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Abstract

How do high-level visual regions process the temporal aspects of our visual experience?

While the temporal sensitivity of early visual cortex has been studied with fMRI in humans,

temporal processing in high-level visual cortex is largely unknown. By modeling neural

responses with millisecond precision in separate sustained and transient channels, and

introducing a flexible encoding framework that captures differences in neural temporal inte-

gration time windows and response nonlinearities, we predict fMRI responses across visual

cortex for stimuli ranging from 33 ms to 20 s. Using this innovative approach, we discovered

that lateral category-selective regions respond to visual transients associated with stimulus

onsets and offsets but not sustained visual information. Thus, lateral category-selective

regions compute moment-to-moment visual transitions, but not stable features of the visual

input. In contrast, ventral category-selective regions process both sustained and transient

components of the visual input. Our model revealed that sustained channel responses to

prolonged stimuli exhibit adaptation, whereas transient channel responses to stimulus off-

sets are surprisingly larger than for stimulus onsets. This large offset transient response

may reflect a memory trace of the stimulus when it is no longer visible, whereas the onset

transient response may reflect rapid processing of new items. Together, these findings

reveal previously unconsidered, fundamental temporal mechanisms that distinguish

visual streams in the human brain. Importantly, our results underscore the promise of

modeling brain responses with millisecond precision to understand the underlying neural

computations.

Author summary

How does the brain encode the timing of our visual experience? Using functional mag-

netic resonance imaging (fMRI) and a generative temporal model with millisecond

resolution, we discovered that visual regions in the lateral and ventral processing streams

fundamentally differ in their temporal processing of the visual input. Regions in lateral

temporal cortex process visual transients associated with the beginning and ending of the

stimulus, but not its stable aspects. That is, lateral regions appear to compute moment-

to-moment changes in the visual input. In contrast, regions in ventral temporal cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007011 May 30, 2019 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Stigliani A, Jeska B, Grill-Spector K

(2019) Differential sustained and transient

temporal processing across visual streams. PLoS

Comput Biol 15(5): e1007011. https://doi.org/

10.1371/journal.pcbi.1007011

Editor: Saad Jbabdi, Oxford University, UNITED

KINGDOM

Received: October 26, 2018

Accepted: April 7, 2019

Published: May 30, 2019

Copyright: © 2019 Stigliani et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data will be held

in a public repository at https://osf.io/mw5pk/

and code is available at https://github.com/VPNL/

TemporalChannels.

Funding: This research was supported by National

Eye Institute Grant 1R01-EY02391501A1 awarded

to KGS (https://nei.nih.gov/). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-1505-8662
http://orcid.org/0000-0002-5404-9606
https://doi.org/10.1371/journal.pcbi.1007011
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007011&domain=pdf&date_stamp=2019-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007011&domain=pdf&date_stamp=2019-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007011&domain=pdf&date_stamp=2019-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007011&domain=pdf&date_stamp=2019-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007011&domain=pdf&date_stamp=2019-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007011&domain=pdf&date_stamp=2019-06-19
https://doi.org/10.1371/journal.pcbi.1007011
https://doi.org/10.1371/journal.pcbi.1007011
http://creativecommons.org/licenses/by/4.0/
https://osf.io/mw5pk/
https://github.com/VPNL/TemporalChannels
https://github.com/VPNL/TemporalChannels
https://nei.nih.gov/


process both stable and transient components of the visual input, even as the response to

the former exhibits adaptation. Surprisingly, the model predicts that in ventral regions

responses to stimulus endings are larger than beginnings. We suggest that ending

responses may reflect a memory trace of the stimulus, when it is no longer visible, and the

beginning responses may reflect processing of new inputs. Together, these findings (i)

reveal a fundamental temporal mechanism that distinguishes visual streams and (ii) high-

light both the importance and utility of modeling brain responses with millisecond preci-

sion to understand the temporal dynamics of neural computations in the human brain.

Introduction

How do high-level visual areas encode the temporal characteristics of our visual experience?

The temporal sensitivity of early visual areas has been studied with electrophysiology in non-

human primates [1–4] and recently using fMRI in humans [5, 6]. However, the nature of tem-

poral processing in high-level visual regions remains a mystery for two main reasons. First, the

temporal resolution of noninvasive fMRI measurements is in seconds [7], an order of magni-

tude longer than the timescale of neural processing, which is in the order of tens of millisec-

onds. Second, while fMRI responses are roughly linear for stimuli lasting 3–10 s [8], responses

in visual cortex exhibit nonlinearities both for briefer stimuli, which generate stronger than

expected responses [5, 6, 8–13], as well as for longer stimuli, which get suppressed due to adap-

tation [14]. Since the standard approach using a general linear model (GLM) to predict fMRI

signals from the stimulus [8] is inadequate for modeling responses to such stimuli, the tempo-

ral processing characteristics of human high-level visual cortex have remained largely elusive

(but see [12, 14–17]).

We hypothesized that if nonlinearities are of neural (rather than BOLD) origin, a new

approach that predicts fMRI responses by modeling neural nonlinearities can be applied to

characterize temporal processing in high-level visual cortex. Different than the GLM, which

predicts fMRI signals directly from the stimulus, the encoding approach first models neural

responses to the stimulus and from them predicts fMRI responses. Recent studies show that

accurately modeling neural responses to brief visual stimuli at millisecond resolution better

predicts fMRI responses than the GLM [5, 6, 18]. The encoding approach also enables testing a

variety of temporal models and quantifying which model best predicts brain responses. Fur-

ther, generative computational models of neural processing offer a framework that can provide

key insights into multiple facets of temporal processing including integration time windows

[19–21], temporal channel contributions [5, 18, 22–25], and response nonlinearities [5, 6, 9–

12, 18].

One fundamental way in which visual regions differ is in how they process sustained and

transient visual stimuli. In the retina [26], LGN [27–29], and V1 [18], there are separate tem-

poral channels for processing transient and sustained components of the visual input that

are associated with magnocellular (M) and parvocellular (P) pathways, respectively [22–24].

While these channels are likely combined outside early visual cortex (V1-V3), it is thought that

regions that process dynamic stimuli such as hMT+ largely receive input from the transient

channel in V1 [23], and regions in the ventral stream such as hV4 receive inputs from both

transient and sustained channels [24]. Indeed, using an encoding model with two temporal

channels—one sustained and one transient—we were able to successfully predict fMRI

responses in early and intermediate visual areas (V4, hMT+) to phase scrambled stimuli vary-

ing in duration from 33 ms to 30 s [5].

Differential sustained and transient temporal processing across visual streams
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Motivated by the success of this approach in early and intermediate visual areas, we consid-

ered three hypotheses regarding temporal processing in high-level visual cortex. One possibil-

ity is that temporal processing characteristics are similar across high-level visual regions but

differ from those of earlier stages of the visual hierarchy. This hypothesis is based on results

from animal electrophysiology showing longer latencies of responses in higher-level visual

regions compared to primary visual cortex, V1 [1], as well as research in humans showing lon-

ger temporal receptive windows [19, 20] and integration times [21] in ventral temporal cortex

(VTC) and lateral temporal cortex (LTC) compared to early visual areas. A second possibility

is that temporal processing is uniform across high-level regions that process a shared category

(e.g. face-selective regions in VTC and LTC), but differs across regions that process different

categories (e.g. face- vs. body-selective regions). This prediction is based on data showing dif-

ferential responses to long-duration (21 s) images in face- vs. place-selective regions in VTC

[14], as well as differential response characteristics to fast (8 Hz) visual stimulation in body-

selective regions vs. other category-selective regions [15]. A third possibility is that temporal

processing differs across ventral and lateral visual streams rather than across categories. A

large body of literature has documented that regions in LTC along the superior temporal sul-

cus (STS) show heightened responses to biological motion compared to stationary stimuli and

other types of motion [30–37], unlike regions in VTC that are thought to represent the static

aspect of the stimulus [34, 35, 38]. This predicts that lateral regions may show larger transient

responses than ventral regions, which instead may show larger sustained responses.

To test these predictions, we measured fMRI responses in high-level visual areas to images

of faces, bodies, and words that were either sustained (one continuous image per trial, dura-

tions ranging from 3–20 s) (Fig 1A and 1B, experiment 1), transient [30 flashed, 33 ms long

images per trial with interstimulus intervals (ISIs) ranging from 67–633 ms] (Fig 1A and 1B,

experiment 2), or contained both transient and sustained components (30 semi-continuous

images per trial, durations ranging from 67–633 ms per image with 33 ms ISIs) (Fig 1A and

1B, experiment 3). We also collected a separate functional localizer experiment to indepen-

dently define regions selective to faces and bodies in VTC and LTC (Fig 1C; Materials and

methods). We used face- and body-selective regions as a model system as there are multiple

clusters of selectivity to these categories across the temporal lobe, and face and body regions

neighbor on the cortical sheet [39]. This organization enabled us to (i) measure how the tem-

poral dynamics of stimuli affect responses in each region and (ii) test if temporal processing

characteristics vary across regions selective to different categories (e.g., faces or bodies) or

across regions in different anatomical locations (e.g., ventral vs. lateral temporal cortex).

Results

Responses in high-level visual cortex exhibit temporal nonlinearities

To assess the feasibility of our approach, we first used a standard widely-used GLM [8] to pre-

dict fMRI responses in the three main experiments. Then, we compared these predictions to

measured fMRI responses from two sample functional regions of interest: a ventral body-selec-

tive region and a lateral body-selective region.

In general, the GLM predicts longer responses for longer trials and similar responses in

experiments 1 and 3 (Fig 2A, blue and green). Responses in experiment 1 are predicted to

be slightly higher than in experiment 3 because the 33 ms gaps between images in the latter

experiment make up 1 s of baseline within each trial. Due to the nature of the hemodynamic

response function (HRF), the GLM also predicts that peak response amplitudes in experiments

1 and 3 will increase gradually from 3 s to 10 s trials and subsequently plateau for longer trial

durations. In contrast, this model predicts substantially lower responses in experiment 2

Differential sustained and transient temporal processing across visual streams
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compared to the other experiments because the transient 33 ms stimuli in this experiment

comprise only a small fraction of each trial duration (Fig 2A, red). Therefore, the GLM predicts

a progressive decrease in response amplitude from 3 s to 20 s trials in experiment 2, as the frac-

tion of the trial in which stimuli are presented decreases (from 1/3 to 1/20 of the trial).

Strikingly, responses to body images in a ventral body-selective region (OTS-bodies; Fig

2B) and a lateral body-selective region (MTG-bodies; Fig 2C) both deviate from the predic-

tions of the GLM, but in different ways. Although these regions prefer the same category, we

observe differences in their maximal response to the different timing conditions in our experi-

ments [significant three-way interaction, F6, 54 = 2.28, P< .05; three-way ANOVA on peak

trial response amplitude for each participant with factors of trial duration (3/5/10/20 s), experi-

ment (1/2/3), and ROI (OTS-bodies/MTG-bodies); Fig 2B and 2C].

In contrast to the predictions of the GLM, responses in OTS-bodies to trials of 30 flashed

images in experiment 2 (Fig 2B, red) are substantially higher than in corresponding trial dura-

tions in experiment 1, when one stimulus is shown per trial (Fig 2B, blue). This occurs despite

Fig 1. Measuring brain responses to combinations of sustained and transient visual stimuli in high-level visual

cortex. (A) Participants fixated centrally and viewed images of bodies, faces, and pseudowords (right) that were

presented in trials of different durations interleaved with 12-s periods of a blank screen (left). Experiment 1: a single

image was shown for the duration of a trial. Experiment 2: 30 briefly presented images from the same category (33 ms

each), each followed by a blank screen, were presented in each trial. As the trial duration lengthens, the gap between

images increases, causing the fraction of the trial containing visual stimulation to decline. Experiment 3: 30 semi-

continuous images from the same category were presented in each trial with a constant 33-ms blank screen between

consecutive images. As the block duration lengthens, the duration of each image progressively increases but the gap

does not. (B) The same trial durations (3, 5, 10, or 20 s) were utilized across all three experiments, while the rate and

duration of visual presentation varied between experiments. Corresponding trials in experiments 1 and 3 have almost

the same overall duration of stimulation but different numbers of stimuli, whereas trials in experiments 2 and 3 have

the same number of stimuli but different durations of stimulation. The same fixation task was used in the three main

experiments. (C) Functional regions of interest in ventral temporal cortex (left) and lateral temporal cortex (right)
selective to bodies (OTS and MTG, blue) and faces (pSTS and mFus, red), as well as human V4 (hV4) and human

motion-sensitive area (hMT+). Regions in each anatomical section are shown in an example subject.

https://doi.org/10.1371/journal.pcbi.1007011.g001
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the fact that stimuli are presented for only a small fraction of each trial duration in experiment

2 compared to experiment 1. Furthermore, peak response amplitudes do not increase with

trial duration in experiment 1 as predicted by the GLM. Instead, we observe a systematic

decrease in response after the first few seconds of stimulation in the 10 s and 20 s trials, which

is consistent with prior reports of fMRI adaptation for prolonged stimuli in nearby face- and

place-selective regions [14]. Lastly, responses in experiment 3 (Fig 2B, green) exceed responses

in both experiment 1 (which has only one image per trial but similar overall durations of stim-

ulation) and experiment 2 (which has the same number of images per trial but shorter stimulus

durations). This observation suggests that both the number of stimuli in a trial and their dura-

tion impact response amplitudes, as in earlier visual areas such as V1 and hV4 (S1 Fig).

Fig 2. Responses of body-selective regions in ventral and lateral temporal cortex exhibit nonlinearities that are not

predicted by a linear model. (A) Predicted responses by a GLM for trials containing one continuous image (blue), thirty

flashed (33 ms) images (red), and thirty longer images that span then entire trial duration except for a 33 ms interstimulus

interval (ISI) following each image (green). Predictors are fit to OTS-bodies responses using data concatenated across all

three experiments shown in (B). (B) Measured responses during Exp1-Exp 3 from an independently defined ventral

region on the occipitotemporal sulcus (OTS) selective to bodies (OTS-bodies). (C) Measured responses during Exp1-Exp

3 from an independently defined lateral region on the middle temporal gyrus (MTG) selective for bodies (MTG-bodies).

In (B-C), lines: mean response time series across participants for trials with body images; shaded areas: standard error of

the mean (SEM) across participants; Horizontal black bars: stimulus duration.

https://doi.org/10.1371/journal.pcbi.1007011.g002
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Unlike OTS-bodies, MTG-bodies illustrates a largely transient response characteristic with

substantially lower responses to the prolonged single images in experiment 1. Notably, for the

10 s and 20 s trials, we observe a transient response following both the onset and the offset of

the image but no elevation of response in the middle of the trial (Fig 2C, blue). In contrast to

the lack of robust responses in experiment 1, MTG-bodies shows surprisingly large responses

to briefly flashed stimuli in experiment 2 (Fig 2C, red). Additionally, responses in MTG-bodies

during experiment 2 (Fig 2C, red) and experiment 3 (Fig 2C, green), which have 30 stimuli per

trial but of different stimulus durations, are similar and both exceed responses in experiment

1, which has a single stimulus per trial. This suggests that, unlike ventral regions, stimulus

duration has little impact on MTG-bodies responses, which resemble responses in neighboring

motion-sensitive hMT+ (S1 Fig).

These data demonstrate that (i) varying the temporal properties of visual presentations in

the millisecond range has a profound effect on fMRI responses in high-level visual cortex, (ii)

the standard GLM is inadequate for predicting measured fMRI responses to these types of sti-

muli in high-level regions, in agreement with prior data in earlier visual areas [5, 6, 8–13], and

(iii) even though OTS-bodies and MTG-bodies prefer the same stimulus category, their tem-

poral response characteristics vastly differ.

An encoding model of temporal processing in high-level visual cortex

Motivated by the recent success of encoding models that predict fMRI responses in earlier

visual areas by modeling neural temporal nonlinearities [5, 6, 18], we applied a similar

approach to predict responses in high-level visual areas. Different than the GLM, the temporal

encoding approach first models the neural response in millisecond resolution and then con-

volves the estimated neural response with a HRF to predict fMRI responses (Fig 3).

Our encoding model consists of two temporal channels [5, 18]–a sustained channel and a

transient channel—each of which can be modeled using a neural temporal impulse response

function (IRF) followed by a nonlinearity [2, 3, 5, 18, 40]. The sustained channel is modeled

with a monophasic IRF (Fig 3B, blue channel IRF), which predicts a sustained neural response

for the duration of the stimulus. To capture the gradual decay (adaptation, A) of the response

observed in ventral regions for sustained images (Fig 2B, blue), we apply a nonlinearity to the

sustained channel in the form of an exponential decay function (Materials and methods). The

transient channel is characterized by a biphasic IRF (Fig 3B, red channel IRF) that identifies

changes to the visual input. That is, it acts like a derivative function, predicting no further

increase in the neural response once a stimulus has been presented for longer than the dura-

tion of the IRF [5, 18]. This channel too has a nonlinearity, as we hypothesize an increase in

neural response at both the appearance (onset) and disappearance (offset) of a stimulus. To

account for the pronounced transient responses in high-level visual regions (S1 Fig), we apply

a flexible compressive nonlinearity on the transient channel using a pair of sigmoid (S) func-

tions, one for the onset and another for the offset (Materials and methods). Thus, we refer to

this two-temporal channel encoding model as the A+S model. The predicted fMRI response is

generated by convolving the neural response predictors for each channel with the HRF and

summing the responses of the two temporal channels (Fig 3C). Since the HRF effectively acts

as a low-pass temporal filter, predicted fMRI responses can be downsampled with minimal dis-

tortion to match the slower sampling rate of fMRI measurements.

