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Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among

the 10 most frequent causes of death worldwide. These infections still lack effective

treatments in many developing countries and in immunocompromised populations like

infants, elderly people and transplanted patients. The interaction between bacteria and

the host is a complex system of interlinked intercellular and the intracellular processes,

enriched in regulatory structures like positive and negative feedback loops. Severe

pathological condition can emerge when the immune system of the host fails to

neutralize the infection. This failure can result in systemic spreading of pathogens

or overwhelming immune response followed by a systemic inflammatory response.

Mathematical modeling is a promising tool to dissect the complexity underlying

pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and

also at the interfaces among levels. In this article, we introduce mathematical and

computational modeling frameworks that can be used for investigating molecular and

cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss

published results on the modeling of regulatory pathways and cell populations relevant

for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity

of modeling approaches to open new avenues in the search of the molecular and cellular

mechanisms underlying bacterial infection in the lung.

Keywords: systems biology, systems medicine, lung infection, mathematical modeling, Boolean network, ODE

models, stochastic modeling, agent-based modeling

INTRODUCTION

In a time of moon shooting projects to cure cancer (Nature Editorial, 2016), the reader may wonder
why it remains interesting to deploy a “systemic approach” to deepen our understanding of bacterial
lung infections. First, even nowadays two of the 10 most frequent causes of death worldwide are
bacterial infections targeting the lungs, namely pneumonia and tuberculosis (WHO, 2017b). A few
generations ago, respiratory infections used to claim the life of a significant fraction of infants,
a problem circumvented in western countries with the emergence of antibiotics, sulfonamides
and high quality health care, but still a dramatic reality in many developing countries. Second,
elderly individuals and immunocompromised individuals face the challenge of repeated respiratory
infections (Stupka et al., 2009). A similar problem is faced by immunocompromised populations
(Conces, 1998).
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Finally, bacteria resistant to antibiotics create new risks and
motivate the struggle to create new antibiotics (Silver, 2011;
WHO, 2017a).

Bacteria and other microbes can invade the lung through
the airways. When pathogens reach the lumen of lung alveoli

FIGURE 1 | The multi-level complexity underlying the host-pathogen interaction in bacterial lung infection. Top: At the tissue level the infection involves the movement

in the tissue compartment of multiple cell types, including bacteria, epithelial cells and immune cells like macrophages and neutrophils. During their movement, these

cells interact with each other via physical contact (e.g., bacteria recognized by macrophages via TLR receptors) or through gradients of chemical signal secreted into

the extracellular medium (chemokines from immune and epithelial cells, or virulence factors from bacteria). These events happen sequentially: for example, upon

bacteria detection, epithelial cells secrete chemokines like IL-8 and CXCL5, and they guide neutrophils to the site of infection that can remove clear pathogens (see

the plot). Centre: Cell-to-cell communications rely both on physical contact and the secretion of chemokines. Chemokines trigger the activation of distinctive,

complex regulatory intracellular networks that can alter cell phenotypes or promote the secretion of more cytokines. For example, upon bacteria-mediated activation

epithelial cells can secrete MCP-1, a chemokine that attracts macrophages. In turn, activated macrophages can secrete IL-1β, which activates epithelial cells.

Bottom: At the intracellular level, the activation of epithelial or immune cells is governed by the NFκB pathway. NFκB is the key transcription factor mediating the

inflammatory response at the intracellular level and controlling the production of cytokines in cells. One of the motivations to make use of mathematical modeling in the

context of bacteria lung infection is that, both the cell-to-cell and intracellular levels contain feedback loops (see the examples). These loops are known to induce

non-linear, counterintuitive dynamics, which requires quantitative data and mathematical modeling to be analyzed.

they can replicate and attack the tissue using virulence factors,
their own chemical weaponry (Figure 1). Upon recognition of
pathogens, the immune response is initiated to clear them from
the infected sites, and this process involves the secretion of
cytokines and recruitment of immune cells.
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A balanced immune response can be achieved via interacting
immune cells that are controlled by intracellular regulatory
networks of interacting molecules, such as cytokines, receptors,
kinases, transcription factors, or non-coding RNAs. Such a
system contains regulatory motifs, especially positive and
negative feedback loops, which increase the complexity of the
response and can provoke non-linear behaviors such as bistability
and oscillation (Ref). For patients with respiratory bacterial
infections, severe pathological condition can emerge if their
immune systems fail to quickly neutralize the infection and
to avoid systemic spread of the pathogen. On the other hand,
overwhelming host immune response to the pathogens is also
dangerous and can impede the proper functioning of the lung
and other organs. So, any new treatments using the combination
of antibiotics and immunomodulatory drugs will be useful if they
can help the patients to maintain a balanced immune response
(Wentker et al., 2017), which is governed by the multi-level
biological system (Eberhardt et al., 2016).

This level of complexity is equivalent to other natural
and artificial systems, like those controlling large and modern
aircrafts. For decades researchers in physics and engineering
have been using mathematical modeling and simulations as an
irreplaceable tool when trying to understand, predict or redesign
these systems. Systems Medicine is the natural extension of this
strategy to the biomedical domain. In our context, mathematical
modeling can be used: (a) to inspect and integrate different but
complementary types of quantitative experimental and clinical
data, (b) to design experiments, (c) to elaborate, analyze and
discuss hypotheses, (d) to perform model simulation-based
predictions for the course of a disease, or (e) the feasibility of
conventional, newly developed or personalized treatments (Vera
and Wolkenhauer, 2008). For our purposes, Systems Medicine is
a methodology that employs mathematical modeling to integrate
and analyze quantitative biological data (Auffray et al., 2009;
Wolkenhauer et al., 2013; Eberhardt et al., 2016; Figure 2). In
the approach, biological knowledge is encoded intomathematical
models whose simulations are used to dissect the cellular and
molecular mechanisms behind diseases.

In a nutshell, the workflow is composed of several steps
(Figure 2). The model derivation begins by retrieval biomedical

knowledge (1), biomedical information from publications and
databases is used to identify the key compounds (cell types or
molecules) and their interactions, and translated the information
into a graphical depiction named regulatory map, mapping of

relevant processes (2). Based on the information gathered and
some heuristic rules, this map is encoded as a mathematical

model (3), which consists of equations or other mathematical
entities. In model calibration (4-5), quantitative data obtained
from experiments are used to characterize the mathematical
model. This is often done though a computational process called
“model calibration,” which assigns values to the parameters
characterizing the model equations, such as the model becomes
able to reproduce the existing quantitative data. Model
calibration can often confirm or disprove the hypothesis encoded
by the model equations. The inability of the mathematical model
to reproduce the data leads to its reformulation, and eventually
to the design of new experiments. In predictive simulations

(6), a calibrated model is used to generate new insights into
the pathophysiology of the investigated disease via computer
simulation. Finally, further validation experiments (7) are used
to confirm or discard the predictions made via model simulation.

In the same manner as one cannot elucidate all the mysteries
of modern biomedicine using a single experimental technique,
say confocal microscopy, a single class of mathematical model
among the plethora of those available in systems medicine is
not useful for every purpose. Every problem or hypothesis to
be explored requires a carefully selected and specific modeling
approach. In this paper, we discuss and illustrate the distinctive
features of different mathematical modeling frameworks with
cases studies in the context of bacterial lung infection. Further,
we compile and discuss relevant published results on the
mathematical modeling of pathways and networks modulating
the immune response, the host-pathogen interaction and the
occurrence of coinfections, all of them topics relevant for
bacterial lung infection. Finally, we discuss how to make use of
this multiplicity of modeling approaches to open new avenues
in the search of molecular and cellular insights in bacterial lung
infection. This review is intended for modelers who want to
enter the field of bacterial lung infection and need a review of
published work, but also for infectiologists and immunologists
interested on understanding how mathematical modeling can
help them designing and interpreting their quantitative data and
hypothesis. In themain text we focus on the basis of the modeling
workflow, the modeling approaches and the published results,
while further details in the methodologies discussed and the
examples proposed are provided in Supplementary Material.

MATHEMATICAL MODELING OF
BACTERIAL LUNG INFECTION

In the context of lung infection, the use of mathematical
modeling is especially suited because one is interested on
elucidating the function and regulation of cell-to-cell or
biochemical networks governing the local or systemic activation
of the epithelial and immune cells in the course of lung bacterial
infection. These networks are large and tightly interconnected;
further, they display complex patterns of temporal activation.
Moreover, one can be interested on integrating quantitative
clinical and biological data accounting for the dynamics of the
infection across different time- and spatial scales. Some events
triggering the early local lung infection happens within minutes
to hours, while the systemic phase of the immune response and
the recovery and tissue repair can last days to weeks. Something
similar happens at the spatial organization, with microscopy-
level events like the triggering intracellular networks or the
networks of interacting immune cells at the infection site, and
mesoscopic-level events accounting for the effects of infection
in the make-up and functioning of structures the lung alveoli
and the airways. This level of complexity in terms of structure
and data can be managed using different types of mathematical
modeling. In the following we discuss in detail several modeling
approaches, as well as the context during bacterial lung infection
in which they are valid.
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FIGURE 2 | The systems medicine workflow. Systems biology modeling is about encoding biological knowledge into mathematical models whose simulations are

used to dissect the molecular mechanisms behind diseases. Current biomedical knowledge is retrieved from publications and databases and used to apprehend the

critical processes in the biomedical scenario investigated (1). These processes, the cell types, molecules and interactions involved are mapped into a graphical

representation (2). Following some heuristic rules, this map is encoded as a mathematical model (3). For the characterization of the model in biological terms,

quantitative experimental data is integrated into the model equations in a process named model calibration (4–5). The model is assessed to judge its ability to precisely

reproduce the data available (6). An inadequate model leads to formulate alternative hypothesis and modify the model equations in accordance, thereby iterating the

steps 3–5. (7). An adequate model is used to make simulations with predictive power, which generate new insights into the pathophysiology of the investigated

disease once experimental validation is performed.

BOOLEAN MODELS

Main Features of Boolean Models
Biochemical systems, if treated as networks of interacting entities,

share many of the structural and regulatory features of electronic

circuits. Boolean models, conceived for designing electronic

circuits, were proposed 50 years ago as a tool to investigate
the structure and dynamics of biochemical networks (Kauffman,
1969, 1993). For biochemical systems, Boolean networks are
graphs in which nodes represent molecules and edges represent
interactions betweenmolecules. The interplay betweenmolecules
and biochemical reactions is represented using Boolean logic,
i.e., discrete models in which every node or molecule can have
only binary values: 0 or “OFF” (indicating the nonexistence or
no-activation of the considered biochemical species), and 1 or
“ON” (corresponding to its existence or activation). For example,

Figure 3B is a depiction of the activation of the IL-1β receptor
(IL-1βR) upon binding of its ligand (IL-1β). The process can
be modeled using a Boolean logic function “AND.” The table
in Figure 3C represents all the possible combinations for the
values of IL-1β and IL-1βR and their effect in the values of the
activated receptor IL-1βR∗. One can see that activation (IL-1βR∗

“1”) is only possible if IL-1βR and IL-1β are present (both with
value “1”).

In Boolean Networks (BNs), the set of functions used to
represent interactions is reduced to the basic logic gates “AND-
OR-NOT” (for definition of logic gate and any bluemarked word,
see Glossary Section). However, logic gates can be combined in
multiple ways and therefore complexmulti-molecule interactions
can be represented (Shmulevich and Aitchison, 2009;Wang et al.,
2012). In line with this, the intracellular regulatory networks
underlying the activation of immune cells can be investigated
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FIGURE 3 | Boolean modeling of the NFκB pathway driving macrophage activation in bacterial lung infection. (A) Graphical depiction of the Boolean network. A full

page visualization of the network is proposed in the Supplementary Material. (B) The activation of the IL-1β receptor (IL-1βR) upon binding of its ligand (IL-1β) modeled

as an AND Boolean logic function. The table below the depiction represents all the possible combinations for the values of IL-1β and IL-1βR and their effect in the

activation of the receptor (R*). (C) State of key nodes of the TLR5 macrophage network at different time iterations after igniting the input signal (flagellin = 1). Blue

stands for nodes off (0) at the iteration considered, while orange indicates they are activated (1). These and other simulations can be visualized as animated gif files at

http://sysbiomed-erlangen.weebly.com/resources.html.

using Boolean modeling (Saez-Rodriguez et al., 2007; Kang
et al., 2011). For example, Figure 3A is the graphical depiction
of a Boolean network representing the triggering of NF-κB

signaling, the master controller of the immune response, upon
activation of Toll-like receptor 5 (TLR5). This event happens
when the bacterial flagellum “is sensed” by the macrophage
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upon the binding of the bacterial protein flagellin to TLR5 (See
Supplementary Material). The network is sequentially organized
with the receptor activation as input, the subsequent activation
of the NF-κB signaling pathway at the cell cytoplasm and the
triggering of an NF-κB transcriptional circuit in the nucleus.
In the network, nodes account for the network compounds,
primarily different biomolecules like proteins and miRNAs, but
also the cellular phenotypes triggered by the network. Further,
the network edges account for the mutual interactions between
the compounds, which are in the model represented like Boolean
logic functions.

By combining and integrating this simple logic functions
over the network in the course of a computational simulation,
one can represent the complex sequential activation of the
biochemical network modeled. A computational simulation is
the mimicking the behavior of the system in a given biological
scenario using the equivalent mathematical model: an in silico
trigger emulates the correspondent biological signal, and the state
of all elements of the model is updated at each iteration step
by considering the state they assumed at the previous step, thus
imitating the propagation of the signal throughout the network.
The simulation considers discrete time points representing the
activation state of the network, but the time between two
consecutive time points (two steps of the simulation) is always
assumed as uniform which does not necessarily reflect the
expected biological time. Simulations can be used to predict the
behavior of the system in non-tested experimental conditions.
For example the Table in Figure 3C is a representation of the state
of a few key nodes of the TLR5 macrophage network at different
iterations in a simulation that mimics the triggering of the system
after igniting the input signal (flagellin= 1). Blue stands for nodes
off (0) at the time iteration considered, while orange indicates
they are activated (1).

Examples of Boolean Models in Literature
In an interested case-study, Saez-Rodríguez et al. derived a
large-scale Boolean network to represent the activation of
T cells (Saez-Rodriguez et al., 2007; Kang et al., 2011). T
cells, which belong to the adaptive branch of the immune
response, can play a role in the long-term response to lung
infection (Chen and Kolls, 2013). The network included the
signaling pathways downstream of the T cell receptor, the
CD4/CD8 co-receptors, and the accessory signaling receptor
CD28. Altogether the network with 94 nodes and 123 interactions
includes the primary mechanism behind the activation of T
cells and depicts the complexity of biochemical pathways and
the reciprocal crosstalk. Saez-Rodriguez et al. exploited one of
the main advantages of Boolean networks in their analysis:
Boolean models have very low computational requirements
for simulation when compared with almost any other model
and therefore they scale well with network size (i.e., they can
simulate large networks). In line with this, they used their
Boolean model to simulate and predict in a systematic and
qualitative manner the effect of a large number of gene knockouts
(“in silico knockouts”). Based on the simulations, the model
predicted that antibody-mediated perturbation of CD28 and
the genetic knockout of the kinase Fyn, two of the network

compounds, may have relevant effects on the network activation,
and these effects could be validated experimentally. Using a
strategy similar to that of in silico knockouts, Boolean networks
have been used to predict the effect of drug combinatory
treatments in cancer (Layek et al., 2011). We do not see
any formal limitation impeding the use of the same strategy
to predict the effect of the combination of antibiotics and
immunomodulatory drugs in acute infections like bacterial
pneumonia.

In line with this example but in the context of lung infection,
Anderson et al. (2016) studied human dendritic cell response
against the influenza H1N1, a virus that can co-infect with several
types of bacteria to produce pneumonia (Joseph et al., 2013).
To this end, they derived a biochemical network with 13 nodes
corresponding to genes and transcription factors playing a role
in antiviral response (e.g., NF-κB, STAT1 and IRF1), and 42 edges
representing the activation of key immune pathways during the
infection. The simulations were done with an asynchronous
Boolean model. The initial states of the Boolean simulations
were based on experimentally observed expression patterns for
the genes in the network (e.g., EGF, NFAT, PDGF and IL-2 set
as active during H1N1 virus infection). The model was used to
investigate the regulation of the IL-2 pathway after exposure to
influenza virus. The model simulations suggested that NFAT can
regulate IL-2 signaling in the context of the virus infection, a
prediction that was experimentally validated. Further analysis led
to the conclusion that IRF and NK-κB signaling share regulatory
functions in H1N1, two out of the three major signaling pathways
responsible for mediating TLR-induced responses in viruses,
bacteria and other pathogens (Mogensen, 2009).

Although Boolean models are more suited for investigating
biochemical networks, they can also be used for describing
networks of interacting cell population’s exceptions (Jack et al.,
2011). For example, Thakar et al. (2007, 2009, 2012) developed
a Boolean model for the regulation of the immune system
response during the respiratory inflammation caused in mouse
by two close relatives of the Bordetellae genus: Bordetella
bronchiseptica, a bacterium causing infectious bronchitis in
animals, and the human pathogen B. pertussis. The model
contains well-established knowledge on the immune response
after independent infection with each one of the bacterium. The
nodes represent (a) immune cell types involved in inflammatory
process, including dendritic, T or B cells, (b) cytokines related
to a specific phase of the immune response or (c) antibodies.
Some edges account for the activation of the immune cells
upon stimulation, while others connect the active immune cells
to the production and secretion of cytokines and antibodies.
Thus, a Boolean network can be used to integrate cell-to-cell
and intracellular scale events. In the network, synchronous and
asynchronous simulations were performed with the Boolean
model. Further experimental data on the host- and pathogen
interaction were used to refine the logic gates describing the
behavior of the nodes. Model simulations identified three phases
in the course of the B. bronchiseptica induced inflammation,
and suggested that antigen regulatory mechanisms play a
prominent role along the whole process, conclusions that were
experimentally validated.

Frontiers in Physiology | www.frontiersin.org 6 August 2017 | Volume 8 | Article 645

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Cantone et al. Mathematical Modeling in Bacteria Lung Infection

In a continued work, the model was expanded by including
published experimental data on time evolution for the
concentration of IL-10 and IFNγ, information useful to
expand the network by including the differentiation of naïve
T cells. Model simulations proved to be able to make several
predictions namely: (1) the cooperativity between IL-10 and
IL-4 signaling to inhibit INFγ, which was later experimentally
validated; (2) the role of the interactions among IL-10,
INFγ, IL-12, and IL-4 signaling in deciding the naïve T cell
differentiation process into either Th1 or Th2; and (3) the
fact that Th1 cell activity must be temporally longer than
that of Th2 cells. To integrate time-series data, the authors
transformed the discrete model into a hybrid model (see final
section of this paper). Further, the group adapted the network
to investigate the co-infection of rabbits with B. bronchiseptica
and Trichostrongylus retortaeformis, a worm that usually infects
herbivores inducing a severe infection. Helminth infections
predispose mice to pneumococcal pneumonia (Apiwattanakul
et al., 2014), and some helminths can trigger pneumonia in
humans (Cheepsattayakorn and Cheepsattayakorn, 2014).
Using previously published experimental data describing
the host immune response to the single infection and for
co-infections, an asynchronous Boolean model was derived.
Boolean logic functions were derived from literature, and in
case of uncertainties, functions were adjusted by comparing
the simulation output with experimental results. The resulting
Boolean model was used to investigate the crosstalk between
regulatory pathways upon the infection with the two pathogens.
To validate the co-transfection network, the group infected
rabbits with both pathogens, and then assessed the robustness
of the model by comparing the resulting activation pattern
of the immune response network upon infection with data
obtained in rabbit model. Further, simulations representing
single knockout of selected network compounds were used
to determine central nodes of the single and co-infection
networks, with special attention to the knockout of cytokines
and immune cell populations’ nodes. For example, knockout of
nodes accounting for populations of B, dendritic or T cells led to
a longer persistence of the bacteria in all case studies. In contrast,
knockout for the IL12II or eosinophil population nodes in the
co-infection network rendered parasite population not persistent
anymore.

Critical Remarks on Boolean Models
There are some alternative modeling frameworks derived from
Boolean logic. For example Probabilistic Boolean Networks
(PBNs) use Boolean logic and Boolean values, and then
implement a set of probabilistic rules determining the state
of each node. Each rule is associated to a probability that a
specific network state can occur based on the states of its inputs,
and the probability for the transition can be assigned based on
experimental data (Shmulevich et al., 2002). This probabilistic
feature can make PBNs interesting to account for immune
cell interactions with a probabilistic compound due to the low
abundance of the cells involved at the site of interaction, but also
for intracellular interactions with molecules in low abundance
(Celli et al., 2012).

Despite the complexity of the interactions that can bemodeled
by pure or probabilistic Boolean logic, the universe of possible
values for every network node is always reduced to 0 and 1. In
multi-valued logic models each node can assume several discrete
values that refer to a specific qualitative property (for example,
“0” for no significant amount, “1” for small amount, and “2” for
large amount of receptors activated). This approach has proved
to be very valuable in some cases like transcriptional activation.
For example, one can have transcriptional targets requiring low
levels of active NF-κB, while others may require much higher
levels, and a multi-valued model may be able to account for this
distinctive activation pattern. In these models, thresholds can be
set to determine the qualitative behavior of the node (Schlatter
et al., 2009; Guebel et al., 2012).

Further, Boolean networks can be “calibrated.” This
calibration is named pruning and consist on a systematic
addition or deleting or nodes or interactions based on the use
of quantitative data. In this way, one can make use of -omics
data sets to refine the structure of the Boolean network (Terfve
et al., 2015). Boolean networks are not suited for spatial features
associated to biochemical reactions like molecular gradients.
But perhaps the main limitation of Boolean models is their
poor ability to reproduce and simulate the non-linearity arising
from the existence of regulatory loops in biochemical networks.
In consequence, they cannot provide detailed analysis of the
fine-tuned regulation of biochemical systems enriched in these
motifs. Mathematical models that can handle successfully
nonlinearity are those in ordinary differential equations, which
are discussed in the context of lung infection and inflammation
in the coming section.

MODELS IN ORDINARY DIFFERENTIAL
EQUATIONS

Main Features of ODE
Under the assumptions that the biochemical reactions happen in
discrete and homogenous intracellular regions (Rahmandad and
Sterman, 2008) and the velocities of the biochemical reactions
are determined by the concentration of the intervening species
(Gustafsson and Sternad, 2013), biochemical networks can be
modeled using kinetic models. Kinetic models are a special type
of models in ordinary differential equations (ODE), where the
equations describe the rate of change of the populations of the
biomolecules involved in the biochemical reactions. Similar types
of ODE models can be derived to account for the dynamics of
interacting cell populations.

To model a biochemical network composed by several
molecules, one has to formulate a system of coupled differential
equations, consisting on one equation per each element of the
system whose dynamics is modeled. For example, Figure 4 top
left is a simplified depiction of an ODEmodel accounting for two
branches of the inflammatory response triggered upon activation
of the IL-1β receptor by its ligand in lung epithelial cells (a
detailed scheme can be found in Supplementary Material). One
branch mediated by NF-κB promotes the secretion of several
pro-inflammatory cytokines like IL-6, while a second branch
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FIGURE 4 | ODE model accounting for the inflammatory response triggered in lung epithelial cells upon activation of the IL-1β receptor. Top left: simplified depiction

of the two branches of the inflammatory response triggered upon activation of the IL-1β receptor included in the model. Top right: model simulations accounting for

the production of IL-6 and IL-10 in response of IL-1β mediated NF-κB activation under IRAK1 (Top) and IKK (Bottom) knockout conditions. Bottom left: detailed

scheme of the accounting for the processes affecting in the model the values of inactive IKK. The arrow finishing in null symbol accounts for degradation of IKK, while

the arrow starting in a ying-ying symbol stand for synthesis. Bottom right: local sensitivities of IL-6 concentration with respect to the perturbation of the model

parameters (see Supplementary Material For further details).

mediated by MAPKs promotes the secretion of, among others,
the anti-inflammatory cytokine IL-10. The branching point is the
activation of IRAK1. The model accounts for the changes on time
of the network compounds using the mass-action formalism. For
example, the following equation represents the rate of change of
the concentration of inactive IKK (IKK, see Figure 4 bottom left):

dIKK

dt
= ksyn − kact · IKK · IRAKIp − kdeg · IKK

In the right-hand side of the equation, each term accounts
for a process affecting the concentration of IKK. The first
term represents the synthesis of IKK, here modeled like a
process at constant (mM·h−1 units), stable functioning and

represented by the parameter ksyn The second term accounts
for the phosphorylation and activation of IKK, represented by
a rate equation proportional to the quantities of inactive IKK
and phosphorylated IRAK1 (IRAK1p) and multiplied by a rate
constant (kact , mM−1 · h−1unit). The third term models the
degradation of inactive IKK, which linearly depends on its
concentration and the rate parameter kdeg (h

−1 units).
Contrary to Boolean networks, ODE models can be used to

make continuous and precise time-depending simulations. For
example, one can simulate the effect of deactivating mutations in
key genes of the NF-κB pathway in the secretion of cytokines by
lung epithelial cells. Figure 4 top right displays a set of predictive
simulations accounting for the production of IL-6 and IL-10 in
response of IL-1β mediated NF-κB activation under knockout
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conditions. The wild type condition is displayed in blue. In
addition we showed the predicted time profile for both cytokines
under deactivating mutations of IRAK1 (here represented as
IRAK1−) and IKK (IKK−). Compared to Boolean networks, the
simulations are continuous, more detailed and give quantitative
information about the duration and the intensity of the cytokine
secretion in the different conditions simulated. For example, the
model simulations indicate that the IRAK1 mutation (IRAK1−)
has a significant effect in the production of IL-10 and can lead
to a 50% decrease in its maximal concentration. Similarly, IKK
mutation (IKK−) reduces the secretion of IL-6 while not affecting
IL-10. These model predictions match published experiment
reports (Supplementary Material).

ODE modeling is a well-established methodology in
biomedicine, often included in the training offered in master
programs in computer sciences, physics, computational biology
and bioinformatics. The key feature of ODE models is the
existence of a large array of computational and theoretical
techniques of model analysis beyond simple simulations. This
includes sensitivity analysis (Savageau, 1971; Zi, 2011; Castillo-
Montiel et al., 2015), symbolic analysis (Ibargüen-Mondragón
et al., 2014), bifurcation analysis (Duan et al., 2011; Yuri, 2017),
design space analysis (Savageau, 2011) model optimization (Vera
et al., 2003; Zhang et al., 2015) and parameter estimation and
identifiability (Raue et al., 2009).

For example, in sensitivity analysis one can obtain quantitative
information on how variation in the value of given model
parameters can affect the dynamics and values of the model’s
time-dependent variables (Saltelli et al., 2000). In our example
(Figure 4), we focus on local sensitivities, which are calculated
in a narrow region of the model parameter values around the
condition of interest, though it is possible to perform sensitivity
analysis for a wider interval using global sensitivities (Mathew
et al., 2014). In our case, local sensitivity analysis allows for
detecting the model parameters affecting the most the maximal
value of IL-6 during the simulation, here used as a measure of
the production of pro-inflammatory cytokines in the course of
cell activation. We computed the local sensitivities by varying
the parameter values within a small interval around its value
(the value of the parameter set was arbitrarily defined in a way
it resulted biologically feasible and instructive for the purpose
of this review). The perturbed parameters are ordered in terms
of their effect in the maximal value of IL-6, from those whose
increase negatively affects IL-6 to those that make a positive
effect (Figure 4 bottom right). In a real case-study, the output of
this analysis could be used to select promising molecular drug
targets for new immune modulatory drugs. These drugs could
be administered in parallel to antibiotics and would modulate
the production of pro-inflammatory cytokines during the acute
phase of the inflammation. A similar approach relying on ODE
models and sensitivity analysis has been successfully utilized in
anticancer drugs therapy (Schoeberl et al., 2009), and there are no
evident limitations to make something similar in bacterial lung
infection.

ODE models can account for highly non-linear processes and
show properties, often found in biological regulatory circuits,
like bistability or oscillation (Tyson et al., 2003). In that

case, advanced model analysis tools can be used with ODE
models to dissect the non-linear dynamics of inflammatory and
infectious diseases. For example, ODEs can be combined with
bifurcation analysis. In bifurcation analysis, advanced methods
from non-linear dynamics mathematics are used to detect model
parameters associated to key interactions and processes, for
which its perturbation in given intervals generate a shift in the
equilibrium of the system. Here, we are not talking about smooth,
gradual changes like those detected by local sensitivity analysis,
but about drastic changes such as those generated by the sudden
activation of, for example, the positive feedback circuits behind
several known autocrine loops in inflammation (Coward et al.,
2002). Dunster et al. (2014) employed bifurcation analysis of
an ODE model to analyze the role of different immune cells
on the resolution of inflammation. The model accounted for
the interactions between macrophages, neutrophils and pro-
inflammatory mediators like Tα and IL-8. The model analysis
focused on finding the bistability region in the model, that
is, the set of model configurations in which the system can
switch between the two physiological states: inflammation and
resting. Based on their analysis, they concluded that key processes
accelerating the resolution of inflammation are an increase of
macrophage phagocytosis and the neutrophil apoptosis.

Moreover, these ODE model analysis methods can be
integrated in workflows to investigate complex properties of
biological systems (Nikolov et al., 2010). A very recent work
created and analyzed a mathematical model of the Streptococcus
pneumoniae lung infection (Domínguez-Hüttinger et al., 2017).
It includes the interactions between the pathogen and the host
like macrophages and neutrophils activation, bacteria clearance,
epithelial cell barrier integrity and bacteria migration through
the barrier to the vessels. In the model, the authors differentiated
between a commensal state, that does not produce a disease, and
an invasive and infective state of the bacteria. By including this
feature in the bacteria population dynamics, the model predicted
four different possible phenotypes: (i) sepsis, that is systemic
bacteria spread and inflammation, (ii) immunological scarring,
that is, cumulative, long-lasting immune response to pathogens
inducing tissue remodeling and altered immune responses to new
pathogenic challenges; (iii) sepsis + immunological scarring, or
(iv) healthy infection recovery. Further, model simulations were
used assess the required duration of antibiotic treatment to treat
each phenotype.

Sparse information taken from the literature can be used
to characterize model parameters. Based on predictive model
simulations using the data-based model, one can gain new
insights on the regulation of the network underlying, for
example, pathogen associated tissue destruction. The immune
system residing in the respiratory mucosa has to achieve a
balance between its ability to deplete pathogens and to induce
tissue damage; a failure in this tightly control mechanism can
induce chronic inflammation and tissue destruction (Lugade
et al., 2011). Lo and coworkers (Lo et al., 2013) constructed
and characterized with available data a model accounting
for the abnormal regulation of T helper 1 (Th1), T cell
helper 2 (Th2), and T regulatory cells (Treg) in chronic lung
mucosal inflammation. The model was used to simulate possible
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physiological scenarios concerning inflammation of the lung
mucosa. Based on the model simulations, the authors found
that deregulation of the interaction between these immune cells
is sufficient to explain the emergence of chronic lung mucosa
inflammation. Specifically, the model predicts that upon Treg
downregulation the Th1 and Th2 responses to cytokine can be
abnormally high. Since it is known that mucosal Th1 and Th2
cells can produce pro-inflammatory cytokines (Neurath et al.,
2002), the system displays the structure of an autocrine positive
feedback loop, which could induce under deregulation signal
amplification and chronic inflammation.

In predisposed patients, airways and lung infections caused
by both viruses and bacteria can unbalance the regulation of the
local lung immune system and contribute to asthma exacerbation
(Pelaia et al., 2006). Chernyavsky et al. (2014) derived an
ODE model on the emergence of airway smooth muscle cells
(ASMC) hyperplasia due to asthma-related inflammation, which
was characterized using published data from biopsies and
inflammatory biomarkers (Contoli et al., 2010). The authors
modeled interactions between proliferative and non-proliferative
ASMCs and their impact on the inflammatory state of the lung.
The model was utilized to simulate the development of the
asthma associated inflammation. Model simulations showed that
the speed of inflammation resolution is a leading factor in the
long-term evolution of asthma, and also that the features of
the tissue remodeling during and after the inflammation are
important to control the long-term evolution of asthma.

The parameters of ODE models can be estimated by fitting
the model simulations to dense time series of experimental data
in a process called model calibration. For example, Mochan
et al. (2014) modeled pneumococcal lung infection and used
time series data from tittered mice infection to calibrate the
model. Bacteria titration refers to the inoculation of different
initial amounts of bacteria to mice. The model included the
interplay between the bacteria, lung epithelial cells and alveolar
macrophages, the production of cytokines and chemokines and
the subsequent recruitment and activation of neutrophils and
monocytes. The model was used to simulate and quantify
the dynamics of the damage in the tissue caused by the
immune system in the early phases of infection. The model
simulation analysis pointed to the importance of the dynamics
of macrophage phagocytosis to explain the differences between
the phenotypes of resistance or sensitivity to pathogen. In a
different work, Guo et al. (2011) integrated time series data of
bacterial burden in anODEmodel to quantify the contribution of
neutrophils on the bacterial clearance during pneumonia inmice.
To this end, the authors formulated a single-equation model
accounting for the dynamics of bacterial growth when exposed
to lung neutrophils. The model not only correctly predicted
the number of neutrophils that is necessary for suppressing
A. baumannii growth by 50%, but it also proved to be able to
make predictions for the case of infection with other pathogens
like P. aeruginosa.

Examples of ODE Models in Literature
Smith et al. (2011) built a model accounting for the
role of resident alveolar macrophages, neutrophils and

monocyte-derived macrophages in early lung infection by
S. pneumoniae in mice. The model includes time-dependent
variables for the bacteria population, resting and active
macrophages, activated and non-activated epithelial cells,
cytokines, neutrophils and the debris associated to infection
and tissue damage. To assign value to the model parameters
they extracted information from literature, but also fitted their
model to time series data for different bacterial titration. The
model was used to quantify the contributions of cytotoxicity
and immune-mediated damage in pneumococcal pathogenesis.
When the authors generated two alternative versions of
the model with or without monocyte-derived macrophages
recruitment, the dynamics of bacteria growth was not affected.
Based on the previous work, Schirm and coworkers proposed a
modified mathematical model of cellular interactions in bacterial
pneumonia (Schirm et al., 2016). They considered in the model
alveolar macrophages, neutrophils and monocyte-derived
macrophages. This model was fitted with large time-series
data sets from infected mice, which includes measurements
for pneumococci, neutrophils and macrophage populations,
as well as for IL-6 and debris, here assimilated to histological
damage score measured in the lung tissue. The calibrated
model was used to simulate the evolution of the disease with
or without antibiotics treatment. To this end, the model
simulated the administration of 0.02 mg/g Ampicillin or 0.1
mg/g Moxifloxacin every 12 h, starting 24 h after infection.
The model simulations indicate that alveolar macrophages are
responsible for the quick elimination of the disease. Moreover,
the model simulations predicted that the remission of the
infection can happen with lower doses of antibiotics than those
applied in the experiment. In line with this, the authors propose
to utilize model simulations to design alternative time schedules
for the antibiotic treatment. This strategy could be relevant in the
context of bacterial infection induced sepsis. Sepsis is a common
cause of acute kidney injury and therefore a modeling-based
methodology for accurate antibiotics dosing could be relevant
for critically ill patients (Eyler et al., 2011). To this end, one
can derive a pharmaco-kinetics and pharmaco-dynamics ODE
model accounting for the toxicity and effectiveness of antibiotics,
similar to existing models accounting for efficacy vs. toxicity of
anticancer drugs (Ballesta et al., 2011).

Coinfections, the co-occurrence and potential synergy
between two infectious agents, have been also investigated with
ODEmodels. An example of modeling coinfection is the work by
Smith et al. (2013), in which coinfection of mice with influenza
virus and S. pneumoniae in the lung was investigated. The model
includes variables accounting for the dynamics of influenza
virus, S. pneumoniae, alveolar macrophages and influenza lung
epithelial target cells. The model was calibrated using time-series
data for the amount of bacteria and virus. Remarkably, the model
simulations showed the rebounding in the populations of the
bacteria and the virus. Pathogen rebounding is the proliferation
of a pathogen after an initial decrease when it co-occurs with
a second pathogen. In Smith et al (Domínguez-Hüttinger
et al., 2017), upon infection with bacteria, the virus population
rebounds due to the release of viruses that were latent in the
immune and lung cells killed by the bacteria. In parallel, the
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model predicts an increase in the bacterial load due to the
impairment of macrophage response provoked by the presence
of the viruses. The system as described displays the structure of
a positive feedback loop in which bacterial and virus infection
amplify each other.

Critical Remarks on ODE Models
ODE models can account for important spatial features like
molecular gradients only in a very limited manner. An extension
of ODE models in this regard could be partial differential
equations (PDE) models; however, the lack of appropriate
experimental data for their characterization has limited their
development in biology to a few but promising case studies
(Matzavinos et al., 2004; Murano et al., 2014). In an ideal
setup, ODE models require numerous and rich time series data
sets for model calibration, a prerequisite to obtain a trustable
model. This necessity for complex data sets is a clear limitation,
especially when trying to model large biochemical networks.
A fundamental limitation of ODE crucial for some biological
systems and transcriptional circuits is that predictions based on
ODE models may fail for systems with low copy numbers for
the molecules or the cells involved in the interactions, in which
randomness in their dynamical behavior emerges. These special
features are better represented by stochastic models, which are
discussed in the coming section.

STOCHASTIC MODELS

Main Features of Stochastic Models
At the molecular level, chemical events, including biochemical
reactions, occur randomly. Taking this strong assumption, it is
impossible to deterministically predict when the next reaction
occurs, but also each experimental repetition of a biochemical
reaction will intrinsically differ in the measured values. This
effect is actually important under low copy numbers for
the molecules intervening in the reaction, conditions under
which it is known and it has been experimentally confirmed

that accuracy collapses for deterministic models like those in
ODEs. In contrast, stochastic models can account for this
effect rather than attributing it to measurement errors, thereby
outperforming deterministic models (Gillespie, 1992; Klipp et al.,
2009; Pahle, 2009; Wilkinson, 2009; Ullah and Wolkenhauer,
2010). In stochastic models, chemical species or cell populations
are represented as discrete random variables. These variables
form the state space of the stochastic model and describe the
abundance of each species at any given time point. Chemical
reactions or cell interactions are envisioned as random processes
that change the abundance of the involved species. While
these reactions occur randomly, their probability of occurrence
depends on the current state and it changes as the system
moves from state to state. For example, in the very early phases,
both bacteria and macrophages display very low copy numbers,
sometimes with single macrophages patrolling one or more
alveolus. In these conditions, even small random fluctuations can
have a large impact on the population dynamics and therefore
a stochastic model is an option for describing their population
dynamics. Figure 5 left displays the structure for a stochastic
model, adapted from Van Furth (2012), accounting for the long
time dynamics of infection of an alveolus exposed to stochastic
bacteria colonization. In the model, the current number of
macrophages and bacteria is denoted bym and b respectively. The
interactions between macrophages and bacteria determine the
state transitions, that is, the increase or decrease of the bacteria
and macrophage populations. For example, the stochastic model
accounts for the generation of a macrophage (aM+) with the
following equation:

aM+(m, b) = cMmigrate + cMbirth
∗m+ cMresponse

∗b∗m (1)

Here, is it assumed that the generation of amacrophage can occur
in three different ways: (i) macrophagemigration into an alveolus
occurring at a constant probability rate (cMmigrate); and (iii)
recruitment of additional macrophages depending on the current
number of bacteria and macrophages (cMresponse

∗b∗m). Figure 5
right is a single long time simulation of the model. The single

FIGURE 5 | Stochastic model accounting for the dynamics of infection of an alveolus with low but prolonged exposure to bacteria. Left: sketch of the stochastic

model. M, macrophages; B, bacteria. Right: Single realization of a stochastic simulation for bacteria and macrophages populations (see Supplementary Material for

more details).
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simulation reveals large variability in the populations of bacteria
and macrophages. In particular, the macrophage population
shows large fluctuations, with values ranging from one to up to
51 macrophages in the alveolus, in conditions with very small
amount of bacteria. When one performs a large amount of
similar simulations (here 104 simulations) one can verify that
these fluctuations render the fate of the system stochastic. Thus,
in a small fraction of the simulations (0.1%) the population of
bacteria gets higher than 100. The stochastic model simulations
suggest that, under healthy conditions and for low long term lung
alveolus exposure to bacteria, most of the episodes of bacteria
colonization are quickly resolved, although there is still a small
probability of bacterial infection.

As discussed before, the core regulatory pathway controlling
the activation after bacterial lung infection of epithelial and
immune cells is the NF-κB pathway. There are two features
that make stochastic modeling suitable for investigating NF-
κB activation. Stochastic models are especially suited for
transcriptional circuits because gene expression is widely
considered to be a process dominated by randomness (Elowitz
et al., 2002; Kaern et al., 2005; Wilkinson, 2009; Bressloff, 2017).
NF-κB is a transcription factor, and under some conditions the
pathway activation may lead to a low amount of transcriptionally
active NF-κB molecules. In this case, large fluctuations may
appear in the transcription of NF-κB targets, making advisable
the use of stochastic modeling. In line with this and using a
microfluidic cell culture platform and single cells resolution, Tay
and collaborators investigated the features of NF-κB activation
for a wide range of values of concentration for TNFα, one of the
infection-associated ligands promoting NF-κB activation. Under
low TNFα concentration, they found single cell heterogeneity
and digital response of the cells. This translates into and all-or-
none activation pattern for 3–50% of the cells at concentrations
as low as 0.1–0.01 ng/ml. To elucidate the regulatory features
inducing this behavior, the authors derived a stochastic model
accounting for the NF-κB activation. Using the model, they
found that the ability of the model to reproduce the digital
response observed relied in the inclusion in the model equations
of specific features of TNFα ligand and receptor turnover.
Precisely, they found it was related to the limited TNFα amount
present in the microfluidic chambers, the TNFα degradation and
turnover and the cell-to-cell variability in the amount of TNFα
receptor available for activation. Further, to reproduce the data
the model assumed a non-linear nature to the IKK activation
profile, attributed to the fact that IKK subunits IKK-α and IKK-
β achieved full activity when phosphorylated at two different
residues (Tay et al., 2010).

In addition, stochastic models are suitable for assessing the
fine regulation of feedback loop circuits displaying oscillations or
bistability because stochastic models can assess their sensitivity
to small random perturbations (Levine et al., 2013; Dobrzyński
et al., 2014). NF-κB signaling is controlled by a combination of
intracellular negative feedback loops, which are able to induce
oscillations (Nelson et al., 2004), and autocrine positive feedback
loops with the ability to trigger bistable switches (Pękalski et al.,
2013). In both cases, stochastic modeling is the right tool for
assessing the sensitivity of NF-κB signaling to small random

perturbations induced by these regulatory loops. Ashall et al.
combined single-cell life imaging and modeling to investigate the
role of these oscillations. They could show that the expression
of a number of NF-κB transcriptional targets depends on
the frequency of the potentially pulsatile inflammatory signals
found at the site of inflammation and infection. Although
these features could be investigated by ODE modeling, the
heterogeneity of single-cell responses they found exceeded the
capabilities of these models. However, a stochastic model that
assumed delayed stochastic transcription for IκBα and stochastic
transcription of IκBα and A20 (all of them inhibitors of NF-
kB signaling embedded in negative feedback loops) proved
to be able to recapitulate the cell-to-cell heterogeneity in the
NF-κB oscillations. In line with these results, the same team
recently showed the existence of single cell NF-κB-mediated
oscillatory responses even under physiological concentrations of
TNFα, a cytokine that play a pivotal role in the pathogenesis of
pneumococcal pneumonia (Takashima et al., 1997; Ashall et al.,
2009; Turner et al., 2010).

Other immune related intracellular pathways may display the
features that make necessary the use of stochastic modeling.
For example, intra- and extra-cellular calcium signaling plays an
important role in the immune response (Vig and Kinet, 2009)
and they have been described using stochastic models (Rüdiger,
2014). Further, TRAIL-mediated apoptosis, a mechanism playing
a role in limiting the effect of alveolar macrophages on the
extension of inflammation during S. pneumoniae lung infection
(Steinwede et al., 2012), can display stochastic cell-to-cell
variability in its activation (Bertaux et al., 2014). The dynamics
of pathogenic bacteria intracellular circuits can become also
stochastic (Norman et al., 2015). In line with this, Tuchscherr
et al. (2011) showed that as part of their immune scape strategies,
Staphylococcus aureus can induce a phenotype switching. Bacteria
switching is a transient bacteria phenotypic change, governed by
intrinsic stochasticity intracellular circuits, that provides bacteria
with functional diversity and fast adaptation to environmental
changes.

Examples of Stochastic Models in
Literature
Stochastic models have been used for decades to dissect the cell
population dynamics during lung infection. Two recent papers
deal with the lung infection by Francisella tularensis (Gillard
et al., 2014; Wood et al., 2014), an infectious intracellular gram-
negative bacterium that infects primarily macrophages. When
inhaled in an aerosol, F. tularensis can proliferate in the lung
causing a type of severe pneumonia called pneumonic tularemia.
Gillard et al. (2014) derived a stochastic mathematical model
accounting for the early phases of F. tularensis pathogenesis in the
lung. The model contained three possible states for the alveolar
macrophages, coinciding with three of its most prominent
phenotypes: (1) resting macrophages, functional but with no
ability to kill bacteria; (2) suppressed macrophages, unable to
overcome cytokine production and bacteria phagocytosis; and
(3) classically activated macrophages, which play a role in
clearing the infection. Regarding the dynamics of macrophages,
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the model considers as key events in the early infection phase
the macrophage infection, its suppression and activation and
death. Concerning the bacteria dynamics, the model accounts
for bacterial proliferation, death and phagosome escape to
the cytosol. To derive the model, the authors extended the
framework of the birth-and-death processes stochastic models

by attributing to each macrophage four features (spatial location,
state of activation, number of phagosome bacteria, number
of cytosolic bacteria) and making them affect the macrophage
and bacteria populations dynamics (Levy and Green, 1968;
Tranquillo et al., 1989). The model was able to reproduce most
of the knowledge available on the early phases of the F. tularensis
infection, but the authors claimed it could further provide
insights into potential coadjutants of antibiotic therapies, aiming
at stimulating macrophage activation. Finally, since it exceeds the
scope of this review, we do not discuss here but want to mention
the use of stochastic modeling in the simulation and prediction
of epidemics spread of bacteria-associated lung infection diseases
(Grundmann and Hellriegel, 2006; D’Agata et al., 2007; Agliari
et al., 2013).

Critical Remarks on Stochastic Models
Stochastic models do not to scale well with the size of biochemical
networks due to their structural complexity and the necessity to
perform multiple realizations of the same simulation. However,
the exponential increase in the computational power will
make possible in the close future to simulate large stochastic
models even in average scientific workstations. Calibration
of stochastic models requires high sensitivity and specificity
experimental techniques capable of quantifying random effects
and fluctuations in molecule or cell abundance. For biochemical
systems, this translates into single-cell technologies like single-
cell transcriptomics, single-cell PCR, mass cytometry and
fluorescence-based technologies (Crépieux et al., 1997; Lidke
and Wilson, 2009; Spiller et al., 2010; Bakstad et al., 2012;
Bendall and Nolan, 2012; Haack et al., 2013). Although these
methods are to date technically challenging, expensive and
not available in an average cell biology lab, one can foresee
they will become standard technologies in relatively short time.
Altogether, stochastic models are currently not suitable for
systems that include many different interacting molecular or
cellular species.

AGENT BASED MODELS

Main Features of ABMs
Many if not most of the intracellular biochemical reactions
happen in complex, often highly crowded and heterogeneous
spatial compartments (Rivas et al., 2004; Minton, 2006).
Similarly, cell-to-cell interactions are affected by the features
of the tissue compartments in which they take place. Logic
networks, ODE or stochastic models have a relatively limited
ability to account for spatial features. In contrast agent-based
models (ABM) are powerful tools to simulate in a detailed
manner the spatial features of these interactions at the single
molecule or cell level. Agent-based models can be used to
simulate the dynamics of ensembles of so-called agents in two

and three dimensions predefined spaces. Agents are entities
mimicking molecules or cells, which have the ability to simulate
their movement within the modeled space compartment and
their interactions with other species, also modeled like agents.
The fate and movement of the agents depends on a set of rules,
which are based on their molecular and cellular properties and
the features of their interactions. ABMs can include a variety
of different agent populations, which could operate at different
spatial scales within the model. The environment surrounding
the agents can display multiple spatial heterogeneous features,
like spatial domains with different ability to diffuse or interact
for the agents. Finally, the rules defining the update of the
agent behavior can be the result of other models like ODEs
or Boolean networks, but also stochastic rules. Ultimately,
agent-based model simulations are intended to find collective,
emergent patterns in the behavior of the agent populations.
In the biomedical context ABMs have been primarily used to
investigate interactions between cell populations. For example, in
the early phases of infection both bacteria and macrophages are
in low numbers and the spatial aspects of macrophage motility,
sensing and recruitment, or bacteria motility and proliferation
may decide the conditions for a fast resolution or a long-
lasting extended infection. In these conditions, ABMs offer
the possibility to simulate with detail the spatial features of
the interaction between macrophages and bacteria in the lung
alveolus. Figure 6 accounts for simulations made with an ABM.
The ABM stands for the dynamics of two populations of agents
accounting for bacteria and macrophages at the very early phases
of bacterial lung infection. Thus, the infection is assumed to
take place in a single alveolus and both agents are assumed in
low numbers when the simulations are initiated. The alveolus
is modeled like a torus shaped surface of 32 × 32 pixels. The
macrophages are 2 pixels wide and bacteria are considered to
be non-dimensional dots. During the simulations, bacteria and
macrophages move in 1 pixel. In the simulations, the time is
discrete, with time iterations in the time-scale of the processes
considered. As initial conditions for the simulations, the initial
amount of bacteria and macrophages are situated in random
positions of the 2D space. The behavior of each individual agent
is governed by a set of rules describing the ability of macrophages
and bacteria to move, the bacteria proliferation, the recruitment
of monocyte-derived macrophages and the bacteria killing after
bacteria-macrophage encounter (See Supplementary Material for
more details). To make the model more accurate, we assumed
the stochasticity for the bacteria movement and proliferation, as
well as for the macrophage movement and recruitment. Thus,
the evolution and final fate of two similar simulations can differ
drastically. For example, Figure 6 top displays the time course
for bacteria and macrophage populations during two similarly
initiated simulations with 250 time units duration, which display
totally different time courses. In the top simulation, the bacteria
infection is resolved and the bacteria population gets extinct,
while the bottom simulation ended with a successful bacterial
colonization although the initial conditions were very similar.

In many ABMs like in this one, a number of the processes
models are described by stochastic rules. Thus, the simulations
become stochastic and to detect patterns of regulation ensembles
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FIGURE 6 | ABM accounting for the spatial features of bacteria and macrophage dynamics during early phases of lung alveolus infection. Top: Time course for

bacteria and macrophage populations predicted by the ABM for simulations similarly initiated but reproducing infection resolution (top) and infection establishment

(bottom). The black space represents an alveolus, white circles are macrophages and green dots are bacteria. Both populations can freely move within the alveolus.

Center: 10 similarly initiated ABM simulations are classify into those accounting for infection successfully established (left) and those representing infection resolved

(right). Red lines represent bacteria populations and yellow lines macrophage population. Bottom: ensembles of ABM simulations used to assess the relative

importance of the processes modeled in the simulation output. 104 simulations were implemented for each scenario. The solutions were divided into two groups (a)

yellow bar: solutions ending in an establishment of bacterial infection [bacteria (ti) ≥ 300): and (b) blue bar: solutions ending with depletion of the bacteria population

(bacteria (tfinal) = 0].

of ABM simulations are analyzed using statistical methods. In
our example, we performed a series of simulations and classify
them in two groups of 5 simulations (Figure 6 center): (a) those
in which at the end of the simulation the population of bacteria
is extinguished and (b) those in which the population of bacteria
reaches 300 individual in the course of the simulation, used as

indicator that the bacteria colonization has been established and
the infection has extended to surrounding alveoli. In line with
this, ensembles of predictive simulations can be used to assess the
relative importance of the processes modeled in the simulation
output. For example, we used the model to assess the effect on
the success of bacteria colonization of higher proliferation rate
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of bacteria invasion (scenario 2) and decreasing infiltration of
macrophage (scenario 3, Figure 6 bottom). Scenario 1 defines
the control situation. To make this analysis, we run 104

ABM simulations for each scenario, and counted the number
of simulations per scenario in which the bacteria population
was extinguished (blue bar) or the bacteria colonization was
successful (orange bar). The results show a certain level of
stochasticity and suggest that decreased efficiency in monocyte-
derived macrophage recruitment has more impact in fostering
bacteria colonization than increased bacterial proliferation rate.

Examples of ABMs in Literature
Chavali et al. made a detailed discussion of the use of
ABMs to investigate and characterize emergent properties of
immunological systems (Chavali et al., 2008). ABMs have been
used to model in detail the spatial features of molecular
interactions within cellular compartments, for example, the
dynamics of molecules in cell membranes (Haack et al., 2013;
Santos et al., 2016). In line with this, Rhodes et al employed agent-
based modeling to analyse the spatial features of the cytoplasmic
dynamics for the NF-κB inhibitor IκBα (Rhodes et al., 2015). It
has been found that IκBα can co-localize and get sequestered
in cytoskeleton structures like the microtubule organizing center
and the α-tubulin filaments (Crépieux et al., 1997). To model
in detail this process, Rhodes and co-workers derived a model
for the NF-κB activation via type 1 IL-1 receptor (IL-1R1).
The model considers: (1) activation of NF-κB through IL1R;
(2) activation of anti-apoptotic pathways via PI3k signaling;
and (3) cytoskeleton reorganization during the NF-κB activation
through Ras activation. Using model simulations, the authors
hypothesized that the sequestration of IκBα can be a mechanism
to modulate the intensity of the L1RI input signal coming from
L1RI when transduced inside the cell. The mobilization and/or
sequestering of signaling proteins to microtubules and other
cytoskeleton structures has been found in other key pathways for
inflammation like MAPK cascades (Hanson et al., 2007), which
indicates that the use of ABMs to dissect the fine-tuning of this
mechanism may render interesting mechanistic hypothesis.

ABMS can also be used to establish the link betweenmolecular
interactions and cell phenotypes. In line with this, Stern et al.
used an ABM to simulate the response to damaged tissue and
barrier disruption signals of individual epithelial cells embedded
in an extracellular matrix (Stern et al., 2012). In many infectious
diseases including pneumonia, the breakdown of the epithelial
barrier exposes the inner part of the organism to external
pathogens and facilitates their systemic spread and the emergence
of sepsis. In the model used, the agents account for the epithelial
cells and the rules for the effect on them of the activation of
the EGF and TGF-β receptor mediated signaling pathways. It
has been found that down-regulation of TNF-α signaling and
activation of EGFR signaling contribute to the maintenance
of epithelial barrier integrity and function in lung and other
epithelial tissues (Finigan et al., 2012; Patel et al., 2013; Uwada
et al., 2017). The model was able to simulate tissue damage
and wound recovery. Moreover, the model simulations suggested
the existence of a mechanism for the crosstalk between TGF-β
and EGFR pathways involved in the recovery after damage. The
activation of these pathways have been linked to the response

alveolar epithelial cells to some types of bacterial infection (Choi
et al., 2011; Li et al., 2015).

ABMS can also be utilized to dissect the spatial features of
cell-to-cell interactions in their natural tissue compartments. In
order to investigate T cell (TC) activation Bogle and Dunbar
built an ABM (Bogle and Dunbar, 2010). The model attempted
to investigate the spatial features of TC activation by active
dendritic cells (DCs) in the lymph node, thereby trying to
establish mechanistic links between the properties of TC and DC
motility in the lymph node and the timing and strength of the TC
response elicited. The processes included in the ABM were the
proliferation of TCs in lymph nodes, the DC driven activation of
lymphocytes, and the DC and TC trafficking through the lymph
node. The model was used to simulate the proliferation, release
and changes in the affinity profile of TCs in the lymph node.
The simulation results correlate with data accounting for the
efflux rate of activated TCs from lymph nodes. Further, model
analysis and simulation were used by the authors to point to
open questions and gaps in the current knowledge of the TC-
DC interaction in lymph nodes. For example, they hypothesized
that the deeper understanding of TC activation can benefit
from experiments elucidating the dynamics of the lymph node
vascularization, a process that seems to be modulated by the DCs
(Webster et al., 2006).

Moreover, ABMs can be used to study in detail spatial
properties of infection-related autocrine and paracrine loops. In
a work on chronic asthma, a condition we already linked to
lung infection, Pothen et al. (2015) hypothesized that in healthy
individuals antigenic stimulation drives both the onset and the
recovery after allergic inflammation. Under these conditions,
allergic inflammation can become a self-limited event. Based
on this idea, Pothen et al. used modeling to investigate under
which conditions a failure in this process can provoke the
chronic airway inflammation associated to asthma. To this end,
they derived an ABM that considers spatial features of the
interactions between pro- and anti-inflammatory cells during
tissue damage and repair in unresolved allergic inflammation.
Models simulations suggested that the ability to recover after the
allergic episode is in general terms very robust regarding most
of the pro- and anti-inflammatory cells interactions, but appears
very sensitive to increase in the recruitment and activation of
pro-inflammatory cells like neutrophils and eosinophils. The
model simulations indicated that down-modulation of pro-
inflammatory cell activation could be a therapeutic strategy
against the allergic inflammation.

ABMs can be used to mimic the effect of cell exposure
to diffused extracellular ligands, biomolecules and non-organic
particles. Brown et al. used an ABM to investigate lung
inflammation and fibrosis following particulate exposure (Brown
et al., 2011), an environmental condition that can increase the
chances and severity of lung infection (Mehta et al., 2013). The
model accounted for the interaction between lung macrophages
and fibroblasts through TNFα and TNFβ. It also considered the
tissue damage caused by TNFα and the production of collagen for
repairing the tissue. The model simulations predicted three main
states for particulate exposure associated lung inflammation:
(1) self-resolving inflammation, (2) localized tissue damage and
fibrosis and (3) elevated pro and anti-inflammatory cytokines
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and persistent damage. Model simulations showed that the
switch between the different states depends on the intensity and
duration of the exposure to the particulate damage.

Critical Remarks on ABMs
ABMs can deal with systems that are complex and heterogeneous
from a spatial perspective, but also with biological systems
involving many different interacting entities, cell and/or
molecules, and multi-levels. The essentially modular structure of
ABMs facilitates the addition of new types of agents, accounting
for new cellular or molecular players. Even simple rules defining
the interactions between the agents can generate extremely
complex spatio-temporal regulatory patterns. However, to date
these models do not scale well with respect to the number of
total interacting agents due to the large computational resources
necessary to simulate systems with large number of agents. In line
with this, a lot of work has been done in the last decade in terms
of methods for efficient and distributed ABM simulation (Aaby
et al., 2010). Further ABMs are suited for performing detailed
simulations, but very poor in terms of analytical tools. Far from
the much elaborated algorithms conceived for the calibration
of ODE and PDE models, very little has been done in terms
of the systematic integration of quantitative data into ABMs
(Bianchi et al., 2007) and computational tools specially designed
for modeling of biological systems (Kang et al., 2014; Starruß
et al., 2014). In any case, we think that ABMswill be an interesting
alternative in the coming future for modeling bacterial lung
infection.

DISCUSSION

Great Expectations for Mathematical
Modeling in Lung Infection and
Inflammation?
We have great expectations in terms of what mathematical
modeling can contribute in the coming decade to the

understanding of lung infection pathophysiology. In the last
years modeling has been used in biomedicine essentially for
integrating multiple types of experimental data, formulating
mechanistic hypotheses, or in performing simulation-based
therapy assessment. However, mathematical modeling can be
used in many other avenues that are not yet sufficiently tested
in pulmonology. Epstein (2008) suggested up to 16 motivations
other than pure prediction to use modeling and simulation in
science. In Table 1 we have selected a few of them and elaborate
how they could be implemented in the context of bacterial lung
infection.

To mention an interesting open question, some immune
cell types have a dual, often ambiguous role during infection.
For example, macrophages and neutrophils are major players
in the quick resolution of infection, but under exacerbation
they can also worsen the condition by promoting tissue
destruction or overwhelming inflammation (Nouailles
et al., 2014). This duality can be explained at least in part
by the deregulation of intra- and inter-cellular positive
feedback loops working often in an autocrine or paracrine
manner. For example, TNFα can be secreted by activated
macrophages to signal other immune cells in early lung
infection (Mukhopadhyay et al., 2006), but it can at the same
time promote activation of resident or monocyte-derived
macrophages in a amplification loop that can exacerbate local

inflammation (Gane et al., 2016). The use on mathematical
models dissecting the structure and fine regulation of these

circuits can contribute to the understanding of this aspect of
acute lung infection.

Moreover, a number of infections and inflammatory
conditions in the lung like asthma and tuberculosis persist
despite treatment and reappear in an episodic or cyclic fashion.
This suggests that autocrine and paracrine regulatory circuits,
including positive and negative feedback loops may get disrupted
and deregulated in the course of these diseases. For example,
G-protein-coupled adenosine receptors have been associated

TABLE 1 | Ten “not-yet-considered” motivations to use mathematical modeling in bacterial lung infections.

Motivation Usage in bacterial lung infection Article of example

Discover new questions Combination of model derivation, simulation and analysis used to formulate in a consistent manner a

new hypothesis on the early steps of bacteria lung infection mechanism

Gillard et al., 2014

Guide data collection Model simulations used to (a) decide the design of the which most suited experiments to test the above

hypothesis and (b) select relevant public available data

Thakar et al., 2007

Explain (very distinct from

predict)

Customized model simulations used to (a) illustrate the experimental results and (b) discuss/extrapolate

the consequences of the proved or disproved hypothesis

Smith et al., 2011

Illuminate core dynamics A model comprising the core of the network controlling inflammation used to point the key molecules

and processes controlling it

Krishna et al., 2006

Reveal the apparently simple to

be complex

The analysis of a model representing the apparently simple and small network controlling early bacterial

lung infection used to suggest the existence of non-linear behavior associated to feedback loops circuits

Nikolov et al., 2010

Reveal the apparently complex

to be simple

Model reductions techniques on a large network representing bacterial lung infection applied to detect

the few key processes and molecules controlling the process

Guo et al., 2011

Expose prevailing wisdom as

incompatible with available data

Simulations of a mathematical model encoding the current knowledge on molecular interactions

controlling initiation of inflammation employed to show inconsistencies with new data

Hoffmann et al., 2002

Bound outcomes to plausible

ranges

Comparison between model simulations and available data used to establish the interval of biologically

feasible features (parameters) for bacteria proliferation and spread in the lung alveoli

Mochan et al., 2014

Offer crisis options in near-real

time

For a patient entering the Intensive Care, personalized model simulations used to predict the course of

the host-pathogen interactions and near-real time decide on the therapeutic alternatives

Dix et al., 2016
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to protection from tissue damage in infection and sepsis
(Csóka et al., 2010). Further, adenosine has been linked to the
pathogenesis of asthma (Brown et al., 2008). This role is mediated
via a physiological negative-feedback mechanism that seems
to participate in limiting and terminating tissue-specific and
systemic inflammatory responses (Ohta and Sitkovsky, 2001).
Mechanistic mathematical modeling of this type of paracrine
feedback circuits may shed light into their role controlling
overwhelming immune response and the consequences of their
deregulation.

Modeling has been used for longtime in pharmacology
to assess the efficacy and dosage of drugs. Moreover, model
simulations in combination with computational sensitivity
analysis and model optimization have been used to detect new
potential drug targets in cancer and metabolic diseases, or to
assess the emergence of therapy resistance (Vera et al., 2007;
Schoeberl et al., 2009). This strategy can be replicated in lung
infection diseases to search for new drug targets or repurpose
existing drugs as immunomodulators during lung infection
(Wentker et al., 2017), or to optimize the current protocols
for antibiotics administration (Schirm et al., 2016). Further, in
recent times (Zhou et al., 2017) modeling has been used to assess
therapies in a personalizedmanner (Rosenberg and Restifo, 2015;
van de Sant et al., 2017), especially anticancer ones (Gupta et al.,
2016). We think there is potential for this in lung infection and

pneumonia, by integrating selected patient unique –omics and
physiological parameters into model simulations, and use them
to customize treatments.

Mathematical Modeling and Multi-Level
Dissection of Bacterial Lung Infection: The
Art of Choosing the Right Approach
There is no perfect modeling framework for investigating
bacterial (lung) infection in all possible scenarios. This is because
the optimality of a modeling strategy will depend on the aim
of investigation, the scale and structural complexity of the
system to be modeled and the quantity, quality and nature of
the experimental data available for its characterization. Table 2
extends our previously published table (Vera and Wolkenhauer,
2011) and compares the main modeling frameworks here
discussed based on a number of important features. We also
include some prototypical case studies in bacterial lung infection
in which each modeling framework could be most suited. One
can see that there is no a modeling approach clearly superior to
all the others for every feature analyzed, and therefore the choice
of the right model relies often on a tight balance between several
of these features (Table 3). Moreover, in some cases any of the
methodologies described displays the features necessary to model
the dynamics of given biological systems, and other modeling

TABLE 2 | Features of different model formalisms analyzed.

Modeling

framework

Realism Time Scalability Computational

cost

Complexity Data usage Examples

ABM Phenomenological Continuous Large High High Low Spatial simulation of cell-2-cell interaction and movement

in a lung alveolus during infection

Boolean Phenomenological Discrete Medium Low Low Medium Analysis and simulation of the large regulatory network

triggered in macrophages after bacteria detection

ODE Mechanistic Continuous Small High Medium High Analysis of fine-tuning of NFkB signaling activation in

lung epithelial cells after infection

Stochastic Mechanistic Continuous Small High High High Simulation of dynamics of few bacteria initiating infection

in a lung alveolus

Fuzzy

Logic

Phenomenological Discrete Medium Medium Low Medium Simulation of lung epithelial cell phenotypes with

uncertain uncomplete information of activators

Realism: How close from the real biological mechanism is the representation given by the model; time: Whether the model handle the time as a discrete or continuous variable; scalability:

Number of compounds the model can on average handle (small: up to 20 compounds, medium: 20–100, large 100–1,000; computational cost: Time and computational resources

demanded for model simulation and analysis; complexity of the models in terms of their structure; data usage: Whether the construction of the model requires low, medium or large

amounts of quantitative experimental data for its characterization; examples: Possible applications for each formalism in the context of bacterial lung infection.

TABLE 3 | Applicability of different model formalisms analyzed into different biological situations.

Modeling

framework

Intracellular circuits Cell–cell interactions Host-pathogen interactions Local tissue interaction Systemic infection/

inflammation

ABM

Boolean

ODE

Stochastic

Fuzzy Logic

Applicability: This table presents an illustrative guidance to select the best modeling framework to the biological scale of interest. Depending on the scale the applicability of the different

frameworks can be poor (black) possible (gray) or appropriate (white).
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FIGURE 7 | Different strategies for hybrid modeling in bacterial lung infection.

frameworks can be used (See Supplementary Material for further
discussion).

In some cases a single modeling approach is not sufficient
to deal with some structurally complex systems, and one has to
combine different model types into a “hybrid model” (Chiam
et al., 2006; Wylie et al., 2006; Wu and Voit, 2009). Agent-
basedmodels has become themost used approach in biomedicine
for multi-level and multi-scale systems (Chavali et al., 2008).
However, other hybrid modeling strategies are implemented
by combining modeling approaches with computational and
knowledge requirements of different complexities, like Boolean
and ODE model together (Figure 7). For example, one can use

the knowledge generated by simulations with a given type of
model to parameterize and characterize a second type of model.
In this “informed hybrid models” there is no formal connection
between the models, but one of them is used to design or
characterize a second one. For example, In Rex and collaborators
simulations on a large Boolean network were used to describe the
key regulatory circuits underlying the shift betweenM1 (classical,
LPS-activated, pro inflammatory) M2 (IL4/IL13 activated, anti-
inflammatory) macrophage phenotypes (Rex et al., 2016). This
information, the key molecular species and their interactions,
was used to construct a second ODE model that dissects the fine
regulation of this subnetwork.
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Another option could be to construct models in different
frameworks that are primarily independent, but cross-talk via a
few common compounds. An example of this “connected hybrid
models” could be a combination of an ODE model accounting
for a signaling circuit controlling the activation of a number of
key transcription factors after bacterial infection (e.g., NF-κB,
p38), connected to a large Boolean network accounting for the
activation of dozens to hundreds of transcriptional targets. The
connection between both types of models could be done via
interface functions accounting for the activation status of the
transcription factors (Khan et al., 2014).

Finally in the “fully embedded hybrid models” a model in
a given formalism is fully integrated in another type of model
(Chiam et al., 2006). We think this is an alternative in which
ABM could be a suitable option. For example, in multi-scale
models accounting for bacterial lung infection one could develop
an ABM in which individual bacteria, lung epithelial cells,
alveolar macrophages or neutrophils populations are modeled
like interacting agents moving within a defined space. The
activation, differentiation or apoptotic phenotypes of these agent-
cells would be determined by the simulation of embedded
Boolean or ODE models, which describe the time-dependent
activation of their core intracellular network.
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GLOSSARY

Agents: The elements in an ABM that interact in the
environment.

Bifurcation analysis: Follow the changes in the qualitative
behavior of the simulation of a kinetic model after modifying one
parameter.

Bistability: A property that kinetic models can present. It is
characterized by two stable steady solutions of the system.

Design space analysis: Identify regions defined by a couple of
parameters that show different qualitative behaviors depending
on the values of these parameters.

Digital response: Response to stimuli by activating key
molecules and phenotypes in an all-or-nothing manner.

Electronic Logic Gates: Elementary electronic block of an
ideal circuit that performs logic operations. Usually, each block is
characterized by two inputs and one output; logic operations that
are performed are: AND, OR, XOR, NAND, XNOR, and NOR.
The logic operation with one input and one output line is NOT.

Environment: The open area in which is defined an ABM.
Kinetic model:Mathematical model which consider the time

dimension in the simulations.
Mass-Action: Mathematical formalism that represents

the velocity of the processes as the product of the elements
interacting rose to integer values. These kinetic orders
correspond with the stoichiometric values of the interaction.

Model calibration: Searching for the values of the parameters
that produce a simulation from a kinetic model that reproduce
the dynamic behavior of experimental data.

Model optimization: Searching for the parameter set that best
reproduce a specific simulation of interest by a kinetic model.

Parameter identifiability: Problems of certain systems to find
a precise value for the parameters given a set of experimental data.
This problem ends with a broad uncertainty on the values of some
parameters.

Rules: The definition of the possible interaction that the
elements can have.

Sensitivity analysis: A mathematical analysis to quantify the
effect of the parameters of the model on the response of the
simulations.

Symbolic analysis: A qualitative analysis of a kinetic model
allowing to identity general patterns without giving specific
values to the parameters of the model.

Synchronous and asynchronous algorithms: These methods
refer to the update of the nodes’ states. In the first case, all
nodes are updated during each iteration step following the set of
functions defined in themodel. Asynchronous updated introduce
uncertainties typical of biology: during one iteration, only some
nodes randomly chosen are updated accordingly to the defined
set of functions.

T cells: A branch of the immune response key for the mid-
term response to infection.
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