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Sexual bias is a hallmark in various diseases. This review evaluates sexual dimorphism in 
clinical and experimental coxsackievirus B3 (CVB3) myocarditis, and how sex bias in the 
experimental disease changes with increased age. Coxsackieviruses are major causes 
of viral myocarditis, an inflammation of the heart muscle, which is more frequent and 
severe in men than women. Young male mice infected with CVB3 develop heart-specific 
autoimmunity and severe myocarditis. Females infected during estrus (high estradiol) 
develop T-regulatory cells and when infected during diestrus (low estradiol) develop 
autoimmunity similar to males. During estrus, protection depends on estrogen receptor 
alpha (ERα), which promotes type I interferon, activation of natural killer/natural killer 
T  cells and suppressor cell responses. Estrogen receptor beta has opposing effects 
to ERα and supports pro-inflammatory immunity. However, the sexual dimorphism of 
the disease is significantly ameliorated in aged animals when old females become as 
susceptible as males. This correlates to a selective loss of the ERα that is required for 
immunosuppression. Therefore, sex-associated hormones control susceptibility in the 
virus-mediated disease, but their impact can alter with the age and physiological stage 
of the individual.

Keywords: aging and immunocompetence, mouse models, T-regulatory cells and innate immunity, estrogen 
receptor alpha, estrogen receptor alpha:beta ratios and immune competence, sex bias in coxsackievirus B3 
myocarditis

inTRODUCTiOn

Myocarditis is an inflammation of the myocardium usually following microbial infections. Most 
viruses and many bacteria, fungi, protozoa, and helminths can initiate the disease including 
Picornaviruses and Adenoviruses (1–4). The clinical disease takes multiple forms including acute, 
chronic, giant cell, and eosinophilic myocarditis with differences in prognosis and in underlying 
pathogenesis (2, 3). Acute myocarditis may be severe but self-limiting and many investigators 
hypothesize that cardiac injury results from direct microbial injury to the heart or to antimicrobial 
host defense mechanisms including cytokine storms, which directly suppress myocyte contractility 
and function (3, 5, 6). Chronic myocarditis may last for months or years and result in either cardiac 
transplantation or death. Underlying mechanism for the chronic form remains controversial with 
dueling theories of persistent virus infection causing myocardial dysfunction or infection triggering 
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TABLe 1 | Estrogen receptor expression by cells of the immune system.

Cell eRα eRβ GPeR

CD4 T lymphocyte H (high) L H
CD8 T lymphocyte L (low) L
T regulatory cell L H H
B lymphocyte L H H
Natural killer cell H H
Monocyte L H
Macrophage H L H
Myeloid dendritic cell H H

Yakimchuk et al. (43); Kovats (33); Revankar et al. (41); Soltysik and Czekaj (42);  
and Klinge (40).
ERα, estrogen receptor alpha; ERβ, estrogen receptor beta; GPER, G protein-coupled 
estrogen receptor.
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autoimmunity to heart antigens (3, 5). Clinical trials of type 1 
interferon (IFN) treatment of virus positive cardiomyopathy 
patients showed virus clearance from the heart and partial 
improvement of cardiac function through 12  weeks posttreat-
ment although the improvement waned somewhat by 24 weeks 
posttreatment (7). Lack of a long-lasting protection with virus 
clearance could circumstantially favor autoimmune pathogenic 
mechanisms. Immunosuppression improves long-term survival 
for giant cell myocarditis patients (8) and has also been shown to 
be effective in acute myocarditis (9). However, not all clinical tri-
als have shown protection with immunosuppression (10). Mouse 
models of coxsackievirus B3 (CVB3)-induced myocarditis cause 
cardiac inflammation, which histologically resemble the clinical 
disease. While virus infection initiates myocarditis, predominant 
cardiac damage is immune mediated with strong evidence impli-
cating induction of autoimmunity to heart antigens (3). Factors 
required for autoimmunity include as follows: (1) the existence 
of autoreactive lymphocytes; (2) autoreactive cell activation; 
and (3) the absence of immunosuppression (11). Infections can 
lead to autoimmunity by several mechanisms. These include 
antigenic mimicry in which microbial and self-molecules share 
sufficient similarity to induce cross-reactive immunity (12, 13), 
and such antigenic mimicry has been described between CVB3 
and cardiac proteins (14, 15). Another mechanism is an adjuvant 
effect similar to immunization of self-proteins in complete 
Freund’s adjuvant (16, 17). The ability of adjuvants to promote 
autoimmunity probably results from their ability to activate the 
innate immune system through pathogen-associated molecular 
patterns stimulation of toll-like receptors (TLR). Giving specific 
TLR agonists along with cardiac proteins/apoptotic myocytes is 
sufficient for myocarditis induction while giving either adjuvant 
or heart tissue alone is ineffective (18, 19). Virus-induced tissue 
damage releases large amounts of normally sequestered antigens 
not normally available to the immune system. Autoimmunity can 
result from cryptic epitopes (20). Under certain conditions, these 
cryptic epitopes can become visible to the immune system and 
initiate pathogenic immune responses. While cryptic epitopes 
result from naturally occurring protein folding/unfolding or 
protein–protein interactions, most microbes encode their own 
proteases, which cleave cellular as well as microbial proteins and 
might produce peptides distinct from those produced by cellular 
proteases (21).

SeX-ASSOCiATeD HORMOneS  
COnTROL CvB3-inDUCeD  
MYOCARDiTiS SUSCePTiBiLiTY

Both the incidence and severity of myocarditis and dilated car-
diomyopathy are greater in men than women (22). This is true of 
enterovirus infections generally (23). CVB3 mouse models of myo-
carditis infecting young adult animals mimic the male dominance 
in disease susceptibility with females being largely protected from 
cardiac inflammation, myocardial injury, and death subsequent to 
viral infection (22, 24, 25). Testosterone promotes susceptibility 
as castrated males are protected while exogenous administration 
of testosterone restores cardiac inflammation. Similarly, estrogen 

(E2) is protective as ovariectomized females show increased 
myocarditis compared with intact females and E2 treatment 
of males is protective (24, 26). E2 levels determine myocarditis 
resistance since CVB3 infection of females during diestrus when 
E2 levels are lowest results in myocarditis susceptibility whereas 
CVB3 infection during estrus is completely protective (27). Sex 
hormones are well known for their ability to influence innate 
and adaptive immunity including type 1 IFN response, TLR 
type and level of activation, antigen presentation [macrophage/
dendritic cells (DCs)], and T lymphocyte polarization [reviewed 
in Ref. (28–33)]. Male and female CVB3-infected mice gener-
ate distinct T cell responses to infection with males generating 
pro-inflammatory and females generating anti-inflammatory or 
immunosuppressive (T-regulatory) responses (34, 35). Studies by 
Xiong and colleagues have shown hormonally regulated polari-
zation of macrophage leading to monocytic myeloid suppressor 
cells in females, and this may result from differences in innate 
immune responses (cytokine response by natural killer cells) to 
infection between males and females (36–38).

Mechanisms of estrogen signaling in cells have been extensively 
reviewed in the literature (33, 39–43) and will only be briefly dis-
cussed here. Estrogen mediates its effects primarily through two 
receptors, such as estrogen receptor alpha (ERα) and estrogen 
receptor beta (ERβ), which bind the hormone with similar affin-
ity but due to slight differences in the ligand binding pockets of 
the receptors, may promote transcription of distinct sets of genes  
(40, 43). Most lymphoid cells express either or both types 
of estrogen receptors [Table  1; reviewed in Ref. (33, 43, 44)]. 
The estrogen receptor binds to estrogen in the cytosol forming 
a complex and translocates to the nucleus for direct interac-
tion with estrogen response elements (ERE) in many gene 
promoters. Various ERE may differ in sequence resulting in 
differences in estrogen receptor binding affinity and variation 
in transcriptional activity. Even the same ERE can produce 
different transcriptional activation between distinct cell types 
because of variations in specific factors such as coactivators 
(40). Although ERβ has many similar characteristics to ERα, 
molecular mechanisms of transcriptional activation may differ 
between the receptors (45). Alternatively, the estrogen receptors 
may initiate transcription without directly interacting with 
DNA through binding to specific transcription factors including 
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NF-κB, SP1, AP-1, or C/EPBβ, which alters their DNA binding 
or coregulatory factor complex formation and gene activation  
(46, 47). In studies evaluating ERα–AP-1 and ERβ–AP-1 
response elements, evidence demonstrated that these nuclear 
hormone receptor subtypes can exert opposite transcription 
controls on gene expression (48). Thus, in certain  situations, 
ERβ can inhibit ERα-induced gene expression (49). Membrane 
bound ERα/ERβ, which are splice variants of the nuclear forms, 
and a transmembrane G protein-coupled estrogen receptor 
(GPER) induce much more rapid signaling compared with the 
classical nuclear ER isoforms (41, 42).

Studies determined that protection during experimental 
CVB3-induced myocarditis depends on signaling through ERα 
as disease susceptibility is increased in ERα knockout mice 
while infected male mice treated with the specific ERα agonist, 
propylpyrazoletriol (PPT) were protected (50). By contrast, 
signaling through ERβ promotes myocarditis as shown by 
treating female or male mice with the specific ERβ agonist, 
diarylpropionitrile. No studies were found on GPER in myo-
carditis, but GPER abrogates cardiac myocyte apoptosis during 
ischemia/reperfusion injury (51) suggesting a cardioprotective 
role. The mechanisms of  ERα-induced protection are likely 
to be multifaceted. ERα should increase expression of type 1 
IFNs (30), which are crucial to preventing cardiac injury (52). 
Previous studies have shown that E2 promotes T-regulatory cell 
activation both through upregulation of FoxP3 and through 
increased T-regulatory cell proliferation (53, 54). In systemic 
sclerosis patients, FoxP3(bright) cells were increased in 
patients with autoantibodies to ERα (55). GPER also attenu-
ates autoimmune diseases and elicits FoxP3 expression (56). In 
the myocarditis model, infecting young female during estrus 
but not during diestrus, activates T-regulatory cells (57) as 
does treating males with the ERα agonist, PPT (50). Signaling 
through the ERβ prevents T-regulatory cell activation. Unlike 
prior reports, however, control of T-regulatory cell response is 
not mediated through direct action on FoxP3 transcription but 
rather through regulation of natural killer T (NKT) and gamma-
delta T (γδT) cell responses (50, 58). Various studies report that 
NKT cell subpopulations suppress autoimmunity and increase 
T-regulatory cell numbers in  vivo (59–61). By contrast, γδT 
selectively kill T-regulatory cells and relieve immunosuppres-
sion resulting in autoimmunity (62). While PPT treatment of 
CVB3-infected males induces T-regulatory cells, this fails to 
occur in NKT knockout mice demonstrating that the effect of 
E2 signaling must be indirectly mediated through these innate 
effectors rather than through modulating FoxP3 expression in 
T-regulatory precursors directly (50). ERα modulates activities 
of many TLR most notably TLR 2, 7, 8, and 9 (30, 63, 64). By 
contrast, ERα may inhibit responses dependent on TLR4 (65). 
CVB3 infection selectively upregulates TLR2 in females but 
upregulates TLR4 in males (66, 67). Treating males with the 
specific TLR2 agonist dramatically reduces mortality while 
treating females with the TLR4 agonist promotes pathogenicity 
(19, 66). Interaction of NKT cells with immature myeloid DCs 
triggers tolerogenic maturation of the DC and T-regulatory cell 
generation while NKT cells interacting with DC in concert with 
TLR4 stimulation results in pro-inflammatory responses (68).

AGe AnD MYOCARDiTiS 
SUSCePTiBiLiTY: LOSS OF SeXUAL 
DiMORPHiSM

A systemic review of the world literature in 2010 reported no 
significant difference in age between men and women when 
evaluating the proportion of heart failure patients caused by myo-
carditis (69). However, in a report by Laufer-Perl et al. (70) of 200 
pericarditis/myocarditis patients, there was both an increased 
incidence and younger age for men (73%; 46 ± 19 years of age) 
compared with women (27%; 60 ± 19 years of age). In this latter 
study, the women had a lower rate of hospitalization raising the 
possibility that reduced disease severity in women might partially 
mask some epidemiological characteristics in this sex missed by 
evaluating heart failure. Also, when combining data encompassing 
all forms and etiological causes of myocarditis, distinct pathologi-
cal mechanisms in each type of myocarditis may be impacted by 
sex-associated hormones differently. In the experimental CVB3 
myocarditis model, the clear sexual dimorphism noted in young 
(2–4 months old) mice is lost in aged (8–12 months old) female 
mice, which show high mortality, increased cardiac inflammation 
and a pro-inflammatory phenotype resembling males (71). While 
exogenous E2 treatment of young females is protective (57), E2 
treatment of old females increased both mortality (68.8% or 
11/16 mice) and cardiac inflammation (72). Cardiac virus titers 
increase corresponding with increases in cardiac inflammation, 
myocyte injury, and animal mortality. Thus, E2 has the opposite 
effect in young and old female mice during CVB3-induced 
myocarditis (Figure  1). When spleens of old (12-month old) 
female mice were analyzed using Western blot and confirmed by 
RT-PCR, an approximately 90% reduction in ERα and a twofold 
increase in ERβ was observed compared with young (2.5-month 
old) female mice, giving a substantially higher ERα:ERβ ratio 
of in young than in old females. The trend in males was similar 
but more modest. A reduced ERα in old females corresponds to 
abrogated T-regulatory cell activation in these animals (50).

AGinG AnD THe iMMUne SYSTeM

Aging decreases adaptive immune responses to infection, 
reduces naïve T cells entering the periphery from the thymus due 
to thymic involution, and is associated with chronic immune 
activation and memory cell expansion ultimately leading to 
immunosenescence and skewering of the immune repertoire at 
the expense of the ability to respond to new antigens (73–76). 
Aging affects multiple cells including T cells, B cells, NK cells, 
DCs, macrophage, neutrophils, and hematopoietic stem cells. 
DCs are especially important in antigen presentation and ERα 
but not ERβ has been shown to promote optimal DC differentia-
tion and cytokine production (77). Studies on the effects of aging 
on DCs have been controversial with some studies reporting no 
changes in numbers, distribution, turnover, or engraftment abil-
ity of aged cells compared with cells from young mice (78); while 
other studies have found reductions in cDC but not pDC (79). In 
aged humans, pDC reportedly show both numerical and func-
tional decline in peripheral blood but myeloid DC do not (80). 
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FiGURe 1 | Sexual dimorphism in coxsackievirus B3 (CVB3)-induced 
myocarditis: dependence on estrogen (E2) concentration and relative 
estrogen receptor alpha (ERα):estrogen receptor beta (ERβ) expression in 
lymphoid cells. Young females (age 2–3 months) have high ratios of ERα:ERβ 
in spleen cells resulting in robust type 1 interferon (IFN) responses to CVB3 
infections, especially when virus infection occurs during estrus the time of 
peak E2. Signaling through ERα promotes T-regulatory cell responses leading 
to protection from myocarditis and animal mortality. Infection of young 
females during diestrus when E2 concentrations are low or infection of old 
females (12 months), which selectively lose ERα but increase ERβ expression 
in lymphoid cells results in reduced type 1 IFN response to CVB3 and 
prevents activation of T-regulatory cells. This results in induction of strong 
pro-inflammatory immunity and increased animal mortality and myocarditis, 
which is similar to disease observed in males. Thus, there is sexual 
dimorphism in CVB3-induced disease, but this can be dependent on both 
the hormonal state of the individual (stage of the estrus cycle when infection 
occurs) and the age of the individual when infection occurs. The age of the 
individual could be important as E2 regulation of dendritic cell development is 
well documented and is ERα dependent. Selective loss of ERα has been 
shown in the cardiovascular system with age and similar loss in lymphoid 
cells could affect immunocompetence.

4

Koenig et al. Sex Bias in CVB3-Induced Myocarditis

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1585

A number of studies report that aged DC from both humans and 
mice produce less type 1 and type 3 IFNs than cells from young 
individuals in response to TLR stimulation (81). While divergent 
reports exist, various studies have found that aging reduces 
MHC II and co-stimulatory molecule (CD40/CD86), impairs 
naïve T cell priming and potentially increases the negative co-
stimulatory molecule PD-L1, which promotes T-regulatory cell 

activation (81, 82). Studies in 26-month-old rats show that E2 
treatment inhibits maturation and functional activity of DC (83). 
Aging alters ERα and ERβ expression levels in various tissues 
most notably in the bone, brain, eye, kidney, and cardiovascular 
system (84–89). Changes are observed both in humans (84, 86, 90)  
and in rodents (85, 87, 89). The age-related reduction of ERα in 
heart and kidney results from increased methylation of the pro-
moter due to oxidative stress (89, 90). Whether reactive oxygen 
species might similarly reduce ERα in DC is unclear.

COnCLUSiOn

Sex-associated hormones determine enterovirus pathogenesis 
and act through their effects on the innate immune response. This 
is demonstrated through modulation of type 1 IFN responses, 
which can impact virus load in infected tissues but also on both 
the type and level of TLR expression, on the activation of innate 
effectors including NK, NKT, γδT and macrophage, and on the 
adaptive immunity including induction of autoimmunity to 
heart antigens. Androgens promote pro-inflammatory responses. 
Estrogens promote anti-inflammatory responses at high levels but 
are pro-inflammatory at low levels. Aged females become more 
disease susceptible presumably because of the dual effect of lower 
estradiol and decreased physiological expression of ERα, the 
protective estrogen receptor that results in a decreased ERα:ERβ 
ratio. Whether a similar phenomenon occurs in clinical myocar-
ditis is unclear. Few reports fully address age of men and women 
with myocarditis separately and with consideration of both the 
various types of myocarditis and the potential etiological mecha-
nisms of each disease form. The acute form presumably resulting 
from direct virus injury may experience greater benefit from 
type 1 IFN and hormones promoting this response while chronic 
myocarditis might have a different pathogenic mechanism.
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