.TG are each associated with 42 SNPs.
Abbreviations: AMD, age-related macular degeneration; MVMR, multivariable Mendelian randomization; SE, standard error;
SNPs, single nucleotide polymorphisms.

the SNPs included in the analysis for each metabolite (F) and the conditional F-statistic for each metabolite (FTS). The
correlation between the metabolites, required to calculate FTS, was not available from the GWAS data used here. We
therefore calculated these using external data on the same metabolites from the Avon Longitudinal Study of Mothers and
Children (ALSPAC).28,29 A description of the ALSPAC study is given in the supplementary material. The F-statistics and
conditional F-statistics presented for the model including all metabolites show that although each metabolite is strongly
predicted by the SNPs associated with it the conditional F-statistics for each exposure are very small and therefore the
effect estimates are subject to weak instrument bias.
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T A B L E 6 MVMR estimates of a range of metabolites on AMD, estimated by subgroup

Estimate SE P-value F FTS

ApoB

IDL; 54 SNPs

IDL.PL −1.338 1.091 .226 16.05 1.23

IDL.P 1.864 1.231 .134 16.12 1.24

IDL.TG −0.926 0.398 .024 14.97 2.23

LDL; 46 SNPs

L.LDL.L 3.707 4.341 .398 17.58 0.019

L.LDL.P −4.781 3.484 .177 73.83 0.023

M.LDL.P 0.896 1.443 .538 16.55 0.063

Small VLDL; 50 SNPs

S.VLDL.PL −0.513 1.021 .617 12.38 11.65

S.VLDL.C −0.372 0.858 .667 12.42 4.75

S.VLDL.FC 0.506 1.298 .698 12.51 5.39

Very small VLDL; 53 SNPs

XS.VLDL.L −1.651 1.863 .380 14.64 0.174

XS.VLDL.P −0.105 0.533 .845 12.50 0.916

XS.VLDL.TG 1.395 2.112 .512 13.99 0.176

Note: F is the mean F-statistic across all SNPs included in the estimation and is the univariable F-statistic for instrument strength. FTS

is the conditional F-statistic accounting for the association between each SNP and all of the other exposures included in the estimation.
Abbreviations: AMD, age-related macular degeneration; MVMR, multivariable Mendelian randomization; SE, standard error; SNPs,
single nucleotide polymorphisms.

Table 6 gives the same results for the estimation for each subgroup of metabolites (IDL, LDL, Small VLDL, and Very
small VLDL). These results show that, with the exception of IDL.PL and S.VLDL.PL, none of the metabolites are strongly
conditionally predicted by the SNPs within their subgroup. For our last analysis, we included one metabolite from each
group as exposures in our MVMR estimation. Table 7 gives results for this set of exposures. Although the exposures here
are jointly moderately strongly predicted by the set of SNPs the conditional F-statistics for each exposures are still between
4.2 and 8.3 indicating that there is likely to be some weak instrument bias. In Table 8, we re-estimate this final MVMR
model using our weak instrument robust estimators presented earlier. The results from this approach suggest that in our
final model the initial MVMR-IVW estimates may be biased towards the null due to weak instruments. QA for this model
is 118, the critical value at a 5% level of significance for a chi-squared distribution with 64 degrees of freedom is 84.7.
It therefore indicates potential pleiotropy and we consider the 𝛽Q,het to be the most appropriate estimates in this case.
Comparison of these results to those obtained from model (a) including all of the metabolites shows the potential for weak
instruments to bias results of a summary-data MVMR away from the null as well as towards the null. For three of the four
metabolites included in both models the effect estimates in the final model are much closer to zero than the results in the
model including all of the metabolites. The results from this analysis suggest that none of the metabolites considered are
causally associated with AMD but that the standard MVMR-IVW estimates for the final model were biased due to both
weak instruments and pleiotropic effects of the SNPs on the outcome. This null result is consistent with other results
using an alternative method to analyze the same data which found that HDL (not included in this analysis) was the only
metabolite that was causally associated with AMD.27

7 SOFTWARE

We have written an R package MVMR which facilitates the implementation of MVMR estimation and corresponding
sensitivity analyses. The package requires summary data on instrument-exposure and instrument-outcome associations,
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T A B L E 7 MVMR-IVW estimates of a range of metabolites on AMD including
one exposure from each subgroup

Estimate SE P-value F FTS

XS.VLDL.P −0.778 0.958 .420 11.26 4.23

S.VLDL.PL 0.051 0.347 .385 9.48 5.68

L.LDL.L 0.356 0.231 .154 12.19 8.22

IDL.TG 0.067 0.761 .969 12.21 6.15

Note: 69 SNPs. F is the mean F-statistic across all SNPs included in the estimation and is the
univariable F-statistic for instrument strength. FTS is the conditional F-statistic accounting for
the association between each SNP and all of the other exposures included in the estimation.
Abbreviations: AMD, age-related macular degeneration; IVW, inverse variance weighted;
MVMR, multivariable Mendelian randomization; SE, standard error; SNPs, single nucleotide
polymorphisms.

T A B L E 8 Weak instrument robust estimates of a range of metabolites on AMD including
one exposure from each subgroup

𝜷Q 𝜷Q,het

Est. SE P-value Est. SE P-value

XS.VLDL.P −5.008 3.774 .185 −2.071 1.447 .152

S.VLDL.PL 0.957 0.940 .309 0.300 0.528 .570

L.LDL.L 1.534 0.645 0.017 .728 0.613 .235

IDL.TG 2.490 2.614 0.341 .803 1.437 .576

Note: 69 SNPs. 𝛽Q gives the estimate obtained by minimization of Q, 𝛽Q,het gives the estimate obtained by
minimization of Q allowing for balanced pleiotropy.
Abbreviations: AMD, age-related macular degeneration; SE, standard error; SNPs, single nucleotide
polymorphisms.

as well as information on the pairwise covariances of the error in the estimated association between each SNP and each
pair of exposures. As these covariances are often not available the software can be implemented in three ways; estimating
the covariances from individual level data, approximating the covariances from the phenotypic correlation between the
exposures or assuming that these covariances are zero.

7.1 Workflow

Fitting and interpreting MVMR using the methods described in this article, including tests for instrument strength and
horizontal pleiotropy, is performed using a five-step procedure. Initially, summary data should be provided, including
a covariance matrix for the effect of the genetic variants on each exposure. As such covariances are not conventionally
reported in publicly available data, two functions snpcov_mvmr() and phenocov_mvmr() can be used to generate
the covariance matrix. The function snpcov_mvmr() estimates the covariance terms directly from individual level data,
whilst phenocov_mvmr() uses the phenotypic correlation and summary data (input by the user) to generate estimates
of the covariances.

As a second stage, the summary data is reformatted using the function format_mvmr() into a data frame
which is subsequently used as the input for estimation and sensitivity analyses. We then provide the functions
strength_mvmr() to evaluate instrument strength using the two sample conditional F-statistic described in
Section 2. Tests for horizontal pleiotropy are performed using pleiotropy_mvmr(), performing both standard and
Q-minimization approaches simultaneously (see Section 3 for more details). Finally, causal effects can be estimated using
two different approaches; fitting an IVW MVMR model using ivw_mvmr() and minimizing the Q-statistic allowing for
heterogeneity using qhet_mvmr(). Each step in the MVMR workflow is shown in Figure 4. The MVMR package is
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F I G U R E 4 Workflow for multivariable Mendelian randomization R package

available to download at https://github.com/WSpiller/MVMR/. The package also includes a detailed tutorial demonstrat-
ing functionality of the package in an analyses of the effects of lipid fractions upon systolic blood pressure using data from
the Global Lipids Genetics Consortium and UK Biobank.

8 DISCUSSION

In this article, we develop a general statistical framework for conducting two sample MVMR analyses for an arbitrary
number of exposures in the presence of weak instrument bias and pleiotropy. The methods presented here give ways to
test for weak instruments in two-sample MVMR and to robustly test for heterogeneity due to pleiotropy in the presence
of moderately weak instruments. We additionally give a method to estimate causal effects in the presence of moderately
weak instruments which is robust to balanced pleiotropy.

Weak instruments are a potential issue in many applications where estimating direct effects of multiple exposures
using MVMR is preferred over univariable MR analyses, which are thought to be likely to be affected by directional
pleiotropy.30-34 MVMR approaches are also used to gague the extent to which one exposure mediates the effect of another
on the outcome.35,36 Any application of MVMR will be biased by conditionally weak instruments and, as illustrated by
our application, this can occur even when the genetic variants strongly predict each exposure individually. Therefore, the
methods presented here are important as they provide a way to identify and correct for weak instruments in two-sample
MVMR estimation.
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The FTS statistic described here is calculated using estimates of 𝛿 calculated from an IVW estimation of the effect of
�̂�−k on �̂�k. An alternative method of estimation, equivalent to that described for estimation of 𝛽, is to directly minimize
its constituent Qxk to obtain LIML estimates for 𝛿.19,20 Whilst this procedure enacted on the QA statistic furnishes attrac-
tive, weak instrument robust causal estimates, initial simulation results (not reported here) showed limited benefit of
estimating 𝛿 in this way therefore we did not investigate potential implementation further.

There are a number of limitations to this work. The test statistic and weak instrument robust estimation requires an
estimate of the covariance between the error in the estimated effect of each SNP on each exposure. Our simulation results
highlight how important this data can be as the estimated values of FTS and 𝛽Q,het are changed so they become unin-
terpretable when this covariance is fixed to zero. Although this data is generally not available we propose a method to
estimate it, using the phenotypic correlation between the exposures, which can be used to obtain a reasonable approxi-
mation if the relevant covariance when each SNP only explains a small proportion of each exposure. Where the data used
to estimate the correlation between the exposures is the same data used to estimate the SNP-exposure associations the
estimated value of ΣV ,j will closely match the true value. When this is not the case the level of error in FTS and 𝛽Q,het that
results from misspecification of 𝜌km will depend on the other parameters in the model. For FTS this will depend on how
related the exposures are and how strongly (or weakly) they are predicted. Misspecification of the conditional F-statistic
will not matter if it is notably larger (or smaller) than 10 for all possible values of ΣV ,j as this will not change the inter-
pretation of the results. For 𝛽Q,het how much the specification of ΣV ,j matters will depend on the estimated effect of each
exposure, if all or all but one of these are zero ΣV ,j will not affect the estimated results, and the magnitude of any effect
will depend on the size of these estimated effects. When the data used for the estimation of 𝜌km does not match that used
to obtain the SNP-exposure associations we have therefore proposed that the researcher investigates how variation in 𝜌km
affects the obtained values, and interpretation of FTS and 𝛽Q,het. Where plausible variation in 𝜌km does affect the interpre-
tation of the results this limitation, and the resulting potential interpretations of the results obtained, should be accounted
for by the researcher applying this method.

Another weakness of the test statistics provided here is the lack of SEs for the point estimates of the direct effect of each
exposure. We propose using a jackknife to estimate these SEs. This does however make the estimation of these statistic
more computationally intensive than would the case if the SEs could be calculated analytically.

The weak instrument robust point estimates are robust to weak instruments but cannot produce reliable estimates
when instruments become very weak or if only a small number of SNPs are available. Although, we show this method
works with moderately weak instruments it is not clear exactly how weak is too weak, or indeed how few instruments
are too few, to produce either reliable point estimates or heterogeneity statistics. Gaining a more precise understanding
of these questions is a topic for further research.

