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Abstract

Circular RNAs (circRNAs) are covalently closed transcripts involved in critical regulatory axes, cancer pathways and disease mecha-
nisms. CircRNA expression measured with RNA-seq has particular characteristics that might hamper the performance of standard
biostatistical differential expression assessment methods (DEMs). We compared 38 DEM pipelines configured to fit circRNA expression
data’s statistical properties, including bulk RNA-seq, single-cell RNA-seq (scRNA-seq) and metagenomics DEMs. The DEMs performed
poorly on data sets of typical size. Widely used DEMs, such as DESeq2, edgeR and Limma-Voom, gave scarce results, unreliable
predictions or even contravened the expected behaviour with some parameter configurations. Limma-Voom achieved the most
consistent performance throughout different benchmark data sets and, as well as SAMseq, reasonably balanced false discovery rate
(FDR) and recall rate. Interestingly, a few scRNA-seq DEMs obtained results comparable with the best-performing bulk RNA-seq tools.
Almost all DEMs’ performance improved when increasing the number of replicates. CircRNA expression studies require careful design,
choice of DEM and DEM configuration. This analysis can guide scientists in selecting the appropriate tools to investigate circRNA
differential expression with RNA-seq experiments.
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Introduction
Circular RNAs (circRNAs) are transcripts in which an upstream 5′

splice site and a downstream 3′ splice site are covalently joined
through a backsplicing process [1]. CircRNAs are pervasively
expressed in eukaryotes, play critical cellular roles, are involved
in disease and cancer mechanisms, and find many biomedical
applications [1–4]. The last decade has seen mounting interest in
studying circRNAs [5]. CircRNAs are often investigated through
high-throughput total RNA sequencing (RNA-seq), and their char-
acterization is becoming a fundamental part of transcriptomics
analyses [6–9].

Most bioinformatics tools that quantify circRNA expression
from RNA-seq data estimate circRNA abundance by counting the
backspliced reads, i.e. the spliced reads aligned in non-collinear
order to backsplice junctions [5, 10]. They allow composing of
backsplice junction read (BJR) count expression matrices, which
can be analysed with statistical methods devised to assess differ-
ential gene expression (DGE) [11]. Although several works bench-
marked the numerous DGE assessment tools developed for RNA-
seq technology [12–17], circRNA expression data have never been
considered so far.

CircRNA expression is generally low, as backsplicing is rarer
than linear splicing [1, 18, 19], and, in RNA-seq data, the back-
spliced reads constitute no more than 2% of all spliced reads
[18]. Moreover, technical aspects of the procedure to quantify
the circRNA abundance from RNA-seq data may hamper the
estimation of circRNA expression levels, even when circRNA-
enriched sequencing libraries are employed [19]. Such biological
and technical characteristics lead to numerous low-count expres-
sion estimates, which can undermine the performance of DGE
assessment methods [16, 20, 21].

Thus far, only the circMeta package [22] provides a statistical
method specific for differential circRNA abundance. The authors
of circMeta observed that the Poisson distribution modelled
circRNA expression counts better than the negative binomial
(NB). Therefore, they proposed using a Poisson-based z-test to
determine differentially expressed circRNAs and showed that it
was more powerful than DESeq2 [23] and edgeR [24]. However,
their comparison was limited to parametric simulations based on
a single real data set with a small number of replicates. Moreover,
the parameter settings exploration was limited to the default
for the two competitor methods, and only circRNAs expressed at
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moderate to high levels were considered, as is expected when
selecting the circRNAs jointly predicted by multiple circRNA
detection tools [25, 26].

In this work, we first explored the characteristics of circRNA
expression count data, confirming that most circRNAs yield small
counts in typical RNA-seq data sets and highlighting a consider-
able fraction of zero counts. Then, we compared traditional DGE
tools for bulk RNA-seq applied to circRNA expression data, consid-
ering different parameter combinations for low-count and sparse
data. Because we observed similar features between circRNA,
single-cell and microbiome RNA-seq data, we also included sta-
tistical models developed for those fields. In total, we compared
38 differential expression assessment pipelines on hundreds of
semi-parametric and non-parametric simulated circRNA expres-
sion count data sets, evaluating the type I error control, FDR,
recall, F1-score, area under the precision-recall curve (AUPRC) and
similarity of predictions between the methods. Our systematic
and comprehensive benchmarking provides an overview of the
weaknesses and strengths of differential expression tools on cir-
cRNA data.

Results
CircRNA expression data are characterized by a
high proportion of small and zero counts
The signal to measure circRNA abundance from RNA-seq is lim-
ited compared to that available for linear transcripts and genes.
CircRNAs are generally less abundant than linear transcripts and
can be quantified unambiguously only by the reads encompass-
ing the backsplice junctions [10, 27] (Figure 1A). Besides, gene
expression abundance is measured by counting both the spliced
and unspliced reads aligned to the whole gene region, thus sum-
ming the expression of all transcript isoforms of a gene [28]. In
contrast, each circRNA represents one single transcript, and the
BJRs originate only from the specific site of the circRNA sequence
where the junction ends were joint [19] (Figure 1A). Moreover,
BJRs are computationally harder to identify than unspliced and
linearly spliced reads as they require non-collinear alignments
and additional processing to remove spurious hits [5], causing
most circRNA detection tools to suffer from low detection rates
[19, 26].

The combination of circRNA biological features and compu-
tational hindrances in estimating their expression can result in
data sets with a large fraction of small counts. We verified this
characteristic in 34 RNA-seq data sets of matched ribosomal RNA-
depleted and circRNA-enriched libraries from 17 human tissues
(Table 1).

CirComPara2 [26] was used to obtain linear and circular read
mappings on circRNA-host genes. We discriminated four read
alignment sets representing the expression signal available for
(i) estimating gene expression, (ii) studying alternative splicing,
(iii) comparing the abundance of circular and linear transcripts
expressed by a gene, and (iv) estimating circRNA abundance. We
compared the magnitude of the expression signals by counting
(i) the unspliced and linearly spliced reads together, (ii) only the
linearly spliced reads, (iii) only the linearly spliced reads aligned
into backsplice junctions and (iv) only the BJRs (Figure 1A).

Regardless of the circRNA library enrichment, we observed
that the highest signal was obtained for gene expression
estimates, followed by the linearly spliced reads (Figure 1B;
Supplementary Figure S1). In turn, the spliced read counts
slightly diminished if considering only those mapped on
backsplice junctions. The BJRs showed the lowest values, also

in the circRNA-enriched samples (Figure 1B). Notably, median
BJR counts were less than or equal to 10 in most samples
(Supplementary Figure S1). These observations supported the
hypothesis that, in RNA-seq data, circRNA expression estimates
rely on a low signal biased by the quantification procedure.

We further considered circRNA expression in RNA-seq data
sets with multiple biological replicates to analyse the BJR count
distribution of circRNA expression matrices. From the Sequence
Read Archive public repository [29], we collected RNA-seq data of
four independent circRNA studies that compared groups with at
least five samples sequenced, more than 40 million paired-end
reads, and composed of 10–50 samples of human tumours and
healthy tissues (Table 1). In each data set, the samples showed
high circRNA expression correlation within conditions, denoting
homogeneity of the samples (Table 1).

In these data sets, most BJR counts laid below 10 (Figure 1C),
indicating that the circRNA small counts were not data set spe-
cific. Moreover, most circRNAs had a median BJR count of less
than 10 (Figure 1D), and the more samples in which a circRNA
was detected, the higher the median BJR count (Figure 1E).

These results suggested that the less expressed circRNAs might
be undetected in some samples because of a sampling bias [30],
which could inflate zero counts. Notably, the zero-count fraction
was large in all data sets (Figure 1C). The unfiltered data set
sparsity ranged from 44 to 72% null counts, but was not signif-
icantly correlated to the library size (rPearson = 0.05, P-value >0.9)
(Supplementary Figure S2).

To ascertain that these observations were not determined by
some artefacts of the circRNA expression estimation algorithm,
we computed the BJR counts with six additional circRNA
quantification pipelines. We observed that the BJR count
distribution was comparable among the quantification methods
(Supplementary Figure S3), and the proportion of zero counts
was high in all data sets regardless of the quantification pipeline
(Figure 1F).

Plus, as it is common practice in RNA-seq expression analysis
[31], we applied five independent expression filtering strategies
to the BJR count matrices, which considered discarding circRNAs
according to the number of samples in which they were detected.
As expected, the expression filters reduced the number of zero
counts, but at the cost of discarding a significant fraction (from
30% up to 95%) of circRNAs (Figure 1F). Moreover, the number
of the low BJR counts remained high (Supplementary Figure S3),
suggesting that the circRNAs detected in multiple samples also
yielded a low expression signal.

Statistical modelling of circRNA expression count
data
RNA-seq count data is often modelled with an NB distribution
[32]. However, when zero counts are in excess, a zero-inflated NB
distribution (ZINB) may fit the data better [33]. We thus evaluated
whether a ZINB distribution can model BJR counts better than
an NB by calculating the goodness-of-fit (GOF) on the BJR count
matrices, unfiltered and upon applying the expression filters. For
each circRNA, the NB and ZINB GOF were compared according to
the root mean square error (RMSE) of the mean counts and prob-
ability of observing a zero and the Akaike information criterion
(AIC) scores.

Both NB and ZINB distributions obtained a small error for
the mean count estimation (RMSE <0.07) independently of the
expression filtering procedure and data set (Supplementary Fig-
ure S4). The ZINB model provided better estimates of the observed
zero proportion than the NB for each expression filter and data set
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Figure 1. BJR count characteristics and circRNA expression in data sets. (A) The reads used to estimate linear transcript and gene expression in
conventional RNA-seq gene expression analysis (blue frame) include unspliced reads (purple) and linearly spliced reads (red frame). The reads available
to analyse the circRNA expression (grey frame) include the backspliced reads (green), which are used to estimate circRNA absolute expression, and
the subset of the linearly spliced reads that involve backsplice junctions (yellow), which are compared to the backspliced reads to compute relative
abundance of a circRNA to the host-gene linear expression. (B) The distribution of the per-gene mapped read counts in human brain tissue samples
(PRJCA000751) sequenced from rRNA-depleted RNA-seq libraries (Ribo-) and Ribo- followed by RNase R treatment (RNase R). Four sets of reads,
corresponding to the groups and colours as in (A), were considered: Linearly mapped (blue), All spliced (red), Spliced on BJs (yellow) and Backspliced
(green). (C) The proportion of BJR counts in the multi-sample DM1, IDC, IPF and MS data sets. The number of samples composing each data set and
the total number of circRNAs detected is reported. The boxplot of each data set’s sample library size is on the right. (D) The cumulative fraction of
circRNAs for expression levels measured as average BJR. (E) The circRNA expression distribution in average BJR, given the number of samples in which
the circRNAs were detected. (F) Percentage of zero counts and the number of circRNAs discarded upon the filtering procedure for each detection tool and
data set. (G) The percentage of circRNAs best modelled by an NB or a ZINB model according to AIC in each data set and upon the filtering procedures.

except in the MS data set upon the application of the two filters
discarding most circRNAs (i.e. ‘By condition’ and ‘Half samples’)
(Supplementary Figure S5). However, we observed small errors
also for the NB (RMSE <0.09). According to the AIC measure, the
ZINB distribution modelled the BJR count data better than the NB
for most circRNAs across data sets and expression filters (mean
68 ± 17%) (Figure 1G), suggesting that the model accounting for an
excess of zeros might improve fitting circRNA expression data.

Comparison of differential expression
assessment methods on circRNA data
In this work, we focus on the problem of assessing circRNA differ-
ential abundance. The traditional methods for bulk RNA-seq data
analysis have been the primary choice when analysing circRNA
expression, with DESeq2 [23], edgeR [24, 31, 34] and Limma-Voom
[35] arguably the most used. However, the circRNA expression
characteristics shown above suggest that circRNA BJR count data
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Table 1. The characteristics of the circular RNA data sets analysed in this study

Name in this
study

Accession ID and original
study reference

Use in this study Number of samples; replicates in each group; sample
tissue; min-max sequenced reads; read type

Correlation among
replicates∗

JHS aPRJCA000751
[29]

Comparison of read
counts per alignment type

17 human tissue samples, matched ribodepleted and
RNase-R treated libraries; 31–254 M 150 bp PE

-

DM1 §§GSE86356
[30]

Semi-parametric
simulations

30 samples: 25 Myotonic Dystrophy Type 1 and 5 tibialis
anterior muscle biopsies (healthy controls); 84–120 M
50 bp PE

(0.76, 0.96)

IDC §§§SRP156355
[31]

Semi-parametric
simulations

10 samples: 5 Invasive Ductal Carcinoma and 5 normal
breast tissue; 67–120 M 100 bp PE

(0.42, 0.89)

IPF §§GSE52463
[32]

Semi-parametric
simulations

15 samples: 8 Idiopathic pulmonary fibrosis and 7
normal; 40–60 M 100 bp PE

(0.50, 0.94)

MS §§GSE159225
[33]

Semi-parametric
simulations

50 samples: 30 multiple sclerosis and 20 healthy tissues;
80–140 M PE 150 bp

(0.74, 0.77)

PC PMID 35078526
[34]

Non-parametric
simulations

96 samples: 20 normal versus 76 prostate cancer (only
batch 2 of the original data set); CIRI2 BJR count matrix

(0.40, 0.90)

aNGDC ID (National Genomics Data Center, China National Center for Bioinformation); §§GEO ID; §§§SRA ID; ∗ Pearson’s correlation (minimum, maximum)
calculated among replicates within conditions based on BJR counts; M: million reads; PE: paired-end; BJR: backsplice junction read

could not comply with the traditional differential expression
methods (DEMs) assumptions and disrupt their performance.

The high proportion of small counts and the sparsity of circRNA
expression data are comparable to those observed in single-cell
RNA-seq (scRNA-seq) and whole metagenome shotgun sequenc-
ing (WMS). In particular, the circRNA data’s small counts and
library size are similar to droplet-based scRNA-seq data [30].
Further, the sparsity of circRNA data is analogous to scRNA-seq
and WMS data, which range between 12 and 75% zeroes and
35 and 89%, respectively [17]. Finally, we observed that a ZINB
distribution fits circRNA data better than NB in half the cases, as
described in full-length scRNA-seq [30].

Therefore, we benchmarked 18 DEMs, including bulk RNA-
seq DEMs and a few tools conceived for scRNA-seq and WMS
data, selecting those freely available as R packages or functions.
Furthermore, we explored different parameter settings, the ZINB-
WaVE package weighting strategy [36, 37] and normalization
approaches [38, 39] coupled to DESeq2, edgeR and Limma-Voom
to handle small counts and sparse data specifically.

In total, we compared 38 differential expression analysis
pipelines (Supplementary Table S1), evaluating their type I error
control, FDR, true positive rate (TPR, or recall), F1-scores, AUPRC
and computation time. Moreover, we calculated the similarity of
predictions between DEMs according to two similarity indexes.

Benchmark data sets simulation with a semi-parametric
approach
We generated 720 simulation data sets using SP-SimSeq [40], a
semi-parametric approach that preserves the real circRNAs and
circRNA-circRNA correlations observed in real data. Specifically,
for each of the four multiple-sample data sets, we simulated 30
expression matrices with an equal number of samples in two
conditions considering three (N03), five (N05) and ten (N10) sam-
ples per group. ‘Null’ data sets with no differentially expressed
circRNAs (DECs) and ‘signal’ data sets with 10% DECs were gen-
erated. We evaluated the simulated data sets’ quality according
to expression levels, fractions of zeros and the relation between
the both, as in Soneson and Robinson [41]. All measures were
not significantly different from the original data sets, confirming
that the simulated data followed the original data characteristics
(Supplementary Tables S2–S4).

The following paragraphs show the results of the N05 size data
sets for the 0.05 significance threshold. We reasoned that this is a

common scenario for circRNA RNA-seq experiments. The results
from the N03 and N10 simulations at 0.01 or 0.1 significance are
available in the Supplementary Material.

Type I error control
We evaluated the type I error rate for each DEM, i.e. the prob-
ability of predicting a DEC when it is not, by computing the
false positive rate (FPR) in the ‘null’ data sets. The ‘null’ data
sets allowed to evaluate the DEMs’ type I error rate as any DEC
called as significant represent a false-positive (FP) prediction. The
methods could be grouped according to (i) liberal, (ii) conservative
and (iii) sufficient control of the type I error (Figure 2). Among
the liberal methods, Seurat-BIM-LRT showed largely uncontrolled
type I error (FPR = 0.38), consistently with a previous assessment
by Soneson and Robinson in scRNA-seq [15]. Other methods with
moderately liberal type I error control included Seurat-WLX and
three edgeR pipelines (TWSP, RBST and 50DF), with a median
FPR between 0.10 and 0.12, whereas slightly liberal methods
included edgeR-ZW, NBID, Voom-LF, Voom-QN (0.07 ≤ FPR ≤ 0.08).
In contrast, conservative results (0 ≤ FPR < 0.03) were obtained by
MAST, lncDIFF, DEsingle, the Wilcoxon test, Limma-VST and all
the DESeq2 pipelines but DESeq2-ZW. The remaining methods
achieved an FPR close to the nominal value (0.03 ≤ FPR < 0.07), and
most of them (10 out of 16) were bulk RNA-seq methods. Results
from NOISeqBIO were not suitable for type I error estimation
because the NOISeqBIO’s scores are comparable with adjusted P-
values, explaining its low FPR. We show NOISeqBIO in this analysis
only for the completeness of the report. The quasi-likelihood
framework [31, 42], devised to improve type I error control when
a linear model contains fitted values that are exactly zero, was
effective using edgeR (edgeR-QFT) but not with the Limma-Voom
pipeline (Voom-LF), which obtained slightly higher FPR than the
other Limma-Voom versions. Interestingly, DESeq2 showed a type
I error closer to the imposed α only when using the ZINB-WaVE
weights.

The performance of the methods was consistent regardless of
the α threshold (Supplementary Figure 6). Plus, a larger sample
set improved the error rates only slightly for most methods
except DESeq2, especially DESeq2-ZW, which showed much better
results in larger data sets. Instead, Seurat-WLX, metagenome-
Seq and the three edgeR pipelines mentioned above showed
larger FPRs with data sets of increased size (Supplementary
Figure S6).
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Figure 2. Type I error control and signal-to-noise statistic rates. FPR at P-value 0.05 of the DEMs on the ‘null’ data sets with 10 samples (N05). On top,
the clustering according to FPR difference from the 0.05 nominal alpha using Euclidean distance and complete agglomeration method; indication of the
method purpose; and boxplots of the FPR scores. The central boxplots show the signal-to-noise statistics (coefficient of variation, CV; fraction of zero
counts; average and variance of counts per million; CPM) of circRNAs called differentially expressed (DECs) at adjusted P-value 0.05. The bottom stacked
bar chart shows the number of simulations with at least five DECs, colouring according to the data set from which the instances were simulated. Bulk:
tools devised for bulk RNA-seq data; Single-cell/metagenome: tools devised or adapted for single cell and metagenome RNA-seq data.
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Expression estimate characteristics of the FP differentially
expressed circRNAs
We calculated signal-to-noise statistics for each tool that reported
five or more FP DECs in at least one ‘null’ data set. Similarly to a
previous work by Soneson and Robinson [15], we compared the
significant and non-significant DECs according to their average
counts per million (CPM), coefficient of variation (CV), variance
and mean fraction of zeros (Figure 2). In general, we did not
observe marked signal-to-noise statistics. The CV and variance
of CPM were slightly positive for all methods, particularly the
edgeR pipelines, except the CV for SAMseq and PoissonSeq, which
were mostly negative. Likewise, the average CPM of FP DECs was
slightly higher than not significant circRNAs, except for Seurat-
BIM, ROTS, metagenomeSeq and the few FP DECs predicted by
Limma-VST. We observed a heterogeneous behaviour regarding
the fraction of zeros: Limma-VST, metagenomeSeq, ROTS, Voom-
ZW, monocle, edgeR (except edgeR-QFT) and Seurat-BIM failed
more on circRNAs with higher fractions of zero counts. FP DECs
originated approximately equally from all scenarios except for
circMeta-DT, which showed a higher FP number on the IDC and
MS data set instances (Figure 2). Overall, the zero counts did
not significantly affect the type I error control as much as the
expression abundance and variance.

FDR, power, F1-score and AUPRC
We used the ‘signal’ data sets to evaluate the methods’ FDR and
TPR. The Wilcoxon’s test and Seurat-WLX did not generate any
significant prediction (Figure 3A), thus resulting in a null TPR
(Figure 3B), and lncDIFF, MAST and DEsingle returned significant
predictions only in a few simulation instances. Similarly, DESeq2,
PoissonSeq and Limma-VST did not predict any DEC in a relevant
fraction of simulation instances, especially from the MS data sets.
Only Seurat-BIM and circMeta-LC provided predictions below the
imposed level in all the simulation instances.

Most methods (22 out of 38) showed higher FDR than the
imposed 0.05 level: lncDIFF and Seurat-BIM scored the worst
FDRs (FDR = 1 and 0.95, respectively), followed by PoissonSeq,
circMeta, all edgeR pipelines, NBID, metagenomeSeq, monocle,
ROTS and all Voom pipelines but Voom-ZW (FDR > 0.09). In con-
trast, NOISeqBIO, MAST, DEsingle, Limma-VST and all DESeq2
pipelines but DESeq2-ZW controlled the FDR lower than the nom-
inal value (0 ≤ FDR ≤ 0.01). In DESeq2, a slightly more conservative
FDR was obtained using the likelihood ratio test (DESeq2-LRT)
compared with the Wald test (DESeq2-WaT). Voom-ZW, DESeq2-
ZW, glmGamPoi and SAMseq controlled the FDR close to the nom-
inal value. Notably, every method except DEsingle and MAST pre-
sented FDP close to 1 in some instances. All methods obtained bet-
ter FDR control on the N10 data sets but maintained the charac-
teristics observed in the N05 data sets (Supplementary Figure S7).

The sensitivity was generally low, with a median below 50%
for all methods (Figure 3B). The highest TPRs (0.43 ≤ TPR ≤ 0.41)
were obtained by three edgeR pipelines (TWSP, RBST and 50DF).
SAMseq, NBID, monocle and four Voom pipelines (Voom-QN,
Voom-LF, Voom-RBST and Voom-DT) obtained TPRs between
0.36 and 0.31, whereas the remaining methods identified less
than 30% true DECs. The choice of parameters greatly influenced
sensitivity in edgeR pipelines. Interestingly, the quasi-likelihood
framework produced opposite results when applied to edgeR or
Limma-Voom, with the lowest and the highest TPR among the
respective pipeline configurations. Similarly, ZINB-WaVE weights
allowed higher recall rates with edgeR and DESeq2 but a lower
TPR with Limma-Voom. Regarding the DESeq2 pipelines, the

scRNA-seq-oriented pipelines obtained higher recall rates than
the bulk RNA-seq configurations (Figure 3B; Supplementary
Figures S8–9). Notably, the adaptation to low counts of the
circMeta test sensibly improved the recall rate (median TPR
0.23 and 0.03, respectively). Poor performance, close to zero, was
achieved by Limma-VST, lncDIFF, DEsingle, MAST, the Wilcoxon
test, Seurat-WLX and the bulk RNA-seq configurations of DESeq2.

All methods achieved significantly higher sensitivity with
increased set sizes, except lncDIFF and Seurat-WLX, which did
not detect any true DEC, and metagenomeSeq, which improved
only a little (Supplementary Figure S9). The highest TPR among
all settings (TPR = 0.9) was achieved by edgeR-RBST and edgeR-
TWSP when allowing for a 0.1 adjusted P-value threshold in the
N10 data sets (Supplementary Table S5). In the smallest data sets
(N03), NOISeqBIO had the highest recall rate (TPR = 0.7 with 0.1
adjusted P-value), which was surprisingly higher than in the larger
sets (Supplementary Figure S9).

We inspected the P-value distribution obtained in the ‘signal’
data sets to understand better the DEMs’ predictions (Sup-
plementary Figure S10). CircMeta, edgeR, glmGamPoi, Limma-
VST, NBID, PoissonSeq, ROTS, SAMseq and Voom showed P-
value histograms as expected [43]. The other DEMs did not
show a uniform distribution of the P-values, most having an
overabundance of large P-values or a distribution skewed towards
P = 1. Interestingly, the DESeq2 overabundance of large P-values
was mitigated using the weights for zero counts. Comparing the
P-value histograms between the N05 (Supplementary Figure S10)
and N10 (Supplementary Figure S11) simulations, we observed
better P-value distributions, indicating that the conservative
P-value distributions were due to insufficient power of the
methods with a small number of samples [16, 43]. We observed
a worse performance of Seurat-WLX compared to the simple
Wilcoxon rank-sum test. As Seurat-WLX implements an extended
Wilcoxon rank-sum test that considers correlations between
cases, the presence of positive correlations between circRNAs
possibly increased the variance of the test, making the test more
conservative.

Similarly to the analysis of type I error, we calculated the
signal-to-noise statistics of the variability, fraction of zeros
and expression abundance, comparing for each method the
false-negative (FN) and true-positive (TP) predictions, i.e. the
circRNAs not detected as differentially expressed compared
to those correctly identified. We did not observe significantly
different characteristics of the FN compared to the TP predictions
(Supplementary Figures S12–14). The poor recall rate could be
related to an imprecise dispersion estimation of the models [44]
or a systematic deviation from the theoretical null distribution of
the test statistics [43].

We calculated the F1-score of each method to evaluate preci-
sion and recall simultaneously (Figure 3C; Supplementary Table
S5). Monocle and SAMseq obtained the highest F1-score (F1 = 0.61),
followed by Voom-QN (F1 = 0.58), edgeR-TWSP and edgeR-RBST
(F1 = 0.57 and 0.56, respectively).

We observed that the methods generally achieved better pre-
cision than recall and that precision scores were less spread than
recall scores. In particular, edgeR-TWSP and edgeR-RBST owed
their high F1-scores mainly to their high recall rates. Instead, SAM-
seq, monocle and Voom-QN scores were driven mainly by a high
precision (PPV ≥ 0.88) (Supplementary Table S5). Interestingly, the
circMeta tests, designed explicitly for circRNA expression, ranked
amongst the lowest F1-scores. SAMseq held the highest score also
in the N03 data sets (Supplementary Figures S15–16). However,
we observed a different ranking in the N10 data sets: Voom and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
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Figure 3. Performance on N05 semi-parametric simulated data sets at adjusted P-value 0.05. (A) On the top is a dendrogram showing the clustering of
the methods according to false discovery proportion (FDP) difference to the nominal value (Canberra distance, optimal leaf ordering), and whether the
method was developed for bulk (purple) or single-cell/metagenome (magenta) RNA-seq; the bars below show the number of simulated instances with
significant predictions for each data set. The boxplots show the distribution of each method’s FDP, (B) TPR, (C) F1 score and (D) AUPRC obtained in all
the simulated data sets. To increase visibility, the FDP y-axis was square-root-scaled, and the AUPRC was exponentially scaled.

monocle still achieved the top scores, but ROTS, glmGamPoi,
DEsingle and five edgeR configurations ranked ahead of SAMseq
(Supplementary Table S5; Supplementary Figures S15–S16).

Finally, we inspected the ability of the methods to rank true
DECs ahead of not significant ones by computing the AUPRC. The
AUPRC is informative for data sets with a significant skew in the
class distribution [45, 46], as in our simulations. DEsingle obtained
the highest AUPRC scores, notwithstanding its poor performance
observed in the above analysis, indicating that DEsingle could
almost perfectly rank true DECs on the top positions and suggest-
ing an overly conservative assignment of the P-values (Figure 3D).
SAMseq, Voom-DT, Voom-RBST and monocle obtained the next
best scores (median AUPRC ≥0.7) (Supplementary Table S6). Inter-
estingly, we observed that some methods showing poor perfor-
mance according to the above metrics, including DESeq2-ZI, the

Wilcoxon-based methods and MAST, obtained AUPRC scores com-
parable to the best- performing tools. In larger data sets, only
lncDIFF and Seurat-BIM showed small AUPRC scores and a mod-
est improvement (Supplementary Figure S17).

Analysis with non-parametric simulations from an
independent data set
To corroborate the outcomes of the semi-parametric simulation
analysis, we performed non-parametric simulations from an inde-
pendent study data set. We obtained the BJRs of 8239 circRNAs
computed with CIRI2 in 20 normal tissues and 76 tumour samples
from a recent study on prostate cancer [47] (Table 1). In this data
set, the number of replicates was sufficient to use the SimSeq tool
[48], which performs non-parametric simulations without impos-
ing any distribution assumption on the simulated data. Similarly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
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to the previous analysis, we generated 90 instances for ‘null’ and
‘signal’ data sets with 6, 10 and 20 samples of two equally large
condition groups. We analysed these data sets like the semi-
parametric data and ranked the methods according to FPR, TPR
and FDR in each simulation type (Supplementary Figures S18–20).
We observed a significant positive correlation between the mean
ranks of the non-parametric and semi-parametric simulations
(Spearman’s rho >0.5, P-value <0.001; Supplementary Table S7),
indicating a generally consistent performance of the methods in
the two simulation settings. Unexpectedly, DEsingle showed an
opposite AUPRC score than the semi-parametric results.

Similarity of DEMs’ predictions
The methods’ similarity was explored in the semi-parametric
simulations according to two metrics that considered the magni-
tude of prediction overlap and inquiring into different aspects of
the use of predictions. First, we evaluated the similarity between
method pairs according to the overlap of their DECs with an
adjusted P-value ≤0.05, which allowed us to calculate the Jaccard
similarity coefficient. Second, for each method pair, we considered
the area under the concordance at the top (CAT), which we
defined as the overlap of the top 100 circRNAs ranked according to
adjusted P-values, regardless of fixed thresholds for the adjusted
P-values.

Clustering the DEMs according to the similarity indexes, we
observed that DEMs of the same base tool tended to cluster
together (Figure 4). In particular, DESeq2 and Voom showed a high
degree of similarity within the respective pipelines, suggesting
that modifying the parameters of these tools did not affect their
outcomes much. Instead, the three edgeR pipelines characterized
by high FPR and TPR clustered apart from the other edgeR
configurations. Consistently with the results above, Voom-LF
clustered apart from edgeR-QFT. DESeq2 and edgeR using ZINB-
WaVe weights reported similar predictions but slightly different
from Voom-ZW. Interestingly, edgeR pipelines clustered closer to
the Voom than DESeq2 pipelines according to Jaccard similarity
(Figure 4A), whereas three edgeR configurations grouped closer
to DESeq2 when considering CAT (Figure 4B), indicating more
conservative P-values provided by DESeq2. Further, the scRNA-seq
and bulk RNA-seq DEMs did not show distinct groups, indicating
that they can provide similar results.

In the N10 data sets, allowing adjusted P-values ≤0.1, the
DESeq2 pipelines showed the most consistent predictions regard-
less of the parameter configuration according to both the Jaccard
index and CAT (Supplementary Figures S21–22). Conversely, the
other DEMs showed a consistent ranking of their predictions
(Supplementary Figures S22) but a great variation according to
Jaccard similarity (Supplementary Figures S21), suggesting that
the parameter configurations influenced the P-value magnitude
but maintained the DEC ranking.

Overall ranking of the methods
To compare the methods’ performances overall, we computed
each method’s rank relative to the other DEMs according to the
F1 score, FDR, TPR, AUPRC and FPR measures, independently in
each simulated data set, with lower ranks corresponding to better-
performing methods. The mean ranks and standard deviations
computed on the N05 data sets are represented in Figure 5.

LncDIFF, MAST, Seurat-WLX, the simple Wilcoxon test and
DEsingle consistently performed worse than the other methods
in all simulations. DEsingle achieved a good ranking according
to the AUPRC, but the above analysis showed its unreliable
behaviour in different data sets. NOISeqBIO, the DESeq2-BP,

DEseq2-LRT, DEseq2-WAT, Limma-VST and PoissonSeq showed
poor performance, ranking close to or higher than the third
quartile. Seurat-BIM ranked the worst according to AUPRC and
FPR. DESeq2 obtained poor ranking according to F1 score, FDR
and TPR while scoring average ranks for the AUPRC and FPR.
Interestingly, DESeq2-ZW showed a slightly better ranking than
the other DESeq2 configurations.

EdgeR-RBST, edgeR-TWSP, edgeR-50DF and NBID obtained the
best mean ranks (below or close to the first quartile) accord-
ing to F1 scores, owing mainly to their high TPRs. However, the
edgeR pipelines ranked poorly according to FPRs, putting some
concerns about the reliability of their predictions. Besides, NBID
was outperformed by more than half the DEMs, according to
the AUPRC, suggesting that it is suboptimal for modulating a
significance threshold. All the Voom pipelines except Voom-ZW
obtained rank below the median in all measures, indicating the
consistently good performance of the Limma-Voom models, espe-
cially Voom-DT and Voom-RBST. The other edgeR-based methods
were a close second. SAMseq and monocle showed interesting
results on average but with a large variation, which indicates less
consistent performance. Notably, all DEMs’ mean FPR ranks were
above the first quartile, indicating that no method consistently
outperformed the others in controlling type I error.

Different rankings were obtained on the data sets with 3 and 10
replicates per group (Supplementary Figure S23), confirming that
the sample size greatly influenced the method performances.
DESeq2 obtained the best improvement in larger data sets,
whereas circMeta, NOISeqBIO and NBID showed better rankings
with small numbers of samples.

Computational time
We compared the methods according to the CPU time required
for the analysis (Supplementary Figure S24). Most methods ran
rapidly in a few seconds or less than one minute. Conversely, com-
puting weights with ZINB-WaVE was the most time-demanding
task. Monocle, DEsingle, NBID and ROTS were the slowest meth-
ods, requiring 2–8 minutes to complete the analysis of one simu-
lated data set.

Discussion
In this work, we observed that the biological characteristics of
circRNA expression and the technical aspects of its abundance
estimation from bulk RNA-seq could generate data with a high
proportion of ‘very small’ counts, i.e. with a mean count in the 2–
10 range [49]. Moreover, we found a substantial proportion of zero
counts in circRNA BJR count matrices, comparable in magnitude
with scRNA-seq and metagenome data [17]. These particular
circRNA expression properties can violate the assumptions of the
traditional DEMs, including DESeq2 and edgeR [50], which are
currently used to evaluate also differential circRNA expression.

A high sequencing depth can mitigate data sparsity and pro-
portion of small counts and better quantify circRNA expression
levels [27]. However, the more reads are sequenced, the more
expensive the experiment is, and still, the inefficient process
of BJR estimation hinders detecting and quantifying circRNAs
entirely. This study found that DEMs’ power improved in larger
data sets, particularly with 10 samples per condition. In line with
our observations, also previous works showed that DEMs have
significantly higher detection power of lowly expressed genes
with an increased number of replicates than with an increased
sequencing depth [13], and 10 or more replicates per group are
advised [51].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
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Figure 4. Similarity between the DEMs’ predictions. (A) The dendrograms show the DEMs clustered according to (A) the Jaccard similarity for significantly
DECs predicted at an adjusted P-value ≤0.05, and (B) the concordance of the 100 top circRNAs ranked according to P-values. The dot matrix shows the
(A) Jaccard similarities and (B) concordance at the top between DEM pairs calculated as the average among all simulated data sets of 10 samples (N05).
The dot size is proportional to the similarity scores.

Moreover, RNA-seq data are commonly purged of low-counted
elements [31, 52, 53] to improve the performance of DEMs [15].
However, with circRNAs, a similar data filtering might not be
desirable as we observed that removing lowly expressed circRNAs
can discard most of the detected circRNAs, thus omitting much
information.

Ad-hoc data filtering may be unnecessary with properly con-
figured DEMs’ parameters [20]. Therefore, we compared various
parameter configurations of widely used bulk-RNA-seq tools. Plus,
the large fraction of small and zero counts observed in circRNA
data motivated us to evaluate metagenome and scRNA-seq DEMs,
which, from a statistical point of view, can handle data with such
characteristics [30]. For the first time and unlike previous studies
[36], our analysis assessed the performance of scRNA-seq DEMs
on bulk RNA-seq data.

We collected an unprecedented and extensive set of DEMs
by selecting tools available as R packages, currently maintained
and functioning, reasonably fast, and well-performing or never
tested in previous benchmarks. We did not consider statistical
models devised to assess the variation of the circular-to-linear
expression ratio (CLR), such as CircTest [54], seekCRIT [55], DEBKS
[56] and the circMeta test for CLR [22], because they address
a problem distinct from differential circRNA abundance. Simi-
larly, we did not include our recent method based on general-
ized linear mixed models [57] because it addresses the problem
of combining circRNA expression quantification from multiple
tools for differential expression analysis. We also considered two
recent consensus models for scRNA-seq differential expression
assessment [58, 59], but they failed to terminate the analysis on
our data sets; finally, we assessed a new test from the convolu-
tion of multivariate hypergeometric distributions for differential

expression [60], which performed poorly with circRNA data (data
not shown).

We evaluated a few library size estimation strategies com-
patible with the selected DEMs and promising for circRNA data
characteristics. In DESeq2, the poscounts, shorth and deconvolution
functions to compute size factors showed better results than the
default approach. In edgeR and NBID, the TMMwsp and deconvo-
lution normalization procedures slightly improved the prediction
of DECs. Finally, Limma-Voom worsened its FDP using quantile
normalization compared with the TMM normalization. Neverthe-
less, a thorough comparison of normalization procedures as in
previous works [61] was not our aim and warrants a dedicated
study.

Our comparative study complies with best practices and tools
for benchmarking bioinformatics methods [62–64]. CircRNA RNA-
seq comparative experiments with many samples or with ground
truth of differential expression are scarce or absent in public
repositories. Therefore, we used a semi-parametric approach [40]
to allow us to generate multiple data sets of different sample
sizes. We focused on most typical scenarios of RNA-seq dif-
ferential expression studies, thus limiting the maximum size
of the data sets to 10 samples per group, as larger numbers
of replicates are uncommon. Nevertheless, the design of our
benchmark enabled us to observe a clear trend of the methods’
performance upon increasing data set size. Besides, we obtained
one pre-computed circRNA expression data set [47] with enough
sample replicates to simulate unbiased data sets assuming no
specific distribution underlying the expression data [48]. Although
limited to one real data set, these non-parametric simulations
mostly corroborated the results observed in the semi-parametric
data.



10 | Buratin et al.

Figure 5. Overall ranking of the DEMs. Mean ranks (dots) and standard deviations (segments) of each method were computed on the simulated data
sets with five replicates per condition group (N05) using four performance measures. Lower ranks correspond to better performances. Dashed lines
indicate the first, median and third quartiles of ranks. The dendrogram on the left was computed with Canberra distance, considering the ranks of all
the measures and using complete linkage. F1: F1 score; FDR: false discovery rate; TPR: true positive rate; AUC: area under the precision-recall curve;
FPR: false positive rate.

A few aspects of the DEMs’ performance were similar to the
results of previous studies on low-count transcripts from bulk and
scRNA-seq data [12, 13, 15–17, 20, 51, 65, 66].

We observed that most Limma-Voom pipelines controlled the
type I error close to the nominal value, whereas DESeq2 showed
a more conservative behaviour. Further, the parameter choice
affected the type I error control in edgeR, showing a tendency
towards higher FPR when imposing high degrees of freedom
[16, 20].

Generally, the methods that controlled the FDR well showed
low sensitivity; moreover, DEMs had higher power with larger
data sets. DESeq2, edgeR, Limma and PoissonSeq confirmed
poor sensitivity similarly to lowly counted transcripts in bulk-
RNA-seq [13, 20], especially with a small number of replicates
[13, 51]. The non-parametric DEMs, SAMseq and NOISeqBIO,
required a higher replicate number to perform as well as other
models [12] also in circRNA data. Moreover, we confirmed
that SAMseq showed better FDR control than DESeq2 while
retaining a high TPR [15,16]. Diversely, NOISeqBIO had unstable
results depending on the set size: with three replicates, it

showed high TPR [51], whereas, with five replicates, it obtained
an FDR lower than nominal at the cost of a severe TPR
loss [16]. Finally, the DEsingle’s opposite AUPRC performance
observed between our semi-parametric and non-parametric
simulations was consistent with previous work [65], confirming
that DEsingle’s results are unstable and might depend on the
data set.

The DEMs also presented performance diverging from previous
benchmark works, supporting that circRNA expression data have
different characteristics than linear transcripts from standard
bulk RNA-seq, scRNA-seq and metagenome data. In particular, in
our analysis, the P-value distributions of the most conservative
DEMs displayed a smooth increase towards P = 1, suggesting that
some systematic deviation from the theoretical null distribu-
tions of the test statistics occurred [43]. Instead, in low-counted
lncRNA data, the DEMs presented conservative distributions with
a spike near p = 1 [16], possibly due to the lncRNA’s high vari-
ability. Moreover, DESeq2 did not obtain high AUC as in scRNA-
seq [15,65], denoting DESeq2 yields overly conservative P-values
in circRNA data.
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Further, we did not observe the same bias in the type of genes
preferentially called differentially expressed as for some DEMs in
scRNA-seq data [15]. In particular, edgeR-QLF incorrectly called
significant lowly expressed genes with many zeros in scRNA-seq,
whereas, in our results, its FPs showed a higher expression and
a lower fraction of zeros compared to TNs. Plus, in contrast with
results from scRNA-seq data [15], the quasi-likelihood framework
with edgeR effectively reduced the FPR in circRNA data. Con-
versely, the quasi-likelihood framework was unexpectedly detri-
mental with Limma-Voom, although the signal-to-noise statistics
were similar to those obtained with edgeR-QLF.

In our results, DESeq2 with the Wald test did not show more
liberal results than with the LRT, as observed by Raithel et al.
[20] with low-counted genes. Such discordant results could be
due to dependence on the data [17]. Unlike in Assefa et al. [16],
PoissonSeq adequately controlled the type I error with many
samples and showed higher TPR with larger sets. However, its
high FDR suggests that a Poisson distribution does not fit circRNA
expression data well.

Similarly to results from 16S and WMS data sets [17], MAST per-
formed poorly at each sample size and obtained an overly conser-
vative FPR, whereas, in scRNA-seq data, it performed reasonably
well [15], also with lowly expressed isoforms [65]. MetagenomeSeq
showed FPR below the nominal value in our analysis, whereas it
obtained liberal FPR in 16S and WMS data [17], suggesting that
metagenomeSeq has less consistent behaviour in data of different
types. Monocle performed poorly in the smallest data sets of our
benchmark but reached reasonable FDR and TPR with five or
more samples per condition, which contrasted with previous anal-
yses on scRNA-seq data [15,65]. Seurat-BIM reached a poor AUC,
unlike in scRNA-seq data [15], suggesting it underperforms on
small count data. Differently from our results, the Wilcoxon test
performed reasonably on lowly expressed isoforms in scRNA-seq
data [65]. Finally, the non-parametric methods clustered apart,
differently from the results on scRNA-seq data [15].

We expected tools with specific options or designed for
addressing small counts and sparse data, such as the scRNA-
seq and metagenome methods, to outperform standard tools
in circRNA data. Many scRNA-seq methods were clustered with
bulk RNA-seq DEMs, primarily according to their underlying
distribution model. Surprisingly, a few scRNA-seq pipelines,
including Monocle, NBID, ROTS and glmGamPoi, performed
reasonably well in circRNA data showing comparable or better
predictions than bulk RNA-seq DEMs, especially in data sets of a
large sample size.

Our work highlighted the challenging features of circRNA
expression estimated with bulk RNA-seq. The generally poor
performance of the methods could in part be explained by the
conservative setting of our benchmark as the ‘signal’ data sets,
containing a small proportion (10%) of DECs, can be regarded
as a challenging scenario for the DEMs. We speculate that
slightly better DEMs’ performance would be obtained with higher
fractions of DECs, as was observed in previous work for low-
count lncRNAs [16]. Additionally, our comprehensive comparison
of statistical tools for differential expression assessment applied
to circRNA data marked a few caveats in circRNA expression
analysis. We observed that no single method overperformed the
others in every aspect and that the recall rate was generally low
with RNA-seq data sets of typical size. Using default values in
some methods can result in suboptimal performance. Conversely,
custom parameter configurations can profoundly affect the
predictions and contravene the expected performance. For
instance, edgeR, one of the most used tools for RNA-seq data

analysis, can provide misleading or poor predictions depending
on its settings. EdgeR-RBST and edgeR-TWSP showed high FDR,
whereas edgeR-QFT, although controlling FDR well, showed
reduced TPR. Besides, Limma-Voom with default parameters
controlled the type I error well and maintained a good trade-off
between precision and recall but showed worse performance with
the quasi-likelihood framework designed to better model zero
counts. Instead, DESeq2, perhaps the most used tool in circRNA
expression differential assessment, is overly conservative and
underperforms several other methods, especially with data sets of
typical size, no matter the parameters used. Notably, SAMseq, one
of the oldest tools considered in our benchmark initially devised
for microarray data and later adapted to RNA-seq, showed good
results compared to its competitors. Further, scRNA-seq methods,
such as glmGamPoi, monocle and ROTS, showed promising results
in data sets with 20 replicates and could inspire novel solutions
for circRNA data analysis.

Conclusions
This study shed light on the difference between circRNA and
traditional gene expression RNA-seq data. RNA-seq studies will-
ing to inspect circRNA expression require carefully balancing
the trade-off between a higher sequencing depth and the num-
ber of replicates to obtain robust results. Our findings indicate
that circRNA differential expression assessment from RNA-seq
urges the development of new and robust computational models
addressing the issues that emerged in our analysis. Our com-
prehensive benchmark highlights the importance of selecting
an appropriate tool and configuring its parameters according to
the data set characteristics and can guide biostatisticians and
bioinformatics researchers in the analysis of circRNA differential
expression.

Materials and methods
CircRNA data sets, expression quantification and
expression filters
We analysed six independent data sets from circRNA studies
(Table 1) for 235 samples in total. The JHS data set [67] considered
Illumina sequencing data of 17 human tissues, with matched
ribosomal RNA-depleted and ribosomal RNA-depleted followed by
RNase R treatment libraries to enrich the circular transcript frac-
tion. The other data sets (DM1 [68], IDC [69], IPF [70], MS [71] and
PC [47]) considered ribosomal RNA-depleted Illumina sequencing
libraries of tumour and relative healthy tissue samples, with at
least five biological replicates per group and more than 40 million
sequenced paired-end reads.

Raw reads of the JHS, DM1, IDC, IPF and MS data sets were
available in public data sets such as SRA and NGDC, whereas the
circRNA expression data of the PC data set were provided by the
authors of the original study [47]. The PC data set consisted of
29,234 circRNAs from 31 normal tissues and 126 prostate cancer
samples. The BJR counts were computed with CIRI2, discarding
circRNAs detected with less than two BJRs; further details are
available in the original article [47].

CircRNAs of the JHS, DM1, IDC, IPF and MS data sets were
detected and quantified with CirComPara2 v0.1.2.1 [26] using
default parameters. CirComPara2 runs seven circRNA identifi-
cation pipelines and combines their results to obtain reliable
detections and expression quantification. In addition, from the
CirComPara2 output files, we obtained the circRNAs quantified
by CIRI2 [72], CIRCexplorer2 [73] v2.3.8 using either TopHat-Fusion
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v2.1.0 or Segemehl v0.3.4, DCC [54] v0.4.8 and Findcirc [74] v1.2.
Moreover, we applied CIRIquant [75] v1.1.2, giving as input the
circRNAs detected with CirComPara2 to obtