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Abstract

Purpose: The main purpose of this study is to demonstrate the clinical implementa-

tion of a comprehensive pencil beam scanning (PBS) daily quality assurance (QA)

program involving a number of novel QA devices including the Sphinx/Lynx/parallel‐
plate (PPC05) ion chamber and HexaCheck/multiple imaging modality isocentricity

(MIMI) imaging phantoms. Additionally, the study highlights the importance of test-

ing the connectivity among oncology information system (OIS), beam delivery/imag-

ing systems, and patient position system at a proton center with multi‐vendor
equipment and software.

Methods: For dosimetry, a daily QA plan with spot map of four different energies

(106, 145, 172, and 221 MeV) is delivered on the delivery system through the OIS.

The delivery assesses the dose output, field homogeneity, beam coincidence, beam

energy, width, distal-fall-off (DFO), and spot characteristics — for example, position,

size, and skewness. As a part of mechanical and imaging QA, a treatment plan with

the MIMI phantom serving as the patient is transferred from OIS to imaging system.

The HexaCheck/MIMI phantoms are used to assess daily laser accuracy, imaging

isocenter accuracy, image registration accuracy, and six‐dimensional (6D) positional

correction accuracy for the kV imaging system and robotic couch.

Results: The daily QA results presented herein are based on 202 daily sets of mea-

surements over a period of 10 months. Total time to perform daily QA tasks at our

center is under 30 min. The relative difference (Δrel) of daily measurements with

respect to baseline was within ± 1% for field homogeneity, ±0.5 mm for range,

width and DFO, ±1 mm for spots positions, ±10% for in‐air spot sigma, ±0.5 spot

skewness, and ±1 mm for beam coincidence (except 1 case: Δrel = 1.3 mm). The

average Δrel in dose output was −0.2% (range: −1.1% to 1.5%). For 6D IGRT QA,

the average absolute difference (Δabs) was ≤0.6 ± 0.4 mm for translational and

≤0.5° for rotational shifts.

Conclusion: The use of novel QA devices such as the Sphinx in conjunction with

the Lynx, PPC05 ion chamber, HexaCheck/MIMI phantoms, and myQA software

was shown to provide a comprehensive and efficient method for performing daily
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QA of a number of system parameters for a modern proton PBS‐dedicated treat-

ment delivery unit.
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1 | INTRODUCTION

The number of proton therapy centers in the US continues to grow

as there is an increasing interest in the use of protons to treat can-

cer patients.1 Currently, proton centers employ different beam deliv-

ery techniques such as double scattering (DS), uniform scanning (US),

and/or pencil beam scanning (PBS). In the last few years, a number

of existing proton centers have upgraded their beam delivery tech-

nique from DS/US to PBS. The majority of new proton centers is

now configured with a more advanced PBS beam delivery technique

that has been shown to deliver a more conformal dose when com-

pared to DS/US techniques.2 However, PBS proton beam delivery

has uncertainties associated with its spot size and spatial position.

Such demand for advanced PBS delivery warrants a comprehensive

understanding and monitoring of PBS beam characteristics. In addi-

tion to advances in proton beam delivery, image guidance used for

proton treatments has also evolved in recent years. In the past, the

primary imaging modality in proton centers had been planar kV x‐ray
technique. Newer proton centers are incorporating imaging modali-

ties such as cone‐beam computed tomography (CBCT) and surface

imaging (SGRT). Due to the increase in delivery complexity of PBS

and the use of multi‐modality image‐guidance systems for patient

treatments, there is a need to establish a comprehensive daily quality

assurance (QA) program that assesses safety, mechanical, dosimetric,

and imaging parameters to ensure safe radiation delivery — similar

to the recommendations set forth by AAPM TG‐142 for photon‐
based delivery systems. Additionally, certain proton centers may

employ multi‐vendor hardware and software for daily patient treat-

ment. For these centers, interconnectivity becomes a critical element

to assess and testing of data transfer among different softwares

(e.g., beam delivery, imaging, record, verify systems, etc.) should be

integrated as part of the daily QA program.

Several authors have published on proton daily QA using either

commercial or in‐house developed devices.3–9 Arjomandy et al.3 pub-

lished a paper in 2009 providing an overview of QA procedures

implemented at The University of Texas M. D. Anderson Proton

Therapy Center at Houston (PTC‐H). Arjomandy et al.3 verified the

output, distal range, and spread‐out Bragg Peak (SOBP) for daily QA

of DS proton beams using the solid‐water plastic. In 2012, Ding et

al.4 initially investigated the use of Sun Nuclear Daily‐QA 3 (DQA‐3)
device (Sun Nuclear Inc., Melbourne, FL, USA) for daily QA of US

proton beams. In 2014, Lambert et al.5 extended the use of DQA‐3
for daily QA of PBS proton beams. For PBS dosimetric tests,

Lambert et al.5 evaluated the output, range, spot sigma, and position.

Since the DQA‐3 was originally designed for photon and electron

daily QA, authors4,5 manufactured an in‐house phantom to use with

the DQA‐3. Actis et al.6 published on PBS daily QA in 2017 utilizing

an in‐house developed phantom that can accommodate multi‐leaf
ionization chamber (MLIC). Actis et al.6 included beam characteristics

(spot width, size, and position), range, and dose output for the dosi-

metric component of daily QA. Another PBS daily QA paper was

published in 2017 by Bizzocchi et al.7 and investigated the use of

MatriXX‐PT (IBA Dosimetry, Schwarzenbruck, Germany) with an in‐
house phantom to evaluate range, spot size and position, and dose

output. In a more recent paper, Younkin et al.8 utilized the DQA‐3
along with an in‐house developed phantom to evaluate dose output,

beam range, and spot position as part of PBS daily QA.

The above‐mentioned studies4–8 demonstrate that investigators

have used in‐house developed phantoms and software in conjunction

with commercially available devices for PBS daily QA. Moreover, the

detectors used in previous PBS Daily QA studies4–8 were limited to

DQA‐3, MLIC, and MatriXX‐PT. Recently, a novel PBS dedicated com-

mercial device Sphinx (IBA Dosimetry, Schwarzenbruck, Germany) has

been made available to proton therapy centers. In order to be able to

quantify specific PBS beam characteristics, the Sphinx must be used in

conjunction with the Lynx (IBA Dosimetry, Schwarzenbruck, Germany)

and a parallel‐plate (PPC05) ionization chamber (IBA Dosimetry, Sch-

warzenbruck, Germany). Given the novelty of the device and no pub-

lished literature on the experience of the Sphinx and Lynx for PBS daily

QA, this work focuses on our clinical implementation and long‐term
results when incorporating these devices for the dosimetric component

of our PBS daily QA. In addition to evaluating the dosimetric compo-

nent of PBS proton beams, this work highlights the importance of a

comprehensive daily QA program and addresses the need to develop

other components such as safety, mechanical, and imaging tests to

ensure safe radiotherapy treatment deliveries. Daily QA tests presented

in this work may serve beneficial to proton centers looking to develop

and implement a comprehensive daily QA program based on recently

developed commercially available detectors and phantoms.

2 | MATERIALS AND METHODS

Our proton center is structured as a multi‐vendor hardware and soft-

ware platform environment. PBS proton plans are generated in

RayStation (v.6.1.1.2; RaySearch Laboratories, Stockholm, Sweden),
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whereas ARIA (v.13.7; Varian Medical Systems, Palo Alto, CA) is

used as the department record and verify system. IBA (Ion Beam

Applications, Louvain‐la‐Neuve, Belgium) provides the ProteusPLUS

PBS proton therapy system, which includes adaPT‐Deliver (v.11.0.3)

for beam delivery and adaPT‐Insight (v.2.1.0d) for imaging (kV‐kV x

ray and kV‐CBCT). Additionally, the CatalystPT (C‐RAD, Uppsala,

Sweden) system is used for surface imaging and gating applications.

The flow chart of data transfer among the various software entities

is presented in Fig. 1.

2.A | Beam delivery system (BDS)

A PBS proton beam is delivered using a PBS dedicated nozzle

(Fig. 2). As the proton beam enters the nozzle, an ionization chamber

1 (IC1) verifies the alignment of the beam at the nozzle entrance. A

set of two focusing quadrupole magnets focus the proton beam at

the isocenter. The proton beam is then scanned in Y direction by a

vertical scanning magnet followed by scanning in X direction with a

horizontal scanning magnet. In order to direct the beam to a particu-

lar location on a target, the beam position is steered using magnetic

fields. Ionization chambers 2 and 3 (IC2/3) monitor beam characteris-

tics real‐time (beam size, position, and flatness) and dose just before

the proton beam exists the nozzle. Snout holder allows the move-

ment of accessary drawer, which can include an optional range shif-

ter (pre‐absorber) and snout. At our center, a range shifter of 7.5 cm

water equivalent thickness is used for clinical cases as necessary.

2.B | Imaging systems

The kV x‐ray imaging system includes two gantry mounted, x‐ray
tubes that rotate with the gantry. The first x‐ray tube (portal) is

located in the PBS dedicated nozzle pre‐assembly, which is under

vacuum. The x‐ray tube is retracted from the beam line during the

proton beam irradiation. The flat panel detector of portal (SAD =

119.4 cm, SID = 177.0 cm, active pixel area = 28.2 cm × 40.6 cm,

and active pixel resolution: 2232 × 3200 pixels) is located in front of

the nozzle. The second x‐ray tube (orthogonal) is fixed to one of the

gantry structural beams. The x‐ray beam axis is perpendicular to the

proton beam axis and to the gantry rotation axis. The orthogonal

tube in conjunction with its flat panel detector (SAD = 264.2 cm,

SID = 317.1 cm, active pixel area = 43 cm × 43 cm, and active pixel

resolution: 2874 × 2840 pixels) is used for the kV‐CBCT acquisition.

In addition to the x ray based imaging system, the CatalystPT, a

three‐camera surface imaging system, is used to setup patients prior

to x ray based imaging, monitor patient position and posture during

treatment, and enable beam gating. The three cameras are posi-

tioned to maximize field coverage with the outer cameras being 43°

from the center camera.

2.C | Record and verify system

ARIA (v13.7) receives computed tomography (CT) images, DICOM

structure set, RT Plan, RT Dose, and DRR images from RayStation.

ARIA also receives the treatment record from adaPT Deliver and

images (kV planar/CBCT images) from adaPT Insight.

2.D | Phantoms and detectors

The Sphinx phantom has a carbon frame with dimension of

540 mm × 400 mm × 400 mm (Fig. 3). The carbon frame contains

the markers for verification of laser alignment. The phantom incorpo-

rates four wedges with various thicknesses for verifying the con-

stancy of different proton beam energies (106, 145, 172, and

221 MeV). The fixed solid water block (RW3) and insert RW3 have

mass density of 1.045 g/cm3 and electron density of 3.386 × 1023/

cm3. The RW3 insert has dimensions of 35 mm width, 100 mm

height, and variable length (250, 200, and 100 mm).

The four wedges are utilized to calculate the energy related

parameters such as range, width, and distal-fall-off (DFO). The

energy calculation algorithm10 implemented within myQA software,

version 2017‐002 (2.9.23.0) calculates the slight signal generated by

the radiation delivered over the RW3 wedge. The first derivative of

F I G . 1 . Flow chart of data transfer
among RayStation, ARIA, adaPT‐Deliver
(beam delivery), and adaPT‐Insight
(imaging) in a ProteusPLUS pencil beam
scanning proton therapy system.
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this rising part of signal is then calculated in order to identify the

physical edge of the corresponding RW3 block.10 The final depth‐
dose curve is calculated by assigning a value of depth to each pixel

of the image.10 The values of depths are extrapolated from data

interpolated with a cubic spline fit.10 For better understanding on

the range calculation using wedge, readers are advised to refer to

work published by Shen et al.11 and Deng et al.12

The phantom also has an insert containing a pin with a fiducial at

its tip which is placed at the isocenter (Fig. 3). A dedicated RW3

insert (160 mm × 90 mm × 100 mm) contains a notch for a PPC05

chamber for dose output constancy check. The PPC05 is covered

with 3 cm thickness RW3 block so the chamber has a 3 cm build up

(Fig. 3). The PPC05 chamber can then be connected to an electrom-

eter for dose output measurement. The phantom setup allows the

in‐air measurement of spots at the level of the Lynx. The Lynx is a

gadolinium‐based scintillation detector (active surface area = 300

mm × 300 mm) with a pixel resolution of 0.5 mm. A detailed

description of the Lynx is provided by Russo et al.13

For imaging quality assurance, the multiple imaging modality

isocentricity (MIMI) phantom along with the HexaCheck phantom

(Standard Imaging, Middleton, WI, USA) are used to perform daily,

six‐dimensional (6D) image‐guided radiation therapy (IGRT) QA of

the IBA adaPT‐Insight software and LEONI (LEONI Healthcare, Char-

tres France) robotic couch. The HexaCheck acts as a base for the

MIMI phantom and allows for the introduction of a fixed 2.5°

mechanical displacement in the yaw, pitch, and roll directions. For

more information on the clinical use of MIMI and HexaCheck, read-

ers are advised to refer to white paper.14

F I G . 2 . Schematic representation of the beam delivery system equipment in the pencil beam scanning (PBS) treatment mode for an IBA
ProteusPLUS gantry‐based system. Note: The x‐ray tube (portal) is located in the PBS dedicated nozzle pre‐assembly, which is under vacuum.
The x‐ray tube is retracted from the beam line during proton beam irradiation.

(a)

(c) (d)

(b)

F I G . 3 . (a) The Sphinx device is shown
with the fiducial insert for x‐ray vs proton
beam coincidence. (a‐c) The RW3 blocks
with wedges (W1, W2, W3, and W4) are
shown in frontal (a), back (b), and side (c)
views. The W1, W2, W3, and W4 are used
to measure the ranges, width, and distal-
fall-off of energies 106, 145, 172, and
221 MeV, respectively. (d) The RW3 block
is shown with the cutout for the PPC05
parallel plate chamber as well as the 3 cm
thickness buildup that is placed in front of
the chamber.
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2.E | Workflow

Our current daily QA workflow includes two daily QA plans based

on two sets of devices: (a) Sphinx, Lynx, and PPC05 and (b) MIMI

and HexaCheck.

2.E.1 | Sphinx, Lynx, and PPC05

A daily QA plan was generated in RayStation (v.6.1.1.2) with spot

map of four different energies (Fig. 4). In order to mimic patient

treatment, a daily QA plan is delivered using adaPT‐Deliver on Pro-

teusPLUS proton therapy system through ARIA. Dosimetry measure-

ments are performed using a single couch top setup with the Sphinx,

Lynx, and PPC05 chamber (Fig. 5) For PBS daily QA dosimetric

quantification, tests (Table 1) are categorized into: (a) spot position,

size, and skewness, (b) distal and proximal range, width, and DFO, (c)

radiation and imaging coincidence, (d) field homogeneity, and (e)

dose output. For evaluation and analysis, myQA software (IBA

Dosimetry, Schwarzenbruck, Germany) was utilized for tests #a–d
and an in‐house excel sheet and DOSE2 electrometer (IBA Dosime-

try, Schwarzenbruck, Germany) were used for test #e. Additionally,

verification of patient positioning system (PPS) displacement and

lasers alignment is accomplished with the same setup. The workflow

using Sphinx, Lynx, and PPC05 is presented in Fig. 6. The total time

for this workflow is from 15 to 20 min without system interruptions.

2.E.2 | MIMI and HexaCheck

A treatment plan with kV‐kV and CBCT setup fields was generated in

RayStation using the CT images of the MIMI phantom. The plan treat-

ment isocenter was defined at the center of the MIMI. The MIMI is

placed in the HexaCheck and indexed to the couch top such that MIMI

is aligned to the known translational and rotational offset shifts (Fig. 7)

Specifically, the known translational shifts were −13.4 mm in the lat-

eral, −9.1 mm in the longitudinal, and 10.8 mm in the vertical direc-

tions, whereas the known rotational shifts were 2.2° for the pitch,

−2.2° for the roll, and 3.5° for the yaw. First, a CBCT is acquired with

F I G . 4 . The spot map of a plan created
in RayStation for four different proton
beam energies (221, 172, 145, and
106 MeV) for the dosimetric testing of the
pencil beam scanning daily quality
assurance using the Sphinx and Lynx
devices is shown.

F I G . 5 . The daily couch top setup of the Sphinx, Lynx, and PPC05
for pencil beam scanning dosimetric testing of the daily quality
assurance procedure is shown. The gantry is set at 90° with the
robotic couch being set to 0°.
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gantry rotation from 270° to 90°, and the acquired CBCT images are

registered to the reference CT images of the MIMI in adaPT‐Insight to
obtain the 6D correction vector. The difference between the daily cor-

rection vectors (translational and rotational) and baseline values are

calculated using Eq. (1) provided below. After applying correction vec-

tor to the PPS, kV‐kV x‐ray imaging is performed to verify the final

position of the MIMI phantom is accurate. Both the kV‐kV x‐ray and

CBCT images are transferred to ARIA for offline review. The workflow

using MIMI and HexaCheck is presented in Fig. 8. The total time for

this workflow is about 10 min.

ΔðpÞ ¼ M(p) - B(p) (1)

where, p = translational (e.g., lateral) or rotational parameter (e.g.,

yaw); M(p) = daily measured value of parameter, p; B(p) = baseline

value of parameter, p; Δ(p) = difference between measured and

baseline values of parameter, p.

3 | RESULTS

The daily QA results presented herein are based on a set of 202 daily

measurements over the period of 10 months on an IBA gantry‐based
ProteusPLUS PBS proton therapy system. The analysis of results was

carried out in two steps. First, the relative difference (Δ) was calcu-

lated by comparing daily (D) measurements against baseline (B) mea-

surements. Second, a statistical process control (SPC) analysis was

performed to assess the temporal stability of each parameter and

determine whether the various parameters of the system were in sta-

tistical control. The QI Macros (KnowWare International, Denver, CO)

add‐on statistical analysis package (v.2018) for Microsoft Excel was

used for the statistical analysis. Specifically, for the Δ of each evalu-

ated parameter, the upper control limit (UCL), lower control limit (LCL),

and average values were calculated using a XbarR control chart in QI

Macros. An example of the control chart for the dose output of the

172 MeV beam as well as the distal range (R80) of the 221 MeV beam

is displayed in Fig. 9. The UCL and LCL are defined by +3σ and −3σ,

respectively, from the average value. The 3σ means 99.73% of the val-

ues lie within three standard deviations of the mean.

3.A | Dose output and field homogeneity

Dose output and field homogeneity were evaluated for energies of

172 and 221 MeV, respectively. Table 2 and Fig. 10 show that the

average Δ in dose output was −0.2% (range, −1.1%–1.5%) relative

to baseline, and the Δ in field homogeneity was within ±1% (range,

−1.0%–0.7%). The 3σ of the dose output and field homogeneity

were ±0.7% and ±0.3%, respectively (Table 2).

3.B | Energy, width, and DFO

The energy, width, and DFO were evaluated for 106, 145, 172, and

221 MeV energies. Table 2 shows the Δ in distal and proximal

ranges (R80) were within ±0.5 mm for all four energies. For both the

distal and proximal ranges, the 3σ (Table 2) of all four energies was

±0.3 mm. For both the width and DFO, the Δ was within ±0.4 mm.

The 3σ (Table 2) of width for all four energies was ±0.2 mm,

whereas the 3σ of DFO was ±0.1 mm for energies 145, 172, and

221 MeV and 0 mm for 106 MeV.

3.C | Spots characteristics

Spots characteristics (position, size, and skewness) were evaluated

for four spots (106, 145, 172, and 221 MeV). Table 3 and Figs. 11

TAB L E 1 Overview of daily quality assurance tests for a proton
pencil beam scanning delivery system.

Test items

Safety Door interlock (beam off)

Audio/visual monitor(s)

Intercom

Beam on indicator

Alarm indicator

X‐ray on indicator

Room radiation monitor

Room search/clear button

Beam pause

Beam stop

Beam delivery controller reset

Collisional interlocks

Mechanical,

imaging, and

OIS connectivity

Laser localization

Imaging and treatment coordinate

coincidence

Positioning/repositioning
(translational & rotational)

Gantry angle

Range shifter detection

Dual source kV‐kV x‐ray image acquisition

CBCT acquisition

Connectivity between OIS and

delivery unit software

X‐ray vs surface imaging isocenter

coincidence

Dosimetry Spot position

Spot sigma

Spot skewness

Distal range

Proximal range

Width

Distal-fall-off (DFO)

Imaging vs proton beam isocenter

coincidence

Field homogeneity

Dose output
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and 12 show that the Δ in spots positions (X & Y) was within

±1 mm, and the Δ in in‐air spot sigma (X & Y) was within ±10% for

all four spots. The 3σ (Table 3) evaluation of spot position showed

that all four spots had slightly lower value in y direction (±0.4 mm)

compared to the one in x direction (±0.6). For the in‐air spot sigma,

the 3σ was found to increase with beam energy, and it increased

from ±0.9% to ±2.1% for in‐air spot sigma X and from ±1.1% to

±3.6% for in‐air spot sigma Y. The Δ in spots skewness (X & Y) was

within ±0.5 for all four spots (Table 3). The 3σ of spot skewness ran-

ged from ±0.2 to ±0.3 (Table 3).

3.D | X‐ray vs proton beam coincidence

Table 2 and Fig. 13 show that the Δ in x‐ray and proton beam coin-

cidence (X and Y directions) was within ±1 mm except in one case

(Δ = 1.3 mm). The 3σ of beam coincidence was ±0.7 mm in X and

±0.5 mm in Y directions (Table 2).

3.E | Translational and rotational shifts

Figure 14 shows the Δ in translational and rotational shifts from

the baseline values. The Δ ranged from −1.0 to 2.3 mm in lat-

eral, from −1.8 to 0.9 mm in longitudinal, and from −1.8 to

1.3 mm in vertical directions. For rotational shifts, the Δ ranged

from −0.8° to 0.9° for pitch, from −0.6° to 1.4° for roll, and

from −0.7° to 0.8° for yaw. The 3σ of the translational shifts

was slightly higher in lateral (±0.8 mm) than in longitudinal

(±0.6 mm) and vertical (±0.6 mm) directions, whereas for the

rotational shifts, the 3σ was ±0.2° for yaw and ±0.3° for pitch

and roll (Table 4).

F I G . 6 . The workflow for the dosimetric component of the daily quality assurance of a pencil beam scanning treatment unit using the
Sphinx, Lynx, and PPC05 is shown.

F I G . 7 . The couch top setup of the MIMI and HexaCheck
phantoms at the predefined position of the LEONI six‐dimensional
robotic couch. The MIMI phantom is positioned with both
translational and rotational offsets applied as shown above.
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4 | DISCUSSION

The daily QA program discussed in this work was designed with

a few concepts in mind, namely: (a) establish a comprehensive

QA program incorporating proposed recommendations from forth-

coming TG‐224,9 (b) mimic the typical patient treatment work-

flow to validate data transfer, and (c) utilize novel commercial

devices to facilitate comprehensive and efficient testing. Due to

the unique software infrastructure at our center, daily proton

therapy treatments are delivered using multivendor hardware and

associated software. Because of potential risks of connectivity

issues, testing connectivity among the OIS and beam delivery/

imaging systems on a daily basis helps validate the workflow

functionality and can potentially detect issues prior to patient

treatments. In developing a daily QA program for a PBS proton

therapy system, there is currently limited guidance regarding the

specific tests, frequency of testing, and tolerances for each test.

Part of the challenge with standardized guidance stems from the

variability in delivery technologies (e.g., gantry, fixed‐beam, etc.),

techniques (e.g., double scatter, uniform scanning, etc.) as well as

different IGRT imaging techniques (e.g., kV‐kV, CBCT, CT‐on‐rails,
etc.). Currently, there is an AAPM TG‐224 working on a report

to address these issues and provide recommendations; however,

as of date, there is no official publication. There is, however, a

growing consensus as to a limited set of tests and their accepted

frequency from recent publications.4–9 Although, it is important

to mention that the determination of action level tolerances still

remains a challenge.

Conceptionally, in attempting to establish tolerances for specific

tests of a quality assurance program, a number of strategies may

be employed to determine the tolerance action value. One such

approach is to follow the recommended tolerances established by

published guidelines that were conceived by the consensus of a

group of experienced users — that is, for example, an AAPM task

group report. A second could be to evaluate the impact on the

patient dose distribution due to variations in that specific parame-

ter. For example, there have been publications characterizing the

impact of spot size on treatment plan quality.15 A third approach is

to use statistical process control to evaluate whether specific

parameters are behaving in a stable and controlled manner.16,17

With this information, it is possible to use statistical methods to

determine the system specific action level tolerances due to the

system performance. In using statistical process control, the

methodology is to first establish a process of testing a parameter,

test and observe, and characterize the behavior of the specific

parameter — for example, dose output, spot size, spot position,

etc. — over a time period. By characterizing the behavior, it is pos-

sible to determine when a parameter is out of control and is statis-

tically an outlier. This helps provide guidance as to when to act. In

this study, 10 months’ worth of data was collected to characterize

the behavior of our proton PBS delivery system. Our goal was to

measure the stability of multiple parameters and establish toler-

ances based on our specific system performance and not on gen-

eric guidelines. With the assumption that a parameter value is

approximately distributed normally, control limits based purely on

the behavior of the variability can be generated. Using control

F I G . 8 . The workflow for the imaging component of the daily quality assurance of a pencil beam scanning treatment unit using the MIMI
and HexaCheck is illustrated.

36 | RANA ET AL.



charts, a delivery system‐specific action level (3σ) table can be

determined for daily QA.

With regards to dose output, the AAPM TG 14218 recommends

the tolerance of 3% for photon and electron, whereas Lambert et

al.5 and Actis et al.6 have used a tolerance of 2% and Younkin et al.8

used tolerance of 1% for PBS protons. In our current daily QA setup,

dose output is typically measured by taking at least two readings

with a PPC05 chamber. The statistical process control analysis

results from the past 10 months show that the 3σ of dose output is

±0.7%, which is a tighter tolerance compared to the published litera-

ture.4–6,8,9 For proton range and energy, authors have used different

tolerances of 0.5 mm,8 1 mm,4,5 and 2 mm.6,7,9 For our 10‐month

data, we noticed the variation in range (R80) within ±0.5 mm for all

four energies evaluated (106, 145, 172, and 221 MeV). The 3σ of

daily range tolerance of ±0.3 mm is reasonable on ProteusPLUS PBS

proton machine if the institution uses the Sphinx and myQA soft-

ware for daily range verification.

Looking at proton beam characteristics such as in‐air spot size,

Lambert et al.5 and Bizzochi et al.7 evaluated in‐air spot size of a sin-

gle energy with tolerances of ±10% and ±15%, respectively. How-

ever, if the institution evaluates multiple spots of different energies

on a daily basis, a single tighter tolerance value for all energies may

not be ideal. For spots characteristics, we deliver four spots of dif-

ferent energies (106, 145, 172, and 221 MeV) and myQA software

is used to analyze the in‐air spot size (sigma). For a spot of

221 MeV, our daily measured in‐air spot sigma deviated from the

baseline value by up to ±9.5%, whereas for the lower energy spots

(106 and 145 MeV), the deviation of daily in‐air spot sigma from

baseline value was <±5%. The 3σ of in‐air spot size also showed a

similar trend such that there is an increase in deviation with energy.

Additionally, there can be difference in X and Y directions of in‐air
spot size, especially at higher energies, on an IBA ProteusPLUS pro-

ton therapy system. For spot position tolerance, there is no common

agreement among investigators. For instance, spot position tolerance

F I G . 9 . The XbarR control charts for the dose output and distal range (R80) are shown. Statistical process control methods were used to
determine the stability of the beam parameters. Upper control limit (UCL) = +3σ and lower control limit (LCL) = −3σ were used to determine if
individual measurements required action.
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of ±1 mm from Bizzochi et al.7 is more stringent than ±1.5 mm sug-

gested by Lambert et al.5 and Younkin et al.8 and ±2 mm applied by

Actis et al.6 Although our daily spot positions (a total of four spots

with energies 106, 145, 172, and 221 MeV) varied from baselines

values by up to ±0.9 mm on certain days, the 3σ of spot positions

was lower (±0.6 mm in X and ±0.4 mm in Y). Since the Sphinx and

Lynx are indexed on the couch top, the accuracy of robotic couch

could also potentially affect the spot positions results. Hence, the

verification of daily QA setup with planar kV x rays is essential to

reduce the uncertainties introduced by the user setup and robotic

couch. For our current daily QA protocol and workflow (Fig. 6), a

tighter spot position tolerance of ±0.6 mm is feasible.

For x‐ray and proton beam coincidence, we currently use a single

spot of energy 106 MeV. Based on 10 months results, the deviation

in coincidence was found to be within ±1.5 mm, which was used as

the tolerance by Lambert et al.5 The 3σ of beam coincidence (x ray

and proton) was found to be ±0.7 mm in X and ±0.5 mm in Y direc-

tions. As shown in Fig. 6, we use the setup field to drive the 6D

TAB L E 2 Results of dose output, field homogeneity, range, width, distal-fall-off (DFO), and x‐ray vs proton beam coincidence based on daily
QA measurements (n = 202).

Energy (MeV) Avg. Range

SPC

3σ UCL LCL

Dose output (%) E172 −0.2 −1.1–1.5 ±0.7 0.5 −0.8

Field homogeneity (%) E221 0.0 −1.0–0.7 ±0.5 0.5 −0.6

R80‐distal range (mm) E106 −0.1 −0.3–0.1 ±0.3 0.2 −0.3

E145 −0.2 −0.3–0.1 ±0.3 0.1 −0.4

E172 0.2 0.0–0.5 ±0.3 0.5 −0.1

E221 −0.2 −0.5–0.3 ±0.3 0.2 −0.5

R80‐proximal range (mm) E106 −0.1 −0.3–0.1 ±0.3 0.2 −0.4

E145 −0.2 −0.4–0.1 ±0.3 0.1 −0.5

E172 0.1 −0.3–0.4 ±0.3 0.4 −0.3

E221 −0.2 −0.5–0.5 ±0.3 0.1 −0.6

Width (mm) E106 0.0 0.0–0.1 ±0.2 0.2 −0.1

E145 0.0 −0.1–0.2 ±0.2 0.2 −0.1

E172 0.2 0.0–0.4 ±0.2 0.4 −0.1

E221 0.0 −0.2–0.3 ±0.2 0.2 −0.2

Distal-fall-off (mm) E106 0.0 −0.1–0.1 0 0.0 0.0

E145 0.0 0.0–0.1 ±0.1 0.2 −0.1

E172 0.0 0.0 – 0.1 ±0.1 0.1 0.0

E221 0.0 −0.1–0.1 ±0.1 0.1 −0.1

Beam coincidence‐X (mm) E106 0.4 −0.8–1.3 ±0.7 1.1 −0.4

Beam coincidence‐Y (mm) E106 0.1 −0.7–0.9 ±0.5 0.6 −0.4

A relative difference (Δ) was calculated by comparing daily (D) measurements against baseline (B) measurements. Upper control limit (UCL) and lower

control limit (LCL) are based on statics process control (SPC) charts. UCL = +3σ and LCL = ‐3σ are from the average value.

F I G . 10 . (Left) Daily dose output for 172 MeV pencil beam scanning (PBS) proton beam;(Right) Daily field homogeneity for 221 MeV PBS
proton beam. [The relative difference (Δ) was calculated by comparing daily (D) measurements (n = 202) against baseline (B) measurement.]
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robotic couch to its predefined position such that the fiducial (2 mm

in diameter) that is a part of our indexed couch top setup is at the

imaging isocenter. Once the portal kV‐kV x‐ray image of the setup is

acquired, the center of cross‐hair (imaging isocenter) is projected at

the center of fiducial manually. It was found that the combination of

accuracy of robotic couch, phantom setup, and manual alignment of

cross hair at the center of fiducial could affect the localization of the

fiducial at the imaging isocenter. Hence, the robust indexing of

the phantom along with well‐defined manual alignment process of

the fiducial with imaging isocenter is critical in determining the coin-

cidence of x‐ray and proton beam.

In our current patient treatment workflow, we typically acquire

CBCT images followed by orthogonal kV‐kV x‐ray images. Although

the use of Sphinx and Lynx for daily imaging QA would be more

effective in reducing total daily QA time in the treatment room,

we noticed that the CBCT acquisition and automatic image regis-

tration in adaPT Insight for Sphinx and Lynx is not optimal. Hence,

the MIMI phantom in conjunction with the HexaCheck is used to

assess the 6D correction vector, which is calculated based on the

automatic rigid registration of the acquired CBCT images to the

reference CT images of the MIMI Phantom. Lambert et al.5 and

Younkin et al.8 have provided ±1 mm as the tolerance of couch

correction vector. Both of these publications5,8 utilized the kV‐kV
x‐ray imaging of the DQA‐3 device to calculate the correction vec-

tor for translational shifts only, whereas we have utilized the CBCT

of the MIMI/HexaCheck to assess the 6D correction vector, which

TAB L E 3 Results of spots characteristics (position, sigma, and skewness) based on daily quality assurance measurements (n = 202).

Avg. Range

SPC

3σ UCL LCL

Spot position‐X (mm)

Spot1 (E106) 0.0 −0.8–0.8 ±0.6 0.6 −0.6

Spot2 (E145) −0.1 −0.9–0.7 ±0.6 0.5 −0.7

Spot3 (E172) −0.1 −0.9–0.7 ±0.6 0.6 −0.7

Spot4 (E221) 0.3 −0.5–0.9 ±0.6 0.9 −0.3

Spot position‐Y (mm)

Spot1 (E106) 0.3 −0.3–0.9 ±0.4 0.7 −0.1

Spot2 (E145) 0.2 −0.3–0.7 ±0.4 0.6 −0.2

Spot3 (E172) 0.3 −0.3–0.8 ±0.4 0.7 −0.1

Spot4 (E221) 0.3 −0.4–0.9 ±0.4 0.7 0.0

Spot sigma‐X (%)

Spot1 (E106) −0.3 −1.8–0.0 ±0.9 0.6 −1.2

Spot2 (E145) 0.8 −4.8–2.4 ±1.7 2.5 −1.1

Spot3 (E172) 1.3 −2.7–2.7 ±1.9 3.2 −0.4

Spot4 (E221) −3.8 −6.5–0.0 ±2.1 −1.7 −5.9

Spot sigma‐Y (%)

Spot1 (E106) 0.0 −1.8–3.6 ±1.1 1.1 −1.1

Spot2 (E145) 0.6 −4.8–4.8 ±2.0 2.6 −1.4

Spot3 (E172) −1.9 −7.9–5.3 ±2.7 0.9 −4.5

Spot4 (E221) −0.7 −9.4–9.4 ±3.6 2.8 −4.3

Spot skewness‐X

Spot1 (E106) 0.1 −0.1–0.2 ±0.2 0.3 −0.2

Spot2 (E145) 0.1 −0.1–0.3 ±0.3 0.3 −0.2

Spot3 (E172) 0.0 −0.3–0.3 ±0.3 0.3 −0.3

Spot4 (E221) 0.0 −0.3–0.3 ±0.3 0.3 −0.3

Spot skewness‐Y

Spot1 (E106) 0.0 −0.2–0.2 ±0.2 0.2 −0.2

Spot2 (E145) 0.2 −0.1–0.5 ±0.2 0.4 −0.1

Spot3 (E172) −0.2 −0.4–0.0 ±0.3 0.1 −0.5

Spot4 (E221) 0.0 −0.2–0.3 ±0.3 0.3 −0.3

A relative difference (Δ) was calculated by comparing daily (D) measurements (n = 202) against baseline (B) measurements. Upper control limit (UCL) and

lower control limit (LCL) are based on statics process control (SPC) charts. UCL = +3σ and LCL = −3σ are from the average value.
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includes both the translational and rotational shifts. Based on 202

sets of measurements, the 3σ of translational shifts (lateral, longitu-

dinal, and vertical) ranged from ±0.6 to ±0.8 mm, and the 3σ of

rotational shifts (pitch, roll, and yaw) ranged from ±0.2° to ±0.3°.

The variation in daily 6D correction vector in our current daily QA

setup is found to be mainly due to the combination of (a) repro-

ducibility of MIMI/HexaCheck setup on the couch top, (b) accuracy

of 6D LEONI robotic couch, (c) user dependency on selection of

region of interest (ROI) for image registration in adaPT Insight, and

(d) image registration algorithm implemented within adaPT Insight

imaging system.

In addition to planar kV x rays and CBCT, QA on the C‐RAD Cat-

alystHD surface imaging is performed daily by utilizing a vendor sup-

plied daily QA phantom. Following the TG‐147 daily QA

recommendations, the functionality of the CatalystHD system and

coincidence of the surface imaging and laser isocenter is verified.

F I G . 11 . The difference (mm) in positions X and Y of spot1 (106 MeV), spot2 (145 MeV), spot3 (172 MeV), and spot4 (221 MeV). [The
relative difference (Δ) was calculated by comparing daily (D) measurements (n = 202) against baseline (B) measurement.]
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Specifically, the C‐RAD daily QA phantom is aligned to the room

isocenter using the room/gantry lasers. Once positioned, the daily

QA phantom is imaged, and the agreement between the laser

isocenter and surface imaging isocenter is quantified. Tolerances and

stability have been previously reported by Stanley et al.19 Our cur-

rent surface imaging daily QA tests include the laser accuracy, func-

tionality of the system, and calculation of translational shifts

(tolerance ±1 mm).

Lastly, for many proton centers, efficiency is an important ele-

ment being that beam access is limited. Recently, published literature

have reported proton daily QA time of 10 min,8 20 min,7 and

30 min.5,6 At our center, the daily QA time is under 30 min, which

also includes the workflows presented in Fig. 6 and 8. The variation

of daily QA time among different studies is mainly due to an incon-

sistency in the number and type of daily QA tests being performed

at different institutions. For example, the coincidence of x‐ray and

F I G . 12 . The difference (%) in Sigma X and Y of spot1 (106 MeV), spot2 (145 MeV), spot3 (172 MeV), and spot4 (221 MeV). [The relative
difference (Δ) was calculated by comparing daily (D) measurements (n = 202) against baseline (B) measurement.]
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proton beam is tested by Lambert et al.5 only, and in‐air spot size is

reported by Lambert et al.,5 Actis et al.,6 and Bizzochi et al.7 Further-

more, none of the studies4–8 reported the CBCT acquisition and its

functionality as a part of daily QA. This could be due to

unavailability of CBCT in the treatment room or difference in daily

QA policies at the authors’ institutions.4–8 The inclusion of CBCT in

our daily QA workflow (Fig. 8) has certainly contributed about 5 min

toward the total daily QA time at our center. In addition of

F I G . 13 . X‐ray vs proton beam coincidence in x and y directions. A single spot of 106 MeV was used for the coincidence.

F I G . 14 . Difference between translational/rotational correction vectors and known offset (baseline) values for subsequent kV‐cone‐beam
computed tomography imaging daily quality assurance measurements (n = 202).
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calculating the 6D correction vectors by using CBCT, this test allows

us to test the functionality of x‐ray tube, collision detection soft-

ware, and adaPT Insight as well as transfer of CBCT images to the

OIS for offline review.

5 | CONCLUSION

With the increasing complexity of delivery, patient positioning, and

imaging systems, a robust and comprehensive daily QA program is

required to gain confidence in the performance of a proton therapy

system. The use of novel phantoms and dosimetry devices such as the

Sphinx in conjunction with the Lynx and HexaCheck/MIMI was shown

to provide a robust, consistent and efficient method of evaluating vari-

ous aspects of our delivery system which include PBS beam parame-

ters and imaging/couch accuracy. Our daily QA results from over

10 months demonstrate consistent beam stability of the ProteusPLUS

PBS proton therapy system. If CBCT is available, it is recommended to

test its functionality on a daily basis mimicking a patient treatment

scenario. The use of MIMI/HexaCheck can serve an accurate and

efficient tool to perform daily, 6D IGRT QA of the IBA adaPT Insight

software and LEONI robotic couch.
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