Although, we propose weak instrument robust estimation, if the weak instruments are limited to only a small number
of the exposures in the model an alternative approach may be to drop exposures (one at a time) until the conditional
F-statistics show that all of the exposures are strongly predicted by the SNPs. This would however need to be considered
carefully by the researcher. The model to be estimated should not be decided purely by which exposures can be predicted
but driven by a research question of interest and dropping exposures has the potential to introduce directional pleiotropy
into the estimation biasing the resulting effect estimates. The choice of approach to take would depend on the number of
SNPs and exposures in the estimation and the relationship between the exposures as well as how weak the SNPs are as
instruments. As illustrated by our application these approaches could be combined, excluding exposures until instrument
strength is high enough to reasonably apply the weak instrument robust methods. The choice of approach needs to be
considered on a case by case basis.

Additionally although our final estimation 𝛽Q,het is robust to balanced pleiotropy it will still give biased estimates
in the presence of unbalanced or directional pleiotropy. Multivariable MR Egger,14 has been proposed as a method for
obtaining reliable MVMR estimates in the presence of directional pleiotropy. Extending this approach to account for weak
instrument bias is another topic of further research.

BOX 1: Summary of statistics discussed in this article.
Instrument strength statistics;
F—Measure of the strength of the instruments to predict one exposure. Applies to individual or summary level
data and to univariable or multivariable MR estimation.
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Conditional F-statistic FSW—Measure of the strength of instruments to predict one exposure conditional on the
other exposures included in the estimation. Applies to multivariable MR estimation with individual level data.
Conditional F-statistic FTS—Measure of the strength of instruments to predict one exposure conditional on the
other exposures included in the estimation. Applies to multivariable MR estimation with summary data.
Qxj —A Q-statistic from which FTS is calculated.
Heterogeneity statistics;
QIVW—A heterogeneity test for MVMR that uses the IVW point estimates and does not account for the uncertainty
in the estimated SNP-exposure associations. This test over rejects the null in the presence of weak instruments.
QIVW, up—A heterogeneity test for MVMR that uses the IVW point estimates but accounts for the uncertainty in
the estimated SNP-exposure associations. This test over rejects the null in the presence of weak instruments, but
to a lesser extent that QIVW.
QA—A heterogeneity test for MVMR that is robust to weak instruments, in the sense that it has the appropriate
type 1 error rate in the presence of weak instruments.
Estimation statistics;
𝛽IVW—Estimates of the causal effect of each exposure on the outcome, estimated using standard IVW.
𝛽Q—Estimates of the causal effect of each exposure on the outcome, estimated through minimization of QA.
Robust to weak instruments.
𝛽Q,het—Estimates of the causal effect of each exposure on the outcome, estimated through minimization of QA
with an additional parameter to account for heterogeneity. Robust to weak instruments and pleiotropy.

BOX 2: Recommended tests in Two-sample MVMR.
In all two-sample summary data MVMR estimation two statistics should be calculated;

1. Conditional F statistics, FTS, for each exposure.
These test the strength of the genetic variants to predict each exposure in the multivariable mode. FTS < 10
suggests potential weak instrument bias in the MVMR estimation.

2. A Q-statistic for heterogeneity, QA, for the model.
Rejection of QA using standard significant levels (eg, p < 0.05) indicates potential pleiotropy in the form of
excessive heterogeneity in the MVMR model. However, this test will often reject in the presence of weak
instruments.
If weak instruments are detected, that is, any of the FTS values are less than 10, IVW-MVMR estimates are
potentially biased. When large numbers of SNPs are available this can be corrected through;

3. Estimating 𝛽Q,het for each exposure
This method gives estimates of the direct effect of each exposure on the outcome that are robust to (moderately)
weak instruments.

4. An updated QA,min which minimizes the Q statistic over 𝛽Q.
This test provides a test for heterogeneity that has the correct size in the presence of weak instruments. Rejec-
tion of QA,min using standard significant levels (eg, p < 0.05) indicates potential pleiotropy in the MVMR model
even in the presence of moderately weak instruments.

All of these tests and estimation statistics are provided in the MVMR R package.
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