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Abstract

Neurogenesis continues through the adult life of mice in the subgranular zone of the dentate gyrus in the hippocampus,
but its function remains unclear. Measuring cellular proliferation in the hippocampus of 719 outbred heterogeneous stock
mice revealed a highly significant correlation with the proportions of CD8+ versus CD4+ T lymphocyte subsets. This
correlation reflected shared genetic loci, with the exception of the H-2Ea locus that had a dominant influence on T cell
subsets but no impact on neurogenesis. Analysis of knockouts and repopulation of TCRa-deficient mice by subsets of T cells
confirmed the influence of T cells on adult neurogenesis, indicating that CD4+ T cells or subpopulations thereof mediate the
effect. Our results reveal an organismal impact, broader than hitherto suspected, of the natural genetic variation that
controls T cell development and homeostasis.
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Introduction

The discovery that neurogenesis occurs in the adult hippocam-

pus has attracted considerable attention, yet its function remains

unclear [1,2]. Adult neurogenesis is known to occur in two areas of

the mammalian brain, the subventricular zone, which gives rise to

olfactory bulb interneurons, and the dentate gyrus of the

hippocampal formation, which gives rise to granule cells [3]. Its

occurrence in the latter structure has prompted considerable

speculation that it is involved in known functions of the

hippocampus: learning, memory, and emotional regulation.

However, the hippocampal function of adult neurogenesis is still

debated. Experiments using antimitotic agents and irradiation to

kill newly dividing cells in the brain have produced conflicting

results (reviewed in [4]). Genetically targeted ablation of

neurogenesis also reports contrasting effects: normal learning

and memory [5], normal anxiety with a reduction in contextual

freezing and normal spatial memory [6], no change in freezing but

impaired spatial memory [7,8], a combined impairment of spatial

memory and reduction of contextual freezing responses [9,10], or

increased anxiety but no effect on spatial memory [11].

While it is possible that the behavioural effects of neurogenesis

ablation are subtle (a recent report argues that they include specific

impairments in spatial discrimination [1]), it may also be the case

that adult neurogenesis has additional roles. Here we adopted a

genetic approach to address this question. Rates of adult

hippocampal neurogenesis differ between inbred strains of mice,

indicating that quantitative trait loci (QTL) contribute to this

variation [12]. We asked if QTLs influencing neurogenesis could

be found that influenced other phenotypes, which might cast light

on the function of neurogenesis.

We decided to map variation in adult hippocampal neurogen-

esis in heterogeneous stock (HS) mice, a stock descended from

eight inbred progenitor strains (A/J, AKR/J, BALB/cJ, C3H/

HeJ, C57BL/6J, CBA/J, DBA/2J, and LP/J) and maintained for

over 50 generations [13]. The large number of recombinants that

have accumulated since the founding of the stock means that

QTLs are mapped to an average region of 3 Mb, so that co-

localization is more likely to reflect pleiotropic action than co-

incident location. The HS is unique not only for its high resolution

and the number of QTLs that have been mapped (843) [13] but

also for the diversity of traits analysed, including disease models

(asthma, anxiety, and type 2 diabetes), as well as haematological,

immunological, biochemical, and anatomical assays. The pheno-

types include those previously suggested to be related to neuro-

genesis: novelty suppressed feeding [14], measures of anxiety taken

in an elevated plus maze and open field, and contextual fear

conditioning (data are freely available from http://gscan.well.ox.

ac.uk) [9–11]. Our aim was to explore the relationship of these,

and other, phenotypes to adult neurogenesis in the HS mice.
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Results

Variation in KI67 Counts Correlates with T Cell
Phenotypes

We assessed cellular proliferation in the subgranular zone of the

dentate gyrus by counting the absolute number of KI67-positive

cells in 719 HS animals (KI67 is a marker of cell proliferation).

The phenotypic distribution is shown in Figure 1a. Proliferation

correlated with four behavioural measures assessed in the same HS

animals. Correlation with one measure in the open-field arena,

total activity, was significant (p = 0.006) and accounted for just

over 1% of the variance. Higher KI67 counts were associated with

lower activity levels (since activity increases neurogenesis, the

correlation is unlikely to be consequent on the animal’s behaviour).