We estimated optimized A+S model parameters separately for each participant and region

using nonlinear programming and a cross-validation approach. In our procedure, we use half

the data from all three experiments to estimate model parameters. Using optimization, we

estimate a time constant for the neural IRFs (τ), a time constant controlling adaptation of

Differential sustained and transient temporal processing across visual streams
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sustained responses (α), and three parameters controlling compression of transient responses

(kon, koff, and λ). After optimizing these parameters, we use a GLM to estimate the magnitude

of response (β weight) for each channel and stimulus category in our experiments, resulting in

three β weights for the sustained channel (one βS for each category) and three β weights for the

transient channel (one βT for each category). These parameters and weights are then used to

predict responses in left-out data and evaluate the model’s goodness-of-fit (cross-validated var-

iance explained, x-R2).

Comparing the predictions of our optimized A+S model with measured fMRI responses in

high-level visual cortex reveals two notable findings. First, our model generates signals that

closely track the amplitude of fMRI responses in all three experiments in the left-out data. Sec-

ond, analysis of x-R2 shows that our optimized A+S model consistently outperforms other

optimized temporal encoding models.

We illustrate these results for one region, OTS-bodies (Fig 4, S2 Fig); Results for other

regions are in S3–S5 Figs. Notably, the A+S model closely tracks response amplitudes in all

three experiments [Fig 4A–4C, compare overall model prediction (black) with measured data

from OTS-bodies (gray)]. Consistent with our predictions, the sustained channel accounts

for the bulk of the response in experiment 1 (Fig 4A, blue); The transient channel contributes

most of the response in experiment 2 (Fig 4B, red), and both channels contribute to responses

in experiment 3 (Fig 4C).

We compared the performance of our A+S model to other models of fMRI responses: the

standard GLM [8], the balloon model [7], four single-channel models (L, CTS [6], A, S; S3A
Fig), and three alternative two-channel models (L+Q [5, 18], C+Q, A+Q) across all three

experiments (Materials and methods; S3–S5 Figs). For simplicity, Fig 4D–4F compares

Fig 3. Optimized two-temporal channel A+S model with adaptation and sigmoid nonlinearities. (A) Transitions

between stimulus and baseline screens are coded as a step function representing when a stimulus was on vs. off with

millisecond temporal resolution. (B) Separate neural responses for the sustained (blue) and transient (red) channels are

modeled by convolving the stimulus vector with an IRF for each channel. An exponential decay function is applied to

the sustained channel to model response decrements related to neural adaptation, and a compressive sigmoid

nonlinearity is applied to the transient channel to vary the temporal characteristics of “on” and “off” responses

(Materials and methods). (C) Predictors of sustained and transient fMRI responses are generated by convolving each

channel’s neural response predictors with the HRF and down-sampling to match the sampling rate of measured fMRI

data. The total fMRI response is the sum of the weighted sustained and transient fMRI predictors for each channel. To

optimize model parameters and estimate the contributions (β weights) of the sustained (βS) and transient (βT) channels,

we fit the model to different splits of the data including runs from all three experiments.

https://doi.org/10.1371/journal.pcbi.1007011.g003
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Fig 4. Two-temporal channel model with nonlinearities on both sustained and transient channels predicts

responses in ventral temporal cortex. (A-C) Responses and model predictions for body images in OTS-bodies. White
curve: mean response across 10 participants. Shaded gray: standard deviation across participants. Blue: predicted

response from the sustained channel. Red: predicted response from the transient channel: Black: sum of responses

from both channels. Inset: mean contribution (β weight) for each channel ±1 SEM across participants. (A) Experiment

1 data, 1 continuous image per trial. (B) Experiment 2 data, 30 flashed images per trial. (C) Experiment 3 data, 30

longer images per trial. (D-F) Model comparison. Bars show the performance of various models for each experiment

presented in (A-C). Models are fit using runs from all three experiments, and cross-validation performance (x-R2) is

calculated in left-out data from each experiment separately. (D) Experiment 1. (E) Experiment 2. (F) Experiment 3.

Single-channel models: GLM, general linear model [8]; CTS, a sustained channel with compressive temporal

summation [6]. Dual-channel models: L+Q, a linear sustained channel and a transient channel with quadratic

nonlinearity [5]; A+S: a sustained channel with adaptation and a transient channel with sigmoid nonlinearities.

Asterisks denote models with significantly different performance compared to A+S (paired t-tests comparing x-R2 of

each model vs. A+S in each experiment).

https://doi.org/10.1371/journal.pcbi.1007011.g004
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performance in OTS-bodies for our model vs. three others: the standard GLM [8], a single-

channel model with compressive temporal summation (CTS) [6], and a two-channel model

composed of a linear sustained channel and a transient channel with a quadratic nonlinearity

(L+Q) [5, 18]. The latter two models have been recently used to model temporal dynamics of

early and intermediate visual areas. Comparing the performance of these models in OTS-bod-

ies (Fig 4D–4F), we observe significant differences across experiments [significant main effect

of model type, F6, 54 = 13.79, P< .001, two-way ANOVA with factors of model type (GLM/

CTS/L+Q/A+S) and experiment (experiment 1/2/3)]. Notably, the A+S model predicts OTS-

bodies responses in left out data significantly better than the GLM [8], which overestimates

responses in experiment 1 and underestimates responses in experiment 2 (GLM vs. A+S: all

ts> 2.64, Ps< .05, paired t-tests on x-R2 separately for each experiments) (S2A Fig). The A+S

model also outperforms the recently proposed CTS model [6] that enhances early and late por-

tions of the neural response to a stimulus (CTS vs. A+S: all ts> 2.60, Ps < .05). While the CTS

model performs considerably better than the GLM in experiment 2, it overestimates responses

in experiment 1 with a single continuous image per trial and underestimates responses in

experiment 3 with 30 longer images per trial (S2B Fig). In experiments 2 and 3, we also observe

a significant advantage of the A+S model compared to the two-temporal channel L+Q model

[5, 18], which underestimates the large responses to transient stimuli in experiment 2 (S2C
Fig) (L+Q vs. A+S: ts> 4.06, Ps < .05; the difference fell short of significance for experiment

1, t9 = 1.98, P = .08).

Thus, an optimized two-temporal channel model with an adaptation nonlinearity in the

sustained channel and compressive sigmoid nonlinearities in the transient channel predicts

fMRI responses to visual stimuli ranging from milliseconds to seconds in high-level visual cor-

tex with greater accuracy than alternative models.

How do channel contributions differ across ventral and lateral category-

selective regions?

Examination of response time series (S1 Fig) and channel weights (Fig 5) in body- and face-

selective regions in VTC and LTC reveals prominent differences across ventral and lateral tem-

poral regions.

First, comparing the response time courses of different category-selective regions shows

that ventral temporal regions (e.g., OTS-bodies and mFus-faces) respond strongly to both

the sustained stimuli in experiment 1 and the transient stimuli in experiment 2, whereas lat-

eral temporal regions (MTG-bodies and pSTS-faces) respond strongly to the transient sti-

muli but minimally to the sustained stimuli (S1 Fig). The ratio of sustained and transient

channel amplitudes, j
bS
bT
j, also differs across regions in ventral and lateral aspects of temporal

cortex [significant main effect of processing stream, F1, 107 = 14.27, P< .01, three-way

ANOVA with factors of processing stream (ventral/lateral), stimulus category (faces/bodies/

words), and preferred category (bodies/faces); all other effects failed to reach significance;

Fs < 1.39, Ps > .05]. That is, while both sustained and transient channels contribute to

responses in ventral temporal regions (Fig 5B), the transient channel dominates responses in

lateral temporal regions (Fig 5C). In fact, zeroing the contribution of the sustained channel

slightly improves model performance in lateral regions (i.e. x-R2 of the S model is marginally

better than the A+S model in MTG-bodies and pSTS-faces; S3B Fig). In contrast, zeroing the

sustained channel detrimentally affects the prediction of responses in ventral regions for pro-

longed visual stimulation as in experiment 1 (S6A Fig). Finally, ventral temporal regions

show a response characteristic similar to both hV4 (S4A Fig) and occipital category-selective
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regions (Fig 5A), whereas lateral temporal regions show a characteristic similar to motion-

sensitive hMT+ (S4A Fig).

Second, in VTC (Fig 5B), category selectivity—or higher responses to a preferred category

vs. other categories—is evident in both sustained and transient channels [all ts> 2.26, Ps<

.05, one-tailed t-tests comparing the contrast effect size (CES) of β weights for the preferred vs.

nonpreferred categories separately for each channel; Fig 5B, insets]. For example, in both chan-

nels, the weighting of the predicted response to faces in mFus is significantly higher than the

average weighting of responses to words and bodies (ts> 5.25, Ps < .001, paired t-test for each

channel; Fig 5A, right). Likewise, in both channels, the predicted weighting of responses to

bodies in OTS is higher than the average weighting of responses to other categories (ts > 2.59,

Ps< .05, paired t-test for each channel; Fig 5A, left). Selectivity across both temporal channels

was also observed in nearby word-selective regions (IOS-words and pOTS-words; S7A Fig).

Interestingly, category selectivity in the sustained channel was higher in ventral face-selective

regions as compared to body-selective regions. In contrast, in LTC (MTG-bodies and pSTS-

faces; Fig 5C), there is a significant difference in the CES across sustained and transient chan-

nels [significant main effect of channel, F1, 8 = 14.88, P< .01, two-way ANOVA with factors of

channel (sustained/transient) and preferred category (bodies/faces)]. That is, higher responses

to the preferred category are observed only in the transient channel (ts > 1.99, Ps < .05; the

effect was not significant in the sustained channel, ts< 1.37, Ps> .10; Fig 5B, insets). Thus,

Fig 5. Differential contributions of transient and sustained temporal channels across ventral and lateral regions selective to face and body stimuli.

Contributions (β weights) of transient (x axis) and sustained (y axis) channels for each stimulus category estimated by the two-temporal channel A+S model in (A)

occipital body-selective region on the lateral occipital sulcus (LOS) and a face-selective region on the inferior occipital gyrus (IOG), (B) ventral-temporal body-

selective regions on the inferior temproal gyrus (ITG) and occipito-temporal sulcus (OTS) and face-selective regions on the posterior and mid fusiform gyrus,

pFus- and mFus-faces, respectivevely, and (C) a lateral temporal body-selective region on the mid temporal gyrus (MTG) and a face-selective region on the

posterior aspect of the superior temporal sulcus (pSTS-faces). Crosses span ±1 SEM across participants in each axis, and β weights were solved by fitting the model

using split halves of the data including runs from all three experiments. Data show average model weights across both splits of the data for each participant. Red:

response to faces. Blue: response to bodies. Gray: response to words. Dashed line: identity line (βS = βT). Inset: bars indicate mean contrast effect size (CES) of β
weights for the preferred vs. nonpreferred categories in each channel ±1 SEM across participants.

https://doi.org/10.1371/journal.pcbi.1007011.g005
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these results reveal differential contributions of transient and sustained channels across ventral

and lateral category-selective regions.

How do timing parameters vary across ventral and lateral face and body

regions?

We next examined the optimized timing and compression parameters for each channel to test

if there are functional differences across regions. The parameters in our A+S model were opti-

mized separately for each region within each participant. Thus, for a given ROI, we optimized

one time constant for the channel IRFs, one time constant for the adaptation decay function,

as well as three sigmoid parameters (Materials and methods).

For the sustained channel, we assessed how the time to peak of the neural IRF (IRFS) and

the adaptation decay constant (α) vary across occipital and ventral temporal regions, omitting

lateral temporal regions that did not have significant sustained responses. We discovered a

hierarchical progression of longer time to peak and stronger adaptation in the sustained chan-

nel ascending from early to later stages of the ventral hierarchy (Fig 6A). That is, the time to

peak of the sustained IRF tended to be shorter in V1 than hV4 and shorter in hV4 than in ven-

tral regions OTS-bodies and mFus-faces (Fig 6A, x axis). At the same time, the adaptation

decay constant decreased from V1 to ventral temporal regions, indicating more adaptation in

Fig 6. Optimized two-temporal channel model parameters differ across visual cortex. (A) Optimized sustained channel parameters. Time to peak of

sustained IRFS (x axis) and exponential time constant of the adaptation function (y axis) for each set of regions estimated by the two-temporal channel

A+S model. Crosses span ±1 SEM across participants in each axis, and parameters were optimized using split halves of the data containing runs from all

experiments. Data show model parameters averaged across both splits of the data for each participant. (B) Optimized transient channel parameters.

Time to peak of transient IRFT (x axis) and onset/offset balance (y axis) for each set of regions estimated by the two-temporal channel A+S model (with

a zeroed sustained channel in lateral regions). The onset/offset balance metric captures differences in the shapes of the sigmoid nonlinearities used to

compress transient “on” and “off” responses, where values larger than 0.5 refect elongation of offset responses compared to onset responses. Crosses

span ±1 SEM across participants in each axis, and parameters were optimized using split halves of the data from all experiments. Plots show average

model parameters across all splits of the data for each participant. Sample IRFs and nonlinearities shown to the right of (A-B) are generated by

averaging optimized model parameters across participants.

https://doi.org/10.1371/journal.pcbi.1007011.g006
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mFus-faces and OTS-bodies than in V1 (Fig 6A, y axis). We also observed a decreasing adapta-

tion constant from occipital regions IOG-faces/LOS-bodies to the ventral regions mFus-faces/

OTS-bodies. Thus, analyzing timing parameters in the sustained channel revealed differences

in processing across the ventral stream.

In the transient channel, we examined how the time to peak of the IRFT varies across

regions and if there are asymmetries in the compression of “on” compared to “off” neural

responses controlled by the sigmoid shape parameters kon and koff, respectively. Since lower k
values generally elongate transient responses, the relative contribution of the offset component

can be indexed by a balance metric,
kon

konþkoff
, where a ratio of 0.5 indicates equal contributions

from the onset and the offest of a stimulus to BOLD signals (kon = koff). A ratio < 0.5 indicates

a larger contribution of onset than offset responses, and a ratio > 0.5 indicates a larger contri-

bution of offset than onset responses.

First, like the sustained channel, the transient channel also shows an increase in the time to

peak of IRFT going from V1 to face- and body-selective regions in VTC and LTC (Fig 6B, x
axis). Second, VTC face-and body-selective regions tended to show longer time to peak of

their transient IRFT as compared to LTC face-and body-selective regions. Third, interestingly,

transients in lateral regions, pSTS-faces and MTG-bodies, show balanced contributions of

onset and offset responses (balance metric = 0.50±0.09; Fig 6B, y axis and insets). In contrast,

transients in ventral regions, pFus/mFus-faces and ITG/OTS-bodies, as well as occipital face-

selective IOG and body-selective LOS are dominated by offset responses (balance metric = 0.77

±0.09; Fig 6B and insets). The surprisingly large offset contribution predicted by our model

indicates that the bulk of VTC responses for the brief stimuli in experiment 2 can be attributed

to neural responses that occur after the stimuli are no longer visible, rather than during the ini-

tial response to these stimuli.

Thus, comparison of optimized A+S model parameters reveals functional differences

between early and later stages of the visual hierarchy, as well as distinct nonlinearities across

ventral and lateral regions with the same category preference.

Discussion

Using a temporal encoding approach to explain responses in high-level visual regions, we dis-

covered that an optimized two-temporal channel model consisting of a sustained channel

with an adaptation nonlinearity and a transient channel with compressive sigmoid nonline-

arities successfully predicts fMRI responses in human high-level visual cortex for stimuli pre-

sented for durations ranging from tens of milliseconds to tens of seconds. Critically, the

innovative temporal encoding framework we introduce combines in a single computational

model several components of temporal processing including time windows of temporal inte-

gration [12, 16, 19–21], channel contributions [5, 18, 22–25], and nonlinearities in temporal

summation [5, 6, 9–12, 18]. Using this approach, we (i) uncover the temporal sensitivity

of neural responses in human high-level visual cortex, (ii) find differential temporal charac-

teristics across lateral and ventral category-selective regions, and (iii) propose a new mecha-

nism—temporal processing—that functionally distinguishes visual processing streams in the

human brain.

