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The X-ray structure of KcsA, a eubacterial potassium 
channel, displays a selectivity filter composed of four 
parallel peptide strands. The backbone carbonyl oxygen 
atoms of these strands solvate multiple K+ ions. KcsA 
structures show different distributions of ions within the 
selectivity filter in solutions containing different cations. 
To assess the interactions of cations with the selectivity 
filter, we used attenuated total reflection Fourier- transform 
infrared (ATR-FTIR) spectroscopy. Ion-exchange-induced 
ATR-FTIR difference spectra were obtained by sub-
tracting the spectrum of KcsA soaked in K+ solution from 
that obtained in Li+, Na+, Rb+, and Cs+ solutions. Large 
spectral changes in the amide-I and -II regions were 
observed upon replacing K+ with smaller-sized cations 
Li+ and Na+ but not with larger-sized cations Rb+ and Cs+. 
These results strongly suggest that the selectivity filter 
carbonyls coordinating Rb+ or Cs+ adopt a conformation 
similar to those coordinating K+ (cage configuration), but 
those coordinating Li+ or Na+ adopt a conformation (plane 
configuration) considerably different from those coordi-
nating K+. We have identified a cation-type sensitive 
amide-I band at 1681 cm−1 and an insensitive amide-I 
band at 1659 cm–1. The bands at 1650, 1639, and 1627 cm–1 
observed for Na+-coordinating carbonyls were almost 
identical to those observed in Li+ solution, suggesting 

that KcsA forms a similar filter structure in Li+ and Na+ 
solutions. Thus, we conclude that the filter structure 
adopts a collapsed conformation in Li+ solution that is 
similar to that in Na+ solution but is in clear contrast to 
the X-ray crystal structure of KcsA with Li+.
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KcsA is a potassium channel from the eubacterium Strepto-
myces lividans [1]. The X-ray structure of the KcsA channel 
was the first channel protein structure solved [2]. Extensive 
experimental and theoretical studies have led the KcsA chan-
nel to be used as a model channel for the study of the structure– 
function relationships of selective ion permeation [3–8]. 
The tetrameric structure has a four-fold axis; the pore exists 
along this axis (Fig. 1a). Each monomer is composed of two 
transmembrane helices, an outer helix called TM1 and an 
inner tilted helix called TM2 as well as a short helix called 
the pore helix. The signature sequence TVGYG is responsi-
ble for the selective permeability of potassium channels.

The X-ray structure of KcsA revealed a specific role of the 
peptide backbone of the signature sequence in ion selectiv-
ity. Rather than forming secondary structures, the backbone 
of the signature sequence is linearly extended, and the four 
strands from subunits align in parallel to form a narrow pore. 
The backbone C=O groups from the four strands orient their 
oxygen atoms centripetally towards K+ ions aligned on the 
symmetry axis. In this configuration, the carbonyl oxygens 
solvate dehydrated K+ ions. There are at least four binding 
sites in the selectivity filter. Intimate interactions between 
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ent than that of K+ ions. A K+ ion is coordinated by eight 
carbonyl groups in each binding site (cage configuration). In 
contrast, a Na+ ion is coordinated by four carbonyl groups 
(plane configuration). Even though the crystal structure of 
the KcsA channel in Li+ solution adopts the conductive con-
formation of the selectivity filter, a Li+ ion is assumed to be 
coordinated by four carbonyl groups (The proposed position 
of Li+ ion is indicated by a filled-in blue circle in Fig. 2.) 
[13]. Further analysis of the structures of the selectivity filter 
with these alkali metal cations is needed to understand the 
ion selectivity of KcsA.

Stimulus-induced difference Fourier-transform infrared 
(FTIR) spectroscopy is a powerful tool for investigating 
the protein structural changes that accompany biologically 
important functional processes. This method has been exten-
sively applied to photoactive proteins [14–17] and has been 
shown to allow detailed structural analysis, including changes 
in hydrogen-bonding of even a single water molecule [18–
21]. However, it has not been easy to apply this technique to 

the selectivity filter and K+ ions maintain the filter structure 
even without the formation of hydrogen bonds within the 
filter backbone. Furthermore, in the back of the pore lining, 
the side chains of the TVGYG interact with the residues of 
the pore helix to stabilize the selectivity filter structure. Fig-
ure 1b shows that Tyr78 in the signature sequence and Trp68 
on the pore helix interact with each other by forming a 
hydrogen bond which is effective for stabilization of the 
tetrameric structure of KcsA [9]. These structural features 
allow the peptide backbone to be directly involved in the 
specific recognition and permeation of K+ ions.

X-ray crystallographic studies of KcsA with several alkali 
metal cations (Fig. 2) have shown that the selectivity filters 
in the K+-, Rb+-, Cs+-, and Li+-bound species adopt very sim-
ilar structures [10–13]. On the other hand, the Na+-bound 
conformation differs substantially; the peptide backbone 
near Gly77 is flipped into the inside of the pore, forming the 
so-called “collapsed” conformation [12]. The positions of 
alkali metal cations along the pore axis are somewhat differ-

Figure 1 (a) X-ray structure of KcsA. KcsA forms a homo-tetramer that includes a pore in the center of the monomers, which are shown in 
different colors. Each monomer has two transmembrane helices and a short helix connected by a TVGYG sequence that is highly conserved in 
potassium ion channels. Potassium ions are colored sky blue. (b) Structure of the ion selectivity filter. The carbonyl groups of the main chains of the 
TVGYG sequences constitute the selectivity filter (stick drawing). The side chains of Trp68 and Tyr78, which are shown using stick drawings, are 
located within hydrogen-bonding distance.
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with the spectra of those containing larger cations (K+, Rb+, 
Cs+). These changes reflect a difference between the local 
structures of the selectivity filters interacting with these 
 cations. We discuss the structural role of the selectivity filter 
in KcsA on the basis of the present ATR-FTIR results.

Materials and Methods
Preparation of KcsA samples; Expression, Purification and 

Reconstitution into Liposomes. KcsA samples were prepared 
according to a previously described method [40]. The gene 
encoding the wild-type KcsA channel was inserted into plas-
mid vector pQE-82L (QIAGEN, Valencia, CA), which was 
used to transform Escherichia coli BL21 cells. Protein expres-
sion was induced by addition of 0.5 mM isopropyl-β-D- 
thiogalactopyranoside. E. coli cells expressing KcsA channels 
were broken up by sonication, and the membrane fractions 
were solubilized in buffer (20 mM potassium phosphate, 
pH 7.5, 200 mM KCl, 20 mM 2-mercaptoethanol, 50 mM 
imidazole) containing 1% n-dodecyl-β-D-maltoside (DDM; 
Dojindo, Kumamoto, Japan). Histidine-tagged channels were 
purified with a Co2+-based metal-chelate affinity chroma-
tography resin. Purified channels, which were eluted using 
100–400 mM imidazole, had protein concentrations of 
0.5–3 mg/mL. The purified samples were mixed with lipids 
1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) /  
1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG) (w/w=3:1) 
at a molar ratio of 1:100. To reconstitute the purified KcsA 
proteins into liposomes, DDM was removed by size-exclusion 
gel column chromatography. Finally, the proteo liposomes 
were suspended in buffer (20 mM HEPES, pH 7.5, 200 mM 
KCl) and the protein concentration was adjusted to 1 mg/mL.

other stimuli, such as voltage and ligand binding. Attenuated 
Total Reflection (ATR)-FTIR spectroscopy uses samples 
that are bathed in aqueous solution, so that solution pH and 
ionic composition can be preserved and accurately con-
trolled [22,23]. Consequently, redox-induced and ligand 
binding-induced ATR-FTIR difference spectra have provided 
detailed mechanisms, at atomic resolution, for the reactions 
of several membrane proteins, including respiratory cyto-
chrome bc1 complex [24], cytochrome c oxidase [25–27], 
Na+/galactose transporter [28], transhydrogenase [29], meli-
biose permease [30], microbial rhodopsins [31–33], flagellar 
motor PomA–PomB complex [34], and V-type Na+-ATPase 
[35], to these stimuli. In 2012, we applied the ATR-FTIR 
technique to the study of KcsA and tentatively assigned the 
amide I modes of the selectivity filter, which change their 
frequencies upon replacement of K+ with Na+ in buffer solu-
tion at neutral pH [36]. The apparent KD for K+ binding 
obtained from these spectra was ~9 mM [36]. Surface- 
enhanced infrared absorption spectroscopy (SEIRA), which 
has further enabled voltage-induced difference spectroscopy 
of membrane proteins in monolayers [37], was recently 
applied to KcsA as well [38,39]. Thus, the ATR-FTIR tech-
nique is a promising method for the study of structure– 
function relationships in membrane proteins.

In this study, to better understand the ion-selectivity of the 
channel, we extended the ATR-FTIR spectroscopic studies 
of KcsA by replacing K+ or Na+ with various alkali metal 
cations. Repeated measurements provided highly accurate 
difference FTIR spectra between the two of monovalent 
 cations (Li+, Na+, K+, Rb+, and Cs+). Large spectral changes 
in the amide-I and -II regions were seen when comparing the 
spectra of complexes containing smaller cations (Li+, Na+) 

Figure 2 Structures of the ion selectivity filter in KcsA(Li+) [13], KcsA(Na+) [12], KcsA(K+) [10], KcsA(Rb+) [11], and KcsA(Cs+) [11], where 
the KcsA(K+) structure (green) is superimposed on each structure. Red circles represent oxygen atoms of  water molecules.
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back to 50 mM NaCl. After 5-min delay, an equivalent Na+- 
minus-K+ difference spectrum was recorded. This cycling 
procedure was repeated 8–16 times. The final difference 
spectra were calculated as the average of the K+-minus-Na+ 
spectra and the average of the Na+-minus-K+ spectra multi-
plied by −1. Measurements for Li+, Rb+, and Cs+ were done 
similarly. The buffer pH was adjusted using LiOH, NaOH, 
KOH, RbOH, or CsOH. The flow rate was maintained at 
0.5 mL/min.

Results and Discussion
Difference FTIR Spectra of KcsA induced by Alkali Metal 

Cation Exchange. The K+-minus-Na+ difference spectrum 
(see Methods) shown in Figure 3 displays the characteristic 
vibrations of KcsA that correspond to its interaction with K+ 
(positive side) or Na+ (negative side), as reported previously 
[36]. To gain further information, we compared difference 
FTIR spectra among alkali metal cations (Li+, Na+, K+, Rb+, 
and Cs+), where we first measured the difference spectra 
between K+ and the other cations, and then measured the 

Perfusion-Induced ATR-FTIR Spectroscopy. A 5-μL ali-
quot of liposomes containing KcsA (~1 mg/mL) was placed 
on the surface of a diamond ATR crystal (Smiths Detection, 
DurasamplIR II; 9 effective internal reflections). After dry-
ing in a gentle stream of N2, the sample was rehydrated by 
flowing perfusion buffer (20 mM HEPES, pH 7, containing 
50 mM NaCl) through the system. Before measuring ion-ex-
change-induced difference spectra, the sample was perfused 
with the same buffer at a flow rate of 0.5 mL/min for 100 min 
to remove excess buffer and impurities concentrated upon 
drying. ATR-FTIR spectra of the KcsA sample were recorded 
at 293 K and 2 cm–1 resolution using a Bio-Rad FTS-6000 
spectrometer, equipped with a liquid-nitrogen-cooled mer-
cury cadmium telluride detector [32,34]. First, a background 
spectrum of the film was recorded during perfusion with 
 buffer in the presence of 50 mM NaCl for 15 min (an average 
of 1710 interferograms). The buffer was then switched to 
one containing 50 mM KCl. After a 5-min delay for equili-
bration, a K+-minus-Na+ difference spectrum was recorded 
for 15 min (an average of 1710 interferograms). After a new 
background spectrum was taken, the buffer was switched 

Figure 3 (Left panel) Solid curves represent the K+-minus-Li+ (a), K+-minus-Na+ (b), K+-minus-Rb+ (c), and K+-minus-Cs+ (d) FTIR difference 
spectra of KcsA recorded at pH 7 and 293 K. Dotted curves are the Li+-minus-Li+ (a), Na+-minus-Na+ (b), Rb+-minus-Rb+ (c), and Cs+-minus-Cs+ (d) 
FTIR difference spectra of KcsA. The same KcsA sample on the ATR cell was used for the measurements, so that amplitudes of these spectra can 
be compared. Namely, small spectral changes indicate similar protein structure between K+ and each monovalent cation. One division of the y-axis 
represents 0.015 absorbance units. (Right panel) Solid curves represent the Li+-minus-Na+ (e), K+-minus-Na+ (f), Rb+-minus-Na+ (g), and Cs+-mi-
nus-Na+ (h) FTIR difference spectra of KcsA recorded at pH 7 and 293 K. Dotted curves are the Li+-minus-Li+ (e), K+-minus-K+ (f), Rb+- minus-Rb+ 
(g), and Cs+-minus-Cs+ (h) FTIR difference spectra of KcsA. The same KcsA sample on the ATR cell was used for the measurements, and small 
spectral changes indicate similar protein structure between Na+ and each monovalent cation. One division of the y-axis represents 0.015 absorbance 
units.
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gen-bonding or ionic interaction, or a change in the transi-
tion dipole coupling of the backbone carbonyl groups [41]. 
In the previous study, we tentatively assigned the amide I 
vibrations for KcsA(K+) and KcsA(Na+) to the carbonyl 
groups forming the eight-coordinate structure with K+ and 
the four-coordinate structure with Na+, respectively [36]. 
Here, the observed amide-I vibrations are classified as higher 
frequency for KcsA(K+), KcsA(Rb+) and KcsA(Cs+), and 
lower frequency for KcsA(Na+) and KcsA(Li+). These results 
support the eight-carbonyl and four-carbonyl coordinated 
configurations, respectively.

Among the higher frequency bands, the 1681-cm–1 band 
for K+ is assumed to be upshifted to 1692 cm−1 for Rb+ and 
1690 cm−1 for Cs+, which probably reflects a slight differ-
ence in coordination modes for Rb+ and Cs+. The 1659-cm–1 
band for K+ almost doesn’t change in frequency, compared 
with those for Rb+ (1659 cm−1) and Cs+ (1657 cm−1). How-
ever, the 1659-cm−1 band for K+ dramatically reduces in 
intensity upon coordinating Na+ or Li+, whereas the band 
intensity reduced moderately for Cs+ (Fig. 4b). The 1659-
cm−1 band is close to the typical frequency for an α-helix 
(1654 cm−1). This frequency was insensitive to the type of 
alkali metal cation. To gain further insight, we analyzed the 
amide-II vibration.

difference spectra between Na+ and the other cations. Each 
spectrum was normalized to the amplitude of the amide-II 
peak in the absorption spectrum of a KcsA sample in the 
reference buffer (K+ or Na+). The left panel of Figure 3 
 compares the FTIR difference spectra of K+ and the other 
 cations, where spectral changes are greatest and smallest 
for the K+-minus-Na+ and K+-minus-Rb+ difference spectra, 
respectively. The K+-minus-Li+ difference spectrum is simi-
lar to the K+-minus-Na+ spectrum, though the intensity is 
slightly smaller. The intensity of the K+-minus-Cs+ differ-
ence spectrum is between those of the K+-minus-Rb+ and 
K+-minus-Li+ spectra. Thus, the structures of KcsA in K+ 
(KcsA(K+)) and Rb+ solutions (KcsA(Rb+)) are similar. 
 Similarly, the right panel of Figure 3, showing the FTIR dif-
ference spectra of Na+ and the other cations supports the 
contrast among the alkali cation spectra. We analyzed the 
difference spectra in the amide-I and -II vibrational regions 
in detail, as described below.

Amide-I Vibrations of KcsA Interacting with Alkali Metal 
Cations. Figure 4a and 4b compare FTIR difference spectra 
between K+ and the other cations and between Na+ and the 
other cations, respectively, in the amide-I vibrational region. 
As already mentioned, KcsA(K+), KcsA(Rb+), and KcsA(Cs+) 
exhibited similar spectral patterns and KcsA(Na+) and 
KcsA(Li+) exhibited similar spectral patterns. From this 
comprehensive analysis, we obtained characteristic amide-I 
frequencies of KcsA with each cation, which are summa-
rized in Table 1. KcsA(K+), KcsA(Rb+), and KcsA(Cs+) 
possess a strong peak at 1659 or 1657 cm−1 and a moderate 
peak at 1681 cm−1 (K+), 1692 cm−1 (Rb+), and 1690 cm−1 (Cs+). 
On the other hand, KcsA(Na+) and KcsA(Li+) possess strong 
peaks at 1650, 1639, and 1627 cm−1, among which the 1627-
cm−1 band is the strongest. The lower frequency shift of the 
amide-I vibrations can be explained by a stronger hydro-

Figure 4 ATR-FTIR difference spectra of KcsA in the amide-I region (1750–1580 cm−1), reproduced from Figure 2. (a) The K+-minus-Li+ 
(black solid curve), K+-minus-Na+ (red curve), K+-minus-K+ (black dotted curve), K+-minus-Rb+ (blue curve), and K+-minus-Cs+ (green curve) 
spectra. (b) The Li+-minus-Na+ (black solid curve), Na+-minus-Na+ (black dotted curve), K+-minus-Na+ (red curve), Rb+-minus-Na+ (blue curve), 
and Cs+-minus-Na+ (green curve) spectra. One division of the y-axis represents 0.005 absorbance units.

Table 1 Vibrational frequencies of KcsA in the presence of each 
monovalent cation at 1700–1600 cm–1 (amide-I vibration)

cation peak frequency (cm–1)

Li+ 1659 1650 1639 1627
Na+ 1650 1639 1627
K+ 1681 1669 1659
Rb+ 1692 1669 1659
Cs+ 1690 1657
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band was observed at 1518 cm−1 in the difference spectra that 
included KcsA(Na+) and KcsA(Li+). We already assigned the 
1518-cm−1 band in KcsA(Na+) to a phenol ring vibration of 
Tyr78 by using the Y78F mutant protein [36]. Therefore, this 
result strongly suggests that the structures of the filter around 
Tyr78 in the Na+ and Li+ conditions resemble each other.

In the spectral region below 1500 cm−1, we observed a 
systematic increase of negative (Fig. 5a) and positive (Fig. 
5b) bands around 1483 cm−1, in accordance with the increase 
of the ionic radius of the alkali metal cations (K+, Rb+, and 
Cs+). We have not identified the origin of the bands, but they 
may be attributed to some vibrational mode of a side chain. 
One possible candidate is a ν(CC) and/or δ(CH) mode of 
residues Trp67 and Trp68, which are on the pore helix. These 
spectral changes might be correlated with structural changes 
of KcsA that occur upon accommodating the larger alkali 
metal cations.

The spectral analysis of the amide-I and -II vibrations 
clearly distinguished those measured in K+, Rb+ and Cs+ 
solutions from those in Na+ and Li+ solutions. These distinct 
spectral patterns for these ion species strongly suggest that 
amide-I and -II signals mainly monitor the vibrations of the 
peptide backbone near or on the selectivity filter. However, 
contributions from the peptide backbone outside the selec-
tivity filter were suggested. Similar to the amide-I band at 
1659-cm−1, the small amide-II signals at 1547 cm−1 are typi-
cal bands originating from an α-helix (1550–1540 cm−1). 
The 1547-cm−1 bands for Na+ and Li+ show slight changes 
in their frequencies upon replacement with the other alkali 
metal cations (1552 cm−1 for K+, Rb+, and Cs+). Thus, it is 
likely that the cation-type insensitive amide I band at 
1654 cm−1 and the amide II band at 1547 or 1552 cm−1 origi-
nate from the same helix in KcsA, whose most probable 
candi date is a pore helix near the selectivity filter.

Amide-II Vibrations of KcsA Interacting with Alkali Metal 
Cations. Figure 5a and 5b compare FTIR difference spectra 
between K+ and the other cations, and between Na+ and the 
other cations, respectively, in the amide-II vibrational region. 
The cation dependence of the intensity of the amide-II bands 
is basically similar to that of amide-I bands, such that the 
spectral changes are categorized into two patterns: one for 
KcsA(K+), KcsA(Rb+) and KcsA(Cs+) and another for 
KcsA(Na+) and KcsA(Li+). Table 2 shows the characteristic 
amide-II frequencies of KcsA with each cation. KcsA(K+), 
KcsA(Rb+), and KcsA(Cs+) possess a strong peak at 1535 cm−1, 
whereas KcsA(Na+) and KcsA(Li+) possess two strong peaks 
at 1560 and 1509 cm−1. Negligible spectral changes in the 
amide-II region upon exchanging Na+ with Li+ suggest struc-
tural similarity between KcsA(Na+) and KcsA(Li+) (Fig. 5b). 
The amide-II bands at 1535 and 1560 cm−1 are relatively 
close to the typical amide II frequency of an α-helical pro-
tein (1550–1540 cm−1), while 1509 cm−1 is a much lower fre-
quency. The bands at 1535 and 1560 cm−1 may be explained 
by a change in hydrogen bonding of the amide N-H groups 
of the main chain upon replacement of the cations. In con-
trast, the band at 1509 cm−1 for KcsA(Na+) and KcsA(Li+) 
may represent a very weak hydrogen bond of an amide N-H 
group of the peptide backbone. Another notable negative 

Figure 5 ATR-FTIR difference spectra of KcsA in the amide-II region (1600–1460 cm–1), reproduced from Figure 2. (a) The K+-minus-Li+ 
(black solid curve), K+-minus-Na+ (red curve), K+-minus-K+ (black dotted curve), K+-minus-Rb+ (blue curve), and K+-minus-Cs+ (green curve) 
spectra. (b) The Li+-minus-Na+ (black solid curve), Na+-minus-Na+ (black dotted curve), K+-minus-Na+ (red curve), Rb+-minus-Na+ (blue curve), 
and Cs+-minus-Na+ (green curve) spectra. One division of the y-axis represents 0.005 absorbance units.

Table 2 Vibrational frequencies of KcsA in the presence of each 
monovalent cation at 1600–1450 cm–1 (amide-II vibration)

cation peak frequency (cm–1)

Li+ 1560 1547 1509
Na+ 1560 1547 1509
K+ 1552 1535
Rb+ 1552 1535
Cs+ 1552 1535
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These intimate interactions between ions and the channel 
lead to various spectral changes. More specifically, we have 
identified a cation-type sensitive amide-I band at 1681 cm−1 
and a cation-type insensitive amide-I band at 1659 cm−1 in 
the difference spectra of KcsA. The former band reflects the 
differences in coordination structure of the C=O groups in 
the selectivity filter with the alkali metal cations. The latter 
band may be caused by the structural change of an α helix 
outside the selectivity filter. The similar spectral changes for 
Na+ and Li+ suggest that the filter structure in the case of Li+ 
would be in a collapsed conformation similar to that seen in 
the case of Na+.
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helix [45–47]. Therefore, the low-frequency vibrations of 
the amide-I mode (1639, and 1627 cm−1) may be explained 
not only by a four-coordinate structure with Na+, but also by 
water hydration. A similar argument may be applicable to 
KcsA(Li+).

Conclusion
Ion-exchange-induced ATR-FTIR difference spectroscopy 

has provided valuable information about ion–protein inter-
actions in the KcsA potassium channel. From the patterns of 
the spectral changes in the amide-I and -II regions for the 
various ion species, the origin of these bands has been exam-
ined. In this potassium channel, ions are solvated by the 
backbone carbonyls of the selectivity filter, and these inter-
actions further affect the pore helix through hydrogen bonds. 
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