A similar pattern was seen in the elevated plus maze: there was a

small correlation with distance travelled in the open arms

(anxiogenic regions) of the maze (p = 0.03, variance explained

0.5%). Proliferation was associated significantly with startle

response (p = 0.002, variance explained 1.5) and positively

correlated with home cage activity (p = 0.005, variance explained

1.2%), contrasting with the negative correlation seen for fear-

related activity. There was no significant correlation with novelty

suppressed feeding (p = 0.64), freezing to the context (p = 0.09), or

freezing to the cue (p = 0.92).

We next asked whether cellular proliferation in the hippocam-

pus was correlated with any of the other phenotypes measured in

our HS screen, which were a priori unrelated to neurogenesis.

Most unexpectedly, we found a highly significant positive

correlation with changes in the relative proportions of CD4+
and CD8+ cells among blood CD3+ lymphocytes (p = 1.6E207).

Higher levels of hippocampal proliferation are associated with a

higher proportion of CD8+ T cells and correspondingly with lower

proportions of CD4+ T cells and a lower CD4+/CD8+ ratio. The

correlation accounts for about 6% of the phenotypic variance. As

Figure 1a shows, the correlation with T cell phenotypes is far more

significant than with any other phenotype. The negative logarithm

of the p value (logP) exceeds a conservative threshold corrected for

multiple testing and could not be attributed to the effects of outliers

or distributional artefacts (a non-parametric test of rank correla-

tion is also significant).

The same relationship was seen in analyses of inbred strains.

Significant correlations were observed between KI67 counts and

%CD8 in CD3+ blood T cells (r = 0.115, p = 0.0008) in the eight

inbred progenitor strains of the HS (Figure 1b). Using published

data from a large genetic reference panel of recombinant inbred

strains (BXD) [12,15], we found the same correlations between

cellular proliferation in the hippocampus and CD8+ T cell

frequency (r = 0.61, p = 0.0006) (Figure 1c). Replication in the two

inbred samples provides conclusive evidence for the robustness of

the correlation.

KI67 and T Cell Subpopulation Phenotypes Are
Genetically Correlated

The striking correlation between QTLs influencing cellular

proliferation in the hippocampus and variation in the distribution

of T cell lineages suggests that one phenotype influences the other.

We used a genetic approach to address this question and first

investigated the extent to which the phenotypic correlation arises

from common genetic determinants.

We mapped QTLs contributing to variation in cellular

proliferation in the hippocampus [16] and compared their location

to QTLs previously mapped for %CD8+ among CD3+ T cells

[13]. Table 1 gives a resample-based model inclusion probability

(RMIP) [16] for QTLs influencing these phenotypes. The

mapping method identifies loci by the number of times they recur

in multiple analyses of subsamples of the complete data. From

simulations in the HS, a detected QTL that exceeds an RMIP

threshold of 0.5 will be true in 85% of cases and in 70% of cases

for a threshold of 0.25 [13].

QTLs with the same location for both phenotypes are found on

five chromosomes, 5, 6, 10, 13, and 16. However, plots of the

logPs frequently identify the same peaks for both phenotypes

(Figure 2), suggesting that there may be additional peaks that

influence both phenotypes. To test whether variation in T cell

lineages and cellular proliferation in the hippocampus have a

common genetic origin, we included %CD8+ in CD3+ as a

covariate in a linear model for KI67 and mapped the residuals.

For each locus we found a marked reduction in the significance of

the association for KI67. This is illustrated in Figure 2, where it is

apparent for example on chromosome 5 that the logP drops from

more than 15 to less than 3. Similar results were obtained when we

mapped %CD8+ in CD3+ including KI67 counts as a covariate.

These results indicate that common genetic loci contribute to

variation in the two phenotypes.

There is also evidence for loci with specific effects: the single

largest QTL effect on CD4+ versus CD8+ T cell subsets scarcely

contributes to KI67 counts. This latter QTL lies on chromosome

17 within the Major Histocompatibility Complex (MHC) and is

consistent with a strong impact of variation in the MHC in

determining the relative distribution of CD4+ and CD8+ cells

[17,18]. The QTL arises from a deletion of the promoter of H2-Ea

[17] that encodes the alpha chain of the MHC class II Eab
heterodimer, one of the two complexes that govern the selection

and survival of CD4+ T cells. In the HS this QTL has an RMIP of

1 for CD4+ or CD8+ T cells (logP.80) but is excluded from all re-

sampled multiple QTL models influencing KI67 counts (logP,4)

(Figure 2).

Comparison between QTLs influencing behavioural measures

putatively related to hippocampal neurogenesis and KI67 showed

little overlap in location (results for all phenotypes are presented

online at http://gscan.well.ox.ac.uk). We quantified this relation-

ship by exploiting the fact that QTLs detected in the HS explain

about 70% of the heritability of each phenotype [13]. Conse-

quently the extent of overlap in QTL location is a measure of

genetic correlation.