Differences in temporal processing across visual streams

Our results suggest two key differences between temporal processing in the ventral and lateral

visual processing streams which project to ventral and lateral temporal cortex, respectively

[41]. First, there are differences in channel contributions. Lateral temporal cortex is dominated

by responses to visual transients, while ventral temporal cortex responds to both sustained
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and transient visual information. Transient processing in LTC is consistent with the view that

face and body-selective regions in the STS and MTG, respectively, are involved in processing

dynamic visual information [30–37]. However, different than prior theories that have impli-

cated these lateral regions in specialized processing of biological motion [31–33, 42], our data

suggest that there is a more fundamental difference between high-level visual regions in lateral

and ventral temporal cortex that is driven by differential temporal channel contributions. Sec-

ond, there are also differences in the dynamics of transient processing across visual streams.

LTC regions show equal increases in neural responses due to the onset and offset of a visual

stimulus, suggesting they carry information about moment-to-moment changes in the visual

input. However, VTC regions exhibit surprisingly asymmetric contributions from the onset

and offset of the stimulus. That is, the accumulation of fMRI responses due to the termination

of a stimulus is more pronounced than responses associated with its onset. This difference sug-

gests the intriguing possibility that transient responses in LTC code progressive changes to the

visual input, while transient offset responses in VTC may reflect memory traces that are main-

tained in high-level regions after a stimulus is no longer visible. This prediction is consistent

with results from ECoG studies showing that high frequency broadband responses (>60 Hz)

in VTC continue for 100–200 ms after the stimulus is off [43–46] and carry stimulus-specific

information that may be modulated by attention [45, 46].

Observing a strong transient response in LTC regions, MTG-bodies and pSTS-faces, is

interesting in the context of classic theories that propose differential contributions of magno-

cellular (M) and parvocellular (P) inputs to parallel visual streams in the primate visual system

[22–24]. In macaques, the M pathway is thought to code transient visual information and proj-

ects from V1 to MT, while the P pathway is thought to code sustained information and proj-

ects from V1 to V4 and IT. Our results reveal that the transient channel, associated with the M

pathway, dominates responses not just in hMT+ [5] but also in LTC category-selective regions.

In turn, this suggest the intriguing possibility that there may be substantial M projections not

only to hMT+ as predicted by classic theories [22–24], but also to surrounding face- and body-

selective regions.

Different from the predictions of classic theories of a predominant P input to the primate

ventral stream [22–24], we find significant contributions from both transient and sustained

channels in VTC as well as evidence for category selectivity in VTC in both channels. This

finding is consistent with later studies in macaques that reported that both M and P inputs

propagate to ventral visual areas such as V4 [5, 25]. Surprisingly, our data in Fig 5 suggests

that the contribution of the transient channel in VTC appears to be larger than the sustained

channel. We note that while interpreting the relative amplitude of responses within a channel

is straightforward (e.g. comparing β weights for the different categories within the transient

channel), interpreting the relative weight of sustained vs. temporal channels is complex, as it

depends on the specific implementation of the model and the experimental design. Nonethe-

less, we are confident that there are both sustained and transient responses in VTC for three

reasons. First, examination of raw BOLD responses during our experiments (S1 Fig), which

are model free, shows that VTC regions respond strongly both to sustained single images

(experiment 1) as well as transient, briefly flashed images (experiment 2). Second, responses

in experiment 3, which had a combination of sustained and transient stimulation, exceed

those of either experiment 1 or 2, suggesting additive contributions of the two channels.

Finally, a two-channel model with sustained and transient channels performs better in VTC

than single-channel models with only a sustained channel or only a transient channel

(S6 Fig).

Critically, finding substantial transient responses in VTC suggests a rethinking of the role

of transient processing in the ventral visual stream. That is, this finding provides evidence
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against the prevailing theoretical view that the role of the ventral stream is just to process static

visual information. We hypothesize that transient responses in the ventral steam may serve

two purposes. First, onset transients may reflect the processing of novel stimuli, which underlie

rapid extraction of the gist of the visual input. Second, offset transients in VTC may reflect the

ignition of a memory trace of the stimulus after it is no longer visible.

Differences in temporal processing across early and high-level stages of

visual processing

Notably, the estimated timing parameters from our experiments are largely consistent with

parameters of neural IRFs derived from compressive temporal models applied to fMRI [6],

as well ECoG and electrophysiology data [47], which have millisecond temporal resolution.

Another aspect of our results shows that temporal parameters of neural responses vary across

early and high-level areas in the visual processing hierarchy [1, 19–21]. Evidence for hierarchi-

cal differences in temporal processing is reflected in two ways. First, our model estimates that

the time of peak responses of neural IRFs is later in both intermediate visual areas and high-

level VTC regions relative to V1 (Fig 6). Second, our data suggests faster adaptation in the sus-

tained channel in VTC regions compared to V1 (Fig 6A).

Nonetheless, not all of our data follow the predictions of hierarchical differences in tempo-

ral processing. For example, the time to peak of neural IRFs in mFus-faces (OTS-bodies) is ear-

lier than pFus-faces (ITG-bodies), even though the former two are thought to be higher in the

processing hierarchy than the latter. This deviation from the hierarchical view may be due to

the impact of additional factors on neural response latencies, which may also vary across areas.

For example, the contrast of images may affect the time to peak in V1 more than in higher-

level visual regions [47, 48].

What are the implications for modeling fMRI responses beyond visual

cortex?

Our data has critical implications for computational models of the brain. We developed a par-

simonious yet powerful encoding model that can be applied to estimate nonlinear neural

responses and temporal integration windows across cortex with millisecond resolution. While

our two-temporal channel model provides a significant improvement in predicting fMRI sig-

nals compared to other models, we acknowledge that it does not explain the entire variance of

the data. Future research may build upon the present results and improve model predictions

by incorporating additional nonlinearities and channels. In terms of nonlinearities, future

research could examine if there are also adaptation effects in the transient channel by modeling

transient responses to repeated vs. non repeated stimuli [49]. In terms of processing channels,

combining the temporal encoding approach with models of spatial processing such as popula-

tion receptive field models [50] and featural processing models [51, 52] may be important for

accounting for the remaining unexplained variance of fMRI responses. Further, encoding

models with temporal, spatial, and featural components may be necessary to accurately predict

brain responses to dynamic real-world visual inputs in higher-level regions [19, 20, 52].

Given the pervasive use of the standard GLM in fMRI research, our results have broad

implications for fMRI studies of any part of the brain. We find that varying the timing of sti-

muli in the millisecond range has a substantial impact on the magnitude of fMRI responses.

However, by estimating neural responses in millisecond resolution, we can accurately predict

fMRI responses in second resolution for both brief and long visual stimuli. Thus, the temporal

encoding approach we pioneered marks a transformative advancement in using fMRI to eluci-

date temporal processing in the brain as it links fMRI responses to the timescale of neural
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computations. In other words, our approach could be applied to study other brain regions, For

example, neurons in auditory cortex are sensitive not only to the frequency of tones, but also

to their timing and duration [53]. By varying the timing parameters of auditory stimuli and fit-

ting a temporal (or spectral-temporal [54]) encoding model to brain responses, the framework

we developed here could be used to uncover the shape and timing of neural impulse response

functions that characterize auditory cortex, as well as temporal processing of complex stimuli

such as speech and music [55, 56].

Additionally, as parallel streams occur not just in the visual system but throughout the

brain, our data raise the intriguing hypothesis that temporal processing may also segregate

other brain systems such as auditory or somatosensory cortex. For example, temporal compu-

tations in the auditory ventral stream are thought to differ from those in the auditory dorsal

stream [57], whereby the latter may be dominated by processing of auditory transients. Others

have also suggested hemispheric differences in auditory cortex; in particular, that the temporal

resolution of neural processing is higher in left than right auditory cortex [58]. These hypothe-

ses can be explicitly tested by developing temporal encoding models for auditory cortex like

the ones we have developed here for visual cortex.

Overall, our innovative approach offers a quantitative framework to identify functional

and computational differences across cortex [59, 60] in many domains such as audition [61]

and working memory [62]. Importantly, the encoding approach can also be applied to study

impairments in high-level abilities like reading [63] and mathematical processing [64] that

require integrating visual information over space and time.

In sum, our results provide the first comprehensive computational model of temporal

processing in high-level visual cortex. Our findings propose a fundamental new mechanism

—temporal processing—that distinguishes visual processing streams. We propose that lateral

category-selective regions process moment-to-moment visual transitions, but ventral cate-

gory-selective regions respond to both sustained and transient components. Visual transients

in ventral category-selective regions may reflect rapid detection of changes to the visual

content at stimulus onset and a memory trace of a recent stimulus at stimulus offset, which

together suggest a new role of transient processing in the visual system beyond processing of

dynamic stimuli. Finally, the encoding approach we introduce underscores the importance

of modeling brain responses with millisecond precision to better understand the underlying

neural computations.

Materials and methods

Ethics statement

The Stanford University Institutional Review Board approved of the study (Protocol #29458—

Functional Neuroanatomy of High-Level Visual Cortex: A quantitative multi-model approach).

We obtained written informed consent by each subject.

Participants

Twelve participants (6 males, 6 females) with normal or corrected-to-normal vision partici-

pated in the main experiments (experiments 1–3). Each individual provided written informed

consent and participated in two fMRI sessions: one session for experiments 1 and 2 and

another session for experiment 3 and a functional localizer experiment [15]. Seven participants

from the main experiments (3 males, 4 females) also underwent population receptive field

(pRF) mapping [50] to define retinotopic cortical regions and another experiment to define

human motion-sensitive area (hMT+) [65]. The Stanford Internal Review Board on Human

Subjects Research approved all protocols.
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Temporal channels experiments

Visual stimuli. Stimuli consisted of well-controlled grayscale images of faces, bodies, and

pseudowords (Fig 1A, right) used in our previous publications [15]. Stimuli were presented

using an Eiki LC-WUL100L projector (resolution: 1920 x 1200; refresh rate: 60 Hz) that was

controlled by an Apple MacBook Pro using MATLAB (http://www.mathworks.com/) and

functions from Psychophysics Toolbox [66] (http://psychtoolbox.org). Participants viewed

images through an auxiliary mirror mounted on the RF coil with stimuli spanning ~20˚ of

visual angle in each dimension.

Experimental design. To develop a temporal encoding model for high-level visual cortex,

we adapted a fMRI paradigm previously used to model contributions of sustained and tran-

sient temporal channels in early visual cortex [5]. The three main experiments in this study all

used the same stimuli, trial durations, and task but varied in the temporal presentation of the

images. Critically, a 12-s baseline period (blank gray screen) always came before and after each

trial. In all three experiments, participants were instructed to fixate on a small, central dot and

respond by button press when it changed color (occurring randomly once every 2–14 s, 8 s on

average).

Experiment 1 – one continuous image per trial: Stimuli were shown in trials of varying

durations (3, 5, 10, or 20 s per trial) in which a single image was shown for the entire trial.

Across trial durations the number of stimuli and transients (at the onset and offset of each

stimulus) are matched but the duration of stimulation varies (Fig 1A and 1B, blue). This exper-

iment was designed to enable measurement of sustained responses as well as fMRI-adaptation

for prolonged images [14].

Experiment 2 – 30 flashed images per trial: used the same trial durations as experiment 1,

but in each trial we presented 30 different images from the same category. Each image was

shown for 33 ms and followed by a blank interstimulus interval (ISI). Across trial durations

the number of stimuli, number of transients, and total duration of visual stimulation are

matched, but the ISI between consecutive images varied. Each ISI was 67 ms in the 3-s trials,

133 ms in the 5-s trials, 300 ms in the 10-s trials, and 633 ms in the 20-s trials (Fig 1A and 1B,

red).

Experiment 3 – 30 longer images per trial: used the same design as experiment 2, except

that in each trial we presented 30 images from the same category for longer durations with a

constant ISI of 33 ms between images. Image durations varied across trials and were each

shown for 67 ms in the 3-s trials, 133 ms in the 5-s trials, 300 ms in the 10-s trials, and 633 ms

in the 20-s trials (Fig 1A and 1B, green).

Data acquisition. Functional data were acquired using a simultaneous multi-slice EPI

sequence with a multiplexing factor of 3 to obtain near whole-brain coverage with a TR of 1 s.

Participants viewed four 270-s runs of each experiment. Each run of each experiment con-

tained one instance of every permutation of stimulus category (face/body/word) and trial

duration (3, 5, 10, or 20 s) presented in random order.

Category localizer experiment. To functionally define cortical regions that respond pref-

erentially to specific stimulus categories, we collected three 300-s runs of a standard fMRI cate-

gory localizer experiment used in our previous publications [15]. Participants were instructed

to fixate on a central dot and respond by button press when an image repeated randomly

within a block. Code for the experiment is available at https://github.com/VPNL/fLoc.

pRF mapping and hMT+ localizer. To delineate retinotopic boundaries, we acquired

four 200-s runs of pRF mapping [50] in a subset of participants from the main experiments. In

this experiment, a bar with flickering black and white checkerboards swept across a circular

aperture (40˚ × 40˚ of visual angle) in eight directions as participants performed a fixation
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task. To functionally define hMT+ in the same subset of participants, we collected one 300-s

run of a fMRI motion localizer experiment as detailed in our prior publications [5, 65].

Magnetic resonance imaging (MRI). MRI data were collected using a 3T GE Signa MR750

scanner at the Center for Cognitive and Neurobiological Imaging (CNI) at Stanford University.

fMRI: We used a Nova phase-array 32-channel head coil for the main experiments and func-

tional localizer to obtain near whole-brain coverage (48 slices; resolution: 2.4 × 2.4 × 2.4 mm;

one-shot T2�-sensitive gradient echo acquisition sequence: FOV = 192 mm, TE = 30 ms, TR =

1000 ms, and flip angle = 76˚, multiplexing factor of 3). We also collected T1-weighted inplane

images to align each participant’s functional data to their high-resolution whole brain anatomy.

For pRF mapping and the hMT+ localizer, we used a 16-channel visual array coil (28 slices;

resolution: 2.4 × 2.4 × 2.4 mm; one-shot T2�-sensitive gradient echo acquisition sequence:

FOV = 192 mm, TE = 30 ms, TR = 2000 ms, and flip angle = 77˚) and collected T1-weighted

inplane images in the same prescription.

Anatomical MRI: We acquired a whole-brain, anatomical volume in each participant using

a Nova 32-channel head coil (resolution: 1 × 1 × 1 mm; T1-weighted BRAVO pulse sequence:

FOV = 240 mm, TI = 450 ms, and flip angle = 12˚).

Data analysis

Data were analyzed with MATLAB using code from vistasoft (http://github.com/vistalab) and

FreeSurfer (http://freesurfer.net). Code used for predicting fMRI responses using a temporal

channels approach is available at https://github.com/VPNL/TemporalChannels.

Regions of interest (ROI) definition. Category-selective regions were defined in each

participant’s native anatomical space at a common threshold (t> 3, voxel level, uncorrected)

using functional and anatomical criteria detailed in prior publications [15] (Fig 1C). Face-

selective ROIs (faces > others) were defined bilaterally in the inferior occipital gyrus (IOG-

faces, N = 10), posterior STS (pSTS-faces, N = 9), posterior fusiform gyrus (pFus-faces,

N = 11), and mid fusiform gyrus (mFus-faces; N = 11). Body-selective ROIs (bodies > others)

were found bilaterally in the lateral occipital sulcus (LOS-bodies, N = 10), inferior temporal

gyrus (ITG-bodies, N = 10), middle temporal gyrus (MTG-bodies, N = 11), and occipitotem-

poral sulcus (OTS, N = 10).

Visual areas V1 and hV4 were defined in each hemisphere in a subset of participant (N = 7)

using data from the pRF mapping experiment. To match the visual field coverage of the stimuli

in the main experiments, we restricted ROIs to only included voxels with pRF centers within

the central 10˚. We also defined bilateral hMT+ in the same subset of participants using data

from the motion localizer experiment as in previous publications [5, 65].

Optimized two-temporal channel A+S model. To predict responses across all three

experiments with a single model, we adapted an encoding approach introduced by prior stud-

ies [5, 18], which models fMRI responses as the weighted sum of activity across separate sus-

tained and transient temporal channels.

In the procedure illustrated in Fig 3, we first predict neural activity in each channel by

convolving the stimulus time course in millisecond resolution (Fig 3A) separately with the

neural IRF for the sustained channel (Fig 3B, blue channel IRF) and the transient channel (Fig

3B, red channel IRF). The sustained channel is characterized by a monophasic IRFS that gener-

ates a response for the entire duration of a stimulus followed by an adaptation nonlinearity.

This is implemented by multiplying the predicted neural responses in the sustained channel by

an exponential decay function beginning at the onset of each stimulus and extending until the

onset of the following stimulus. In contrast, the transient channel is characterized by a biphasic

IRFT that generates a brief response at the onset and offset of an image [2, 3, 40]. Here,
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convolved responses are passed through sigmoid nonlinearities that allow different levels of

compression to be applied to the “on” and “off” responses. Then, the estimated neural

responses for each channel are convolved with a hemodynamic response function (HRF) to

generate a prediction of the fMRI response in each channel (Fig 3C). As such, there are neural

nonlinearities in each channel of this model, but a linear relationship is assumed between the

neural activity and BOLD responses. Finally, we use a GLM to solve for the contributions (β
weights) of the sustained and transient channels, which reflect how much the predicted

response from each channel is scaled before the responses of both channels are summed. Thus,

the BOLD response to a stimulus can be expressed as

bSf½ðstimulus� IRFSÞ � e� t=a� �HRFg þ b⊤f½sðstimulus� IRFTÞ� � HRFg;

sðxÞ ¼
1 � e�

x=lð Þ
kon
; x � 0

1 � e�
� x=lð Þ

koff
; x < 0

8
><

>:

where βS and βT are the fitted response amplitudes for the sustained and transient channels,

respectively; IRFS and IRFT are the impulse response functions for the sustained and transient

channels, respectively; α determines the exponential decay at time t after stimulus onset; σ is a

pointwise sigmoid nonlinearity, and HRF is the canonical hemodynamic response function.

Modeling nonlinearities in the neural response. We model the IRFs for each channel

(Fig 3B) using formulas detailed in our prior publications [5]. Here, we optimize the IRF time

constant τ for each region, and the other parameters (taken from Watson [40]) are held con-

stant: κ = 1.33, n1 = 9, and n2 = 10.

Adaptation: To capture fMRI-adaptation [14] effects in the sustained channel, we use an

exponential decay function, e−t/α, where t represents time after stimulus onset, and α indicates

when the function declines to a proportion of 1/e (~37%) of the initial response.

Sigmoid nonlinearities: To allow different levels of compression to be applied to “on” and

“off” responses in the transient channel, we optimize separate sigmoid nonlinearities for the

onset and offset responses using cumulative Weibull distribution functions,

sðxÞ ¼
1 � e�

x=lð Þ
kon
; x � 0

1 � e�
� x=lð Þ

koff
; x < 0

8
><

>:

where λ is a sigmoid scale parameter used in both onset and offset nonlinearities; kon is a sig-

moid shape parameter that controls the curvature of the onset compression function, and koff

is a shape parameter controlling curvature of the offset compression function. Smaller k values

produce more compressive nonlinearities that elongate transient “on” and “off” responses

compared to larger k values.

Fitting and optimizing the two-temporal channel model. Since the HRF acts like a tem-

poral low-pass filter, this allows resampling fMRI response predictors to the lower temporal

resolution of the measured fMRI data (TR = 1 s) with minimal distortion. These resampled

predictors are then compared with measured fMRI responses to estimate the contributions (β
weights) of each channel for each category. To normalize the amplitude of predicted fMRI

responses for the sustained and transient channels, we match the maximal height of predictors

in the design matrix across the two channels. Finally, we used a GLM to estimate β weights of

the sustained and transient channels for each stimulus category by comparing the predicted

responses with the mean response time series of each ROI in each participant. To optimize the

A+S model time constants (τ and α) and sigmoid parameters (λ, kon, koff) for each region, we
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used the constrained nonlinear optimization algorithm fmincon in MATLAB (Optimization
procedures).

Validating the optimized two-temporal channel model. We assessed the predictive

power of the optimized two-temporal A+S channel model by testing how well it predicts

responses from separate runs of data from all three experiments. We first generated predicted

neural response time courses by coding the visual stimulation in the left-out runs and convolv-

ing it separately with the IRFs of the sustained and transient channels (optimized using a sepa-

rate split of the data). We then applied the adaptation and sigmoid nonlinearities, which were

also optimized with independent data (Fig 6). These transformed neural predictors were next

convolved with the HRF and down-sampled to 1 s temporal resolution to match our fMRI

acquisition. Finally, we multiplied each channel’s fMRI predictors with their respective β
weights (estimated for each category in an independent split of the data) before summing

the channel responses to predict fMRI responses. We then quantified how well the predicted

responses matched the measured response across all data in the validation split.

Model performance was operationalized as cross-validated R2 (x-R2), which indexes the

proportion of variance explained by β weights and model parameters that were estimated from

independent data. While similar to a typical R2 statistic, x-R2 can be negative when the residual

variance of a poor model prediction exceeds the measured variance in the response. Quantifi-

cation of x-R2 within each experiment is presented in Fig 4D–4F for OTS-bodies. Performance

averaged across all three experiments is shown in S3–S5 Figs for all regions.

Testing alternative model architectures. To compare with the performance of our opti-

mized two-temporal channel A+S model with alternatives, we tested five single-channel and

three dual-channel models (Figs 2 and 4, S3–S5 Figs).

General linear model (GLM): To first benchmark our model against a common GLM

approach [8], we tested a linear model that predicts fMRI responses with a single convolution

of the stimulus with the canonical HRF.

Balloon model (B model): To examine if responses in high-level visual cortex can be

explained by a nonlinear hemodynamic model, we implemented the balloon model proposed

by Buxton an colleagues [7] using standard parameters detailed in prior publications [5].

Linear sustained channel (L model): Similar to the GLM approach [8] but with two stages

of convolution, we tested a single-channel model with a linear sustained channel,

b ½ðstimulus� IRFSÞ � HRF�;

where β is a fitted response amplitude; IRFS is the impulse response function for the sustained

channel, and HRF is the canonical HRF.

Sustained channel with compressive temporal summation (CTS, Fig 4, S2–S5 Figs): We also

implemented a model proposed by Zhou et al. [6] composed of sustained channel with a com-

pressive static power law,

b ½ðstimulus� IRFSÞ
ε
�HRF�;

where ε is an optimized compression parameter ranging from 0–1.

Sustained channel with adaptation (A model): Identical to the sustained channel shown in

Fig 3 (blue), we tested a model composed of a single sustained channel with adaptation,

b ½ðstimulus� IRFSÞ � e
� t=a �HRF�;

where α determines the exponential decay at t seconds after the onset of a stimulus.

Transient channel with sigmoid nonlinearity (S model; S6 Fig): Identical to the transient

channel shown in Fig 3 (red), we also tested a single-channel model composed of a transient
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channel with the same sigmoid nonlinearities described above,

bf½sðstimulus� IRFTÞ� �HRFg

where IRFT is the impulse response function for the transient channel and σ is a pointwise

nonlinearity composed of separate sigmoid functions for onset and offset responses.

Alternative dual-channel models (L+Q, C+Q, and A+Q models): To compare the opti-

mized two-temporal channel model shown in Fig 3 (A+S model) to alternative dual-channel

models, we tested three variants of our model that all use a transient channel with a quadratic

(Q) nonlinearity (squaring) but apply different nonlinearities in the sustained channel (S3A
Fig). Combining different combinations of the sustained and transient channels described

above, we compared two-channel models composed of a transient channel and either a linear

sustained channel (L+Q model), a sustained channel with CTS (C+Q model), or a sustained

channel with adaptation (A+Q model).

Optimization procedures. For all models with a neural IRF, we optimized a single time

constant, τ, using formulas described in our prior publications [5]. For models with adaption

in the sustained channel (A and A+S), we also optimized an exponential time constant (α). For

models with compressive temporal summation (CTS and C+Q models), we instead optimized

an exponential compression parameter (ε). For models with a sigmoid nonlinearity in the

transient channel (S and A+S models), we optimized three sigmoid parameters (λ, kon, koff).

To optimize model parameters, we used the nonlinear optimization algorithm fmincon in

MATLAB with the following constraints: τ = 4–20 ms, α = 10–40 s, ε = 0.01–1, λ = 0.01–0.5,

kon = 0.1–6, and koff = 0.1–6. The initial values passed to the optimizer for each parameter

were τ = 4.93 ms, α = 20 s, ε = 0.1, λ = 0.1, kon = 3, and koff = 3. The cross-validation perfor-

mance of each model averaged across all three experiments is shown in S3B Fig for category-

selective regions in VTC and LTC and in S4 and S5 Figs for other regions.

Statistical analyses. Model-free ROI comparison. To examine differences in the patterns of

response between ventral and lateral body-selective regions in Fig 2B and 2C using a model-

free approach, we measured in each participant and region the peak response amplitude to

body stimuli for each temporal condition. Then we compared these peaks across regions and

conditions using a three-way repeated measure analysis of variance (ANOVA) with factors of

trial duration (1, 3, 5, or 10 s), experiment (experiment 1, 2, or 3), and ROI (OTS-bodies vs.

MTG-bodies).

Model comparison. To test for differences in model cross-validation performance across

regions in VTC and LTC, we used a two-way repeated measures ANOVA with factors of

model and region (comparing models and regions shown in S3B Fig). We then used post-hoc

paired two-tailed t-tests to compare the x-R2 of our model with others. Fig 4D–4F contrasts

the performance of our model (A+S) in OTS-bodies against three other models (GLM, CTS, L

+Q) for each experiment individually. S3–S5 Figs contrast the performance of our model aver-

aged across all three experiments vs. every other model for each region. To assess the level of

noise in measurements from different brain regions, we also calculated a noise ceiling for each

ROI using the inter-trial variability of responses for each condition as described in our prior

publications [5]. The noise ceiling estimate for OTS-bodies in each experiment is plotted in

Fig 4D–4F, and the average noise ceiling across all three experiments is plotted in S3–S5 Figs.

Parameter comparison. After establishing the validity of our model, we used paired two-

tailed t-tests to compare β weights estimated by the A+S model for each region’s preferred cat-

egory vs. average contributions for nonpreferred categories, separately for the sustained and

transient channels. To test whether selectivity in the two channels differs across regions prefer-

ring bodies and faces in either VTC or LTC, we also used two-way ANOVAs with factors of
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channel (sustained/transient) and preferred category (bodies/faces) on the difference in chan-

nel weights for preferred vs. nonpreferred categories (contrast effect size, CES; Fig 5). To

examine whether the proportion of response attributed to sustained vs. transient channels dif-

fers across processing streams, stimulus categories, or regions preferring different categories,

we then used a three-way ANOVA on channel contribution ratios, j
bS
bT
j, for each category with

factors of stream (ventral/lateral), stimulus (faces/bodies/words), and preferred category (bod-

ies/faces).

Supporting information

S1 Fig. Responses to time-varying stimuli in occipital, ventral, and lateral regions of inter-

est. Measured responses in occipital (V1, LOS-bodies, IOG-faces), ventral (hV4, OTS-bodies,

mFus-faces), and lateral (hMT+, MTG-bodies, pSTS-faces) regions of interest in experiment 1

(blue), experiment 2 (red), and experiment 3 (green) averaged across all three stimulus catego-

ries. Lines: mean response time series across participants; shaded areas: standard error of the

mean (SEM) across participants; Horizontal black bars: trial duration.

(TIF)

S2 Fig. Comparison of temporal encoding models in OTS-bodies. (A-C) Responses and

model predictions for body images in OTS-bodies for each experiment (left) with estimated β
weights for each model (right). White curve: mean response across 10 participants. Shaded
gray: standard deviation across participants. Black curve: overall model prediction. Horizontal
black bar: trial duration. (A) Predictions of a general linear model (GLM) [8]. (B) Predictions

of a model with compressive temporal summation (CTS) [6]. (C) Predictions of the two-tem-

poral channel L+Q model with linear sustained channel and quadratic transient channel. Blue
curve: predicted response from the sustained channel. Red curve: predicted response from the

transient channel: Black curve: sum of responses from both channels. In the continuous (left)

and flashed images (middle) experiments the model’s prediction (black) is obscured by the

response of a single channel, as the other channel’s contribution is negligible.

(TIF)

S3 Fig. Comparison of temporal encoding models across high-level visual cortex. (A) Alter-

native models of sustained (blue) and transient (red) channels. Schematic depicts neural

response predictions generated by different implementations of each channel for both a brief

(67 ms) and long (3 s) stimulus. Sustained channel models: L, a linear sustained channel; CTS,

a sustained channel with compressive temporal summation [6]; A, a sustained channel with

adaptation [8]. Transient channel models: Q, a transient channel with a quadratic (squaring)

nonlinearity; S, a transient channel with a sigmoid nonlinearity. (B) Comparison of model per-

formance (cross-validated R2) in each region averaged across all three experiments. Hemody-

namic models: L, same as in (a); B, balloon model [7]. Single-channel neural models: CTS, A,

and S, same as in (a). Two-channel neural models: L+Q, a linear sustained channel and a tran-

sient channel with a quadratic nonlinearity [5]; C+Q, a sustained channel with compressive

temporal summation and a transient channel with a quadratic nonlinearity; A+Q, a sustained

channel with adaptation and a transient channel with a quadratic nonlinearity; A+S, a sus-

tained channel with adaptation and a transient channel with a sigmoid nonlinearity. Cross-val-

idated R2 significantly differs across models in all four regions (significant main effect of

model type, Fs > 6.80, Ps< .001, one-way repeated measures ANOVA for each region). Aster-

isks denote models with significantly different performance compared to the A+S model,

p<0.05.

(TIF)
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S4 Fig. Contributions of transient and sustained temporal channels across early and inter-

mediate visual areas. (A) Contributions (β weights) of transient (x axis) and sustained (y axis)

channels for each stimulus category estimated by the two-temporal channel A+S model in V1,

hV4, and hMT+. Crosses span ±1 SEM across participants in each axis, and β were solved by

fitting the model using data concatenated across all experiments. Data show average model

weights across all splits of the data for each participant. Red: response to faces. Blue: response

to bodies. Gray: response to words. Dashed gray: identity line (βS = βT). (B) Comparison of

model performance (cross-validated R2) in each region averaged across all three experiments.

Hemodynamic models: L and B. Single-channel neural models: CTS, A, and S. Two-channel

neural models: L+Q [5], C+Q, A+Q, and A+S. Cross-validated R2 significantly differs across

models in all three regions (significant main effect of model type, Fs> 16.45, Ps< .001, one-

way repeated measures ANOVA for each region). Asterisks denote models with significantly

different performance vs. the A+S model.

(TIF)

S5 Fig. Contributions of transient and sustained temporal channels across other face- and

body-selective regions. (A) Contributions (β weights) of transient (x axis) and sustained (y
axis) channels for each stimulus category estimated by the two-temporal channel A+S model.

Crosses span ±1 SEM across participants in each axis, and β were solved by fitting the model

using data concatenated across all experiments. Data show average model β weights across all

splits of the data for each participant. Red: response to faces. Blue: response to bodies. Gray:

response to words. Dashed gray: identity line (βS = βT). (B) Comparison of model performance

(cross-validated R2) in each region averaged across all three experiments. Hemodynamic mod-

els: L and B. Single-channel neural models: CTS, A, and S. Two-channel neural models: L+Q
[5], C+Q, A+Q, and A+S. Cross-validated R2 significantly differs across models in all four

regions (significant main effect of model type, Fs > 36.00, Ps< .001, one-way repeated mea-

sures ANOVA for each region). Asterisks denote models with significantly different perfor-

mance vs. the A+S model, p<0.05.

(TIF)

S6 Fig. Single-channel model with transient channel and sigmoid nonlinearity applied to

OTS-bodies. (A-C) Responses for body images in OTS-bodies and predictions of a model

with a transient channel, but no sustained channel. White curve: mean response across 10 par-

ticipants. Shaded gray: standard deviation across participants. Black: predicted response from

the transient channel: Inset: mean contribution (β weight) for the transient channel ±1 SEM

across participants. (A) Experiment 1 data, 1 continuous image per trial. (B) Experiment 2

data, 30 flashed images per trial. (C) Experiment 3 data, 30 longer images per trial. (D-F)

Model comparison. Bars show the performance of various models for each experiment pre-

sented in (A-C). Models are fit using runs from all three experiments, and cross-validation per-

formance (x-R2) is calculated in left-out data from each experiment separately. (D) Experiment

1. (E) Experiment 2. (F) Experiment 3. Single-channel models: GLM, general linear model [8];

A, a sustained channel with adaptation; S, a transient channel with a sigmoid nonlinearities; A
+S: a sustained channel with adaptation and a transient channel with sigmoid nonlinearities.

Cross-validated R2 significantly differs across models [significant main effect of model type, F6,

54 = 21.88, P< .001, two-way repeated measures ANOVA with factors of model type (GLM/A/

S/A+S) and experiment (1/2/3)]. Asterisks denote models with significantly different perfor-

mance compared to A+S (paired t-tests comparing x-R2 of each model vs. A+S in each experi-

ment).

(TIF)
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S7 Fig. Contributions of transient and sustained temporal channels across word-selective

regions. (A) Contributions (β weights) of transient (x axis) and sustained (y axis) channels for

each stimulus category estimated by the two-temporal channel A+S model in additional word-

selective regions. Crosses span ±1 SEM across participants in each axis, and β were solved by

fitting the model using data concatenated across all experiments. Data show average model

weights across all splits of the data for each participant. Red: response to faces. Blue: response

to bodies. Gray: response to words. Dashed gray: identity line (βS = βT). (B) Comparison of

model performance (cross-validated R2) in each region averaged across all three experiments.

Hemodynamic models: L and B. Single-channel neural models: CTS, A, and S. Two-channel

neural models: L+Q [5], C+Q, A+Q, and A+S. Cross-validated R2 significantly differs across

models in all three regions (significant main effect of model type, Fs> 10.17, Ps< .001, one-

way repeated measures ANOVA for each region). Asterisks denote models with significantly

different performance vs. the A+S model, <0.05.

(TIF)
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