For each pair of phenotypes we calculated the total length of the

QTLs and the total length of the overlap and used a distance

Author Summary

In adult mice new neurons are produced in the
hippocampus, where they are thought to influence
learning, memory, and emotional regulation. The mecha-
nisms and functions of this neurogenesis, however, remain
unclear. Here we report that in different strains of mice,
variation in cellular proliferation in the hippocampus (an
index of neurogenesis) correlates with variation in the
relative proportions of the ratio of CD4+ to CD8+ T cells
(an immunology phenotype). We also show that T cells can
influence neurogenesis (but that neurogenesis does not
influence T cells) by analyzing knockouts, depleting mice
of T cells, and repopulating alymphoid animals. The strong
genetic correlation between T cells and cellular prolifera-
tion in the hippocampus contrasts with the weak, often
non-significant, correlation with behavioral phenotypes. Of
significance, the findings here suggest that modulation of
the functions of the hippocampus to influence behavior is
not the primary role of neurogenesis.

T Cells and Neurogenesis
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measure (Sørensen’s similarity coefficient) to construct a tree of the

relationships between phenotypes (using a clustering algorithm).

Analysis of all 97 individual phenotypes shows that cellular

proliferation in the hippocampus is genetically most closely

related to variation in T cell subsets. We show this result in

Figure 3, where we have simplified the presentation of 97

phenotypes by grouping them into 16 trait sets according to the

disease models that they were designed to test, or on their

physiological functions. Phenotypic data are available from

http://gscan.well.ox.ac.uk.

Figure 1. Correlations between hippocampal neurogenesis assayed by counting KI67 positive cells and phenotypes in three
populations of mice. (a) Correlations between hippocampal neurogenesis assayed by counting KI67 positive cells and phenotypes measured in
outbred mice. Correlations are shown for all 97 phenotypes measured with the negative logarithm of the p value (log10P) of the Spearman correlation
coefficient on the vertical axis. Three T cell measures are labelled, as are eight behavioural measures putatively related to neurogenesis. (b) Boxplot of
the distribution of counts of the percentage of CD8+ in CD3+ T cells and KI67 positive cells in the hippocampus in the eight progenitor strains of the
HS (A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, CDA/J, DBA/2J, and LP/J [16]) and the HS animals themselves. Five animals from each strain were assayed.
(c) Scatter plot showing the correlation between KI67 counts and CD8+ in CD3+ T cells in 30 recombinant inbred BXD lines (data from published
sources [12,15]). The line is the least square regression line.
doi:10.1371/journal.pbio.1000561.g001

T Cells and Neurogenesis
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CD4+ T Cells Mediate the Effect on Adult Neurogenesis
Our genetic data are consistent with a model in which adult

neurogenesis influences T cells and also with one in which T cells

influence neurogenesis (where our measure of neurogenesis is

cellular proliferation in the hippocampus). We tested the first

model by ablating adult neurogenesis and then looking for changes

in T cells. We did this using i.c.v. ganciclovir (GCV) in both

GFAP-tk [6] and nestin-tk mice [19]. Four weeks later, we

collected blood samples and quantitated CD4+ and CD8+ T cell

subsets. This schedule is effective in ablating dividing putative

forebrain progenitors in GFAP-TK mice while avoiding the gut

illness caused by high doses of GCV [20,21]. The hippocampus

was stained with a marker for immature neurons (doublecortin,

DCX). DCX positive cells were depleted in both models.

Compared to untreated littermates we found no significant

difference in T cell subsets after ablation of neurogenesis in either

model (GFAP-tk: t = 21.7, df = 14, p value = 0.1; nestin-tk: t = 0.1,

df = 14, p = 0.9).

We tested the second hypothesis, an effect of T cell function on

neurogenesis, by examining a series of mouse mutants with

alterations in T cell differentiation. As well as the cell proliferation

marker KI67, we used DCX to detect hippocampal neurogenesis

in 10-wk-old mice. We first investigated Rag-deficient mice, which

are devoid of any B or T lymphocytes: mutant mice showed a

marked reduction in both readouts of neurogenesis (KI67 and

DCX) (Figure 4A; p = 0.02 (KI67) and p = 0.01 (DCX)). This was

also true for TCRa knockouts (Figure 4B, p = 0.01 (KI67) and

p = 0.02 (DCX)), implicating cells expressing the abT cell receptor

and excluding B and cdT lymphocytes.

To determine which of the CD4+ or CD8+ lineages of abT cells

had the most influence, we tested knockout mice affecting MHC-I

or MHC-II molecules (which are largely devoid of CD8+ and

CD4+ T cells, respectively) as well as double-knockout animals. A

reduction in KI67 and DCX was present for both MHC-II

(p = 0.03 (KI67) and p = 0.04 (DCX)) and MHC-I/II deficient

mice (p = 0.006 (KI67) and p = 0.002 (DCX)), suggesting that the

presence of CD4+ cells mediate the effect of lymphocytes on

neurogenesis (Figure 4C).

We performed two independent tests of the functional

involvement of CD4+ and CD8+ T cells. First, we depleted either

population by injection of anti-CD4 or anti-CD8 monoclonal

antibodies, reducing their numbers to less than 5% of untreated

mice at 10 d post-treatment. Despite the successful depletion of T-

cell subsets, there was no significant change of KI67 levels in the

dentate gyrus of the hippocampus (Figure 5A). Second, we

performed a repopulation experiment, in which 26107 CD4+ or

CD8+ T cells from spleen and lymph node were transferred into

TCRa-deficient hosts. Transfer of CD4+ T cells led to a

significant increase in KI67 staining in 2 wk post-transfer

(compared to the TCRa knockout p = 0.03). In contrast transfer

of CD8+ T cells did not alter KI67 staining (Figure 5B).

Discussion

Our analysis of a large stock of outbred mice makes two novel

observations about adult neurogenesis in the hippocampus. First,

we find a correlation between variation in cellular proliferation in

the hippocampus and the relative proportions of CD4+ and CD8+
subsets of abT cells. The correlation is much larger than that

found for over 90 other phenotypes. Second, the correlation is

driven by genetics: QTLs that contribute to variation in cell

proliferation in the hippocampus also contribute to variation in the

relative proportions of CD4+ and CD8+ T cells. Importantly, the

genetic correlation is due to natural sequence variants that

differentiate inbred strains of laboratory mice.

Our findings extend previous observations that T cells

contribute to variation in adult neurogenesis [22,23]. Previously,

analysis of mice with a mutation that ablated both T- and B-

lymphocyte compartments showed impairment of adult neuro-

genesis, which could be restored by repopulation with mono-

specific T cells recognizing a CNS-antigen (myelin basic-protein).

This was interpreted as an effect of autoimmune attack [22].

Reduced adult neurogenesis was also found in mice with no T or B

cells due to a mutation in either RAG1 or RAG2 [23].

Repopulation and depletion experiments again implicated T cells

[23]. The latter experiments, together with analysis of CD42/2

mice, indicated that CD4+ T cells contributed to adult

neurogenesis, regardless of their antigen specificity.

Results obtained from the HS indicate that the relationship

between T cells and cellular proliferation in the hippocampus is

not merely an artefact of transgenic or knockout mice, or of the

very unusual conditions created in alymphoid mice upon immune

reconstitution, but arises from the far more subtle cues of natural

genetic variation: loci that contribute to variation in cell

Table 1. QTLs that contribute to cellular proliferation in the
hippocampus (KI67) and to %CD8 in CD3 T-cells.

Phenotype Chr Start End RMIP

%CD8+ in CD3 1 59.2 59.9 0.31

KI67 1 132.7 137.7 0.4

%CD8+ in CD3 3 126.9 129.5 0.59

KI67 4 40.4 49.8 0.26

KI67 5 71.2 76.8 0.68

%CD8+ in CD3 5 70.8 76.8 0.2

%CD8+ in CD3 5 113.6 114.7 0.94

KI67 6 68.8 74.8 0.22

%CD8+ in CD3 6 68.8 73.7 0.94

KI67 6 127.1 127.8 0.27

%CD8+ in CD3 7 47.9 51.8 0.25

%CD8+ in CD3 7 118.4 122.6 0.36

%CD8+ in CD3 10 38.3 40.3 0.2

KI67 10 38.3 45.3 0.26

%CD8+ in CD3 12 26.6 30.9 0.77

KI67 13 35.2 37.7 0.53

%CD8+ in CD3 13 36.1 37.7 0.35

KI67 13 110.6 119.2 0.49

KI67 16 34.4 35.7 0.67

%CD8+ in CD3 16 34.8 36.6 0.3

%CD8+ in CD3 17 33.7 34.5 1

%CD8+ in CD3 17 43.6 49.6 0.58

The table gives the start and end coordinates of the 95% confidence intervals of
each QTL (these coordinates are in megabases and are from Build 37 of the
mouse genome). Entries in bold indicate QTLs where there is overlap between
the two phenotypes. Our measure of probability that the locus is correctly
identified is a resample model inclusion probability (RMIP) in the last column.
An RMIP is the expected proportion of times a locus is included in a multilocus
model. A value of 1 means that the locus would be included in all repeated
analyses (estimated by re-sampling the data) and an RMIP of 0.5 means the
locus is included in 50% of such analyses. Assessing false positive rates by
simulation indicates that at an RMIP threshold of 0.25 about one false positive
QTL occurs every four genome scans.
doi:10.1371/journal.pbio.1000561.t001
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proliferation in the hippocampus also contribute to variation in the

relative proportions of CD4+ and CD8+ T cells. Naturally

occurring genetic variation is a very different setting (and

obviously more physiogically relevant) than the gross abnormal-

ities of knockout mice.

Two questions follow: why do T cells influence neurogenesis in

the hippocampus, and how do they do it? Our data suggest a

broader role for T cell function on adult neurogenesis than

previously suspected [22,23]. The strikingly large correlation

between cellular proliferation in the hippocampus and T cell

subsets, attributable to naturally occurring genetic variation,

suggests that the correlation itself is functionally important

(otherwise it would have decayed through stochastic fluctuation

in allele frequencies). The strong correlation contrasts with the

weak, often non-significant, correlation with behavioural pheno-

types often invoked as functional consequences of adult neuro-

genesis. This suggests that modulation of the behavioural functions

of the hippocampus may not be the primary role of neurogenesis.

Figure 2. Genetic mapping of cellular proliferation in the hippocampus (KI67), the %CD8+ in CD3 T cells, and the residuals of a
model including %CD8+ in CD3 as a covariate (residual KI67). The horizontal scale is the megabase (Mb) distance along the chromosome
(build 37 of the mouse genome) and the horizontal scale the negative logarithm of the p value (logP) for association between the phenotype and
genotype. Results from chromosomes 1, 5, and 17 are shown. Double-headed arrows indicate peaks with a RMIP greater than 0.25. The dotted line in
the KI67 plots is the result of mapping the KI67 counts conditioning on %CD8+ in CD3 T cells.
doi:10.1371/journal.pbio.1000561.g002

T Cells and Neurogenesis

PLoS Biology | www.plosbiology.org 5 December 2010 | Volume 8 | Issue 12 | e1000561



Postulated roles in learning and memory may in fact be secondary

to the immunological [1,2]. For example, anything that alters the

ratio of CD4+ to CD8+ cells might alter behaviour, so that

variation in behavioural results from different laboratories [1,2]

could be due to differences in the health status of the animals. It is

also interesting to note alterations in CD4+ lymphocytes may

affect human behaviour. For example, the mechanism by which

human immunodeficiency virus type 1 (HIV-1) produces dementia

remains obscure [24]. Impairment of neurogenesis is suspected to

play a part [25,26] and this may be mediated in part by reduction

in CD4+ lymphocytes.

How do T cells influence neurogenesis in the hippocampus?

This is difficult to explain, given that T cells are very rare in the

brain under normal circumstances. Moreover genetic mapping

experiments, and those performed in knockout or reconstituted

mice, appear to give different clues about mechanism: analysis of

Figure 3. Agglomerative clustering of a genetic distance matrix to show the relationship between cellular proliferation in the
hippocampus (KI67), behaviour, and other phenotypes obtained in the heterogeneous stock mice. The distance matrix is based on the
degree of QTL overlap. In order to simplify the presentation, the 97 phenotypes were grouped into 16 trait sets according to the disease models that
they were designed to test, or on their physiological functions (for instance, combining all QTLs for T cell function or for hippocampal function).
Species typical behaviour, burrowing, has been shown to be affected by hippocampal lesions yet does not reflect emotional reactivity [48].
doi:10.1371/journal.pbio.1000561.g003

T Cells and Neurogenesis
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the HS mice pointed to the involvement of CD8+ T cells, as their

frequency correlated with increased neurogenesis, while the

analysis of knockouts and repopulation experiments implicated

CD4+ T cells, here and in the work of Wolf et al. [23].

An important clue comes from the delineation of the QTLs that

affect both T cell and neurogenesis phenotypes. All QTLs that

control the proportions of CD4+ and CD8+ T cells also have an

impact on neurogenesis, with the glaring exception of the strongest

of them, the H2-Ea locus [17], whose homolog has also been

identified in human GWAS studies of CD4+/CD8+ ratio

determinism [18]. H2-Ea allows the assembly of a functional

EaEb MHC-II heterodimer. In turn, this E heterodimer, by

presenting an array of self-peptides, can select and support a large

population of ‘‘E-restricted’’ CD4+ T cells. H2-Ea is frequently

inactivated by deletions or other mutations that are widespread

among inbred and wild mice [27,28], and such mice (including the

C57BL/6 founder of the HS stock) only have the AaAb MHC-II

complex and A-restricted CD4+ T cells. E-restricted CD4+ T cells

are functionally effective by all measures tested [29], but the strong

protective effect of H-2Ea against autoimmune diseases such as

Type-1 diabetes suggests that E- and A-restricted repertoires are

not always equivalent. In the present context, the absence of a

neurogenesis QTL mapping to H-2Ea suggests that the connection

between CD4+ T cells and neurogenesis is a property that can be

uniquely fulfilled by A-restricted cells, implying a role for specific

TCR/MHC interactions, rather than a generic effect of the

relative proportions of CD4+ and CD8+ T cells.

In regards to the apparent discrepancy between the impact of

natural genetic variation and the results of experimental

manipulation, it is important to realize that different populations

are being affected in the different modalities. CD4+ T cells are a

complex mix of cells. Some of them have positive effector

functions, while others exhibit regulatory potential over other cells

of the immune system and also over non-lymphoid organs such as

the adipose tissue (in particular FoxP3+ ‘‘Treg’’ cells [30,31]).

While natural variation might equally affect all CD4+ T cells, the

conditions created by the lineage deficiency of MHC knockouts,

which still have a significant Treg component, or by the

Figure 4. Effect of T cell knockouts on adult neurogenesis. (A) Effect of RAG knockout and corresponding littermate wild types (n = 5) on KI67
and doublecortin (DCX) counts in the dentate gyrus of the hippocampus. (B) Effect of TCRa knockout and corresponding littermate wild types (n = 7)
on KI67 and doublecortin (DCX) counts in the dentate gyrus of the hippocampus. Each group consisted of seven animals. (C) Effect of MHC Class I
(n = 9), Class II (n = 5), and combined knockouts (n = 7) and corresponding littermate wild types (n = 8) on KI67 and DCX counts in the dentate gyrus of
the hippocampus. Values shown are means 6 SEM. * p,0.05.
doi:10.1371/journal.pbio.1000561.g004

T Cells and Neurogenesis
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homeostasis-driven proliferation that occurs after reconstitution of

lymphopenic hosts [32] may result in an altered balance of effector

versus regulatory T cells. Thus, the same subpopulations of CD4+
T cells are not equally affected in all instances, and a unifying

interpretation may be that neurogenesis positively correlates with

the relative proportion of CD4+ and CD8+ effector relative to

Treg cells.

In cellular terms, how A-restricted effector or regulatory T-cells

influence hippocampal activity remains conjectural. One might

hypothesize direct interactions occurring in the hippocampus

between CD4+ T cells and MHC-II+ microglia. CD4+ T cells are

very rare but not completely absent in this anatomical location.

Alternatively, the hippocampus may be responding to long-range

mediators released by T cells, for instance the cytokines released

during T cell activation in lymphoid organs.

One candidate for the molecular mechanism set in motion by T

cells is the Wnt pathway [33,34]. Wnt signalling components are

expressed in adult hippocampal progenitor cells and modulate the

generation of newborn neurons [35]. Inhibition of Wnt signalling

increases the number of new neurons and leads to a loss of stem

cell multipotency [36]. Manipulation of recently identified

components of the Wnt pathway (NEUROD1 [37,38] and DISC1

[39]) also alters the production of new neurons. However,

mediators between T cells and the Wnt pathway are unknown.

We expect clues to their identity to emerge from identifying the

molecules under the QTLs that co-regulate T cells and cellular

proliferation in the hippocampus. Mapping resolution in the HS is

approximately 3 Mb, insufficient to formally identify single genes.

However, it is worth noting that the locus on chromosome 6

contains the Cd8a and Cd8b genes, whose products are expressed in

CD4+CD8+ immature precursors in the thymus, and would be

expected to influence lineage commitment to either the CD4+ or

CD8+ lineages. A locus on chromosome 13 contains Fst

(Follistatin), already known to be involved in adult neurogenesis

[40].

The interaction between neurogenesis and T cell subsets is

another example of neural-immune communication across the

blood brain barrier: it is now clear that this happens outside of

disease states [41] and that a common molecular machinery may

operate in neurons and immune cells. Major histocompatibility

molecules and parts of the complement cascade are involved in

neural development and function [42]; many of the same cell

adhesion molecules regulate the specificity of interactions at both

neuronal and immunological synapses [43].

Our insights into the role of T cells in adult neurogenesis

depended upon access to multiple phenotypes obtained in a set of

genotyped animals. The delineation of biological control pathways

is hard to achieve through experiments that test one phenotype,

and one gene, at a time. The approach used here is likely to

become more common with the availability of genetic reference

populations, such as the collaborative cross [44,45].

Methods

Animals
Original Northport HS mice were obtained from Dr. Robert

Hitzemann at the Oregon Health Sciences Unit. Inbred strains

(A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6 J, CBA/J, DBA/2

J, and LP/J) were obtained from Harlan (UK) or the Jackson

Laboratory (Bar Harbor, ME). TCRa (Philpott PMID: 1604321),

RAG (PMID: 1547488), and MHC (Ab and b2M, Cosgrove

PMID: 1909605 and Koller PMID: 2682666, respectively)

deficient mice were from our custom-breeding colony housed at

the Jackson; wild-type controls used as comparators were

littermates from the same crosses. Neurogenesis parameters were

analysed in 10-wk-old animals. All mice were maintained in a

specific pathogen free facility under barrier conditions.

Phenotype Assays in the HS
All behavioural and other assays performed in the HS animal

are described in [46].

Inducible Ablation of Adult Neurogenesis
Ablation of adult neurogenesis was performed with both cellular

and temporal specificity using the nestin-tk mouse [19]. The mice

express the thymidine kinase (tk) gene from HSV type 1, under the

control of a minimal TK promoter element followed by a 1.8 kb

fragment of the 2nd intronic nestin enhancer [47]. GFAP-tk mice

were obtained from the Jackson Laboratory. We administered

GCV via ICV infusion at a rate of 0.25 ml/h by using an osmotic

minipump. Minipumps (Alzet, model 2004) were filled with 2 mM

GCV and primed for 36 h at 37uC. For implantation of the pump

and cannula, mice were anesthetized with 130 mg/kg ketamine

and 20 mg/kg xylazine and fixed to a stereotaxic frame after loss

of the paw withdrawal reflex. The osmotic pump was implanted

subcutaneously over the scapulae and fitted to an intraven-tricular

cannula (Brain Infusion Kit 3, Alzet) implanted 0.21 mm anterior,

0.85 mm lateral, and 3.0 mm deep to Bregma. Following surgery,

Figure 5. Effect of depletion and repopulation of T cells on
adult neurogenesis. (A) The KI67 positive cell counts in the dentate
gyrus of the hippocampus 10 d after CD4, CD8, or CD4 and CD8 T cell
depletion by antibody injection. Each group consisted of eight animals.
(B) The KI67 positive cell counts in the hippocampus after 2 wk of
reconstitution of TCRa knockout mice with CD4 or CD8 lymphocytes by
intraperitoneal injection of 26107 cells/mouse. Each group consisted of
six animals. Values shown are means 6 SEM.
doi:10.1371/journal.pbio.1000561.g005
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all mice were housed individually for the remainder of the

experiment.

Immunohistochemistry
For KI67 staining, sections were mounted on the superfrost slide

(BDH, UK), dried overnight, incubated in the 0.01 mol/L citric

buffer for 40 min at 90, incubated in 3% H2O2 for 10 min, rinsed,

and incubated overnight at room temperature with rabbit anti-

KI67 antibody (1:4000, Vector Lab). Next day, a standard rabbit

IgG ABC kit procedure was used and reacted 5–10 min with

Sigma DAB tablet. Sections were then counterstained with cresyl

violet and cover-slipped under DPX. KI67-labeled cells were

counted on every eighth section through the entire rostrocaudal

extent of the granule cell layer bilaterally. Section thickness is

40 mm. For DCX staining, free floating sections were incubated

with goat anti-DCX antibody (1:400, Santa Cruz Labs), then

following the same ABC kit procedure, reacted with Sigma DAB

tablet. DCX-labeled cells were counted on every sixteenth section

through the entire rostrocaudal extent of the granule cell layer

bilaterally. Section thickness is 40 mm.

Flow Cytometry
Blood samples (100–150 ml) were gathered in EDTA via tail-

vein phlebotomy. Erythrocytes were lysed in 5 rounds of

incubation with ACK lysis buffer followed by centrifugation.

Blocking in Fc solution was followed by incubation with CD3-PE,

CD4-APC, and CD8 FITC (eBiosciences) and two rinses in FACS

buffer. Flow cytometry was then performed on a BD FacsCanto II

instrument with FACS Diva software (BD Biosciences). Counts of

CD4 and CD8 positive cells were gated on the CD3 population,

and all percentages are expressed as a fraction of CD3+ cells.

Depletion of T Cell Subsets by Antibody
C57BL6/J mice (n = 8 in each group) received mouse received

intraperitoneal injections of anti-CD4 (YTS 191 and YTA 3.1.2)

or anti-CD8 (169) antibodies or both together, and the control

mice were injected with YK1X337 IgG. Antibodies were given

over a 3-d period, 0.5 mg per injection of anti-CD8, anti-CD4, or

control IgG antibody injection. Antibodies for depletion were a gift

from Dr. Stephen P. Cobbold, Sir William Dunn School of

Pathology, Oxford, UK. Mice were killed 8 d after the last

injection. Blood samples were collected for CD3, CD4, and CD8

analysis.

T Cell Isolation Transfer
Single cell suspensions of splenocytes from C57BL6/J donors

were subjected to magnetic bead cell sorting using anti-CD4 or

anti-CD8a paramagnetic beads (Miltenyi-Biotech) and positively

sorted with the AutoMACs cell separation equipment (Miltenyi-

Biotech) according to the manufacturer’s instructions. Briefly, cells

were incubated with beads on ice for 20 min in PBS 2 mM EDTA

washed and applied to the AutoMACS, and positive and negative

fractions were collected and tested for purity prior to transfer (all

transferred populations were .96% pure as judged by FACS).

Sorted cell populations were washed by centrifugation in DMEM,

resuspended to 86107/ml and administered to TCRa KO mice

(n = 6 in each group) by intraperitoneal injection of 250 ml/mouse

(26107/mouse).

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: GJH PK CB JF.

Performed the experiments: GJH ALS DHDG CC BHS AE SS JMP AJ DM.

Analyzed the data: GJH DHDG JMP RM PK CB. Wrote the paper: CB JF.

References

1. Clelland CD, Choi M, Romberg C, Clemenson GD, Jr., Fragniere A, et al.
(2009) A functional role for adult hippocampal neurogenesis in spatial pattern

separation. Science 325: 210–213.

2. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how

does adult hippocampal neurogenesis affect learning and memory? Nat Rev

Neurosci 11: 339–350.

3. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev

Neurosci 8: 481–488.

4. Leuner B, Gould E, Shors TJ (2007) Is there a link between adult neurogenesis

and learning? Hippocampus 16: 216–224.

5. Jaholkowski P, Kiryk A, Jedynak P, Ben Abdallah NM, Knapska E, et al. (2009)
New hippocampal neurons are not obligatory for memory formation; cyclin D2

knockout mice with no adult brain neurogenesis show learning. Learn Mem 16:
439–451.

6. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, et al. (2006) Ablation of
hippocampal neurogenesis impairs contextual fear conditioning and synaptic

plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103: 17501–17506.

7. Dupret D, Revest J-M, Koehl M, Ichas F, De Giorgi F, et al. (2008) Spatial
relational memory requires hippocampal adult neurogenesis. PLoS One 3:

e1959. doi:10.1371/journal.pone.0001959.

8. Zhang C-L, Zou Y, He W, Gage FH, Evans RM (2008) A role for adult TLX-

positive neural stem cells in learning and behvaviour. Nature 451: 1004–1007.

9. Farioli-Vecchioli S, Saraulli D, Costanza M, Pacioni S, Cina I, et al. (2008) The
timing of differentiation of adult hippocampal neurons is crucial for spatial

memory. PLoS Biology 6: e246. doi:10.1371/journal.pbio.0060246.

10. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, et al. (2008) Roles

of continuous neurogenesis in the structural and functional integrity of the adult

forebrain. Nat Neurosci 11: 1153–1161.

11. Bergami M, Rimondini R, Santi S, Blum R, Götz M, et al. (2008) Deletion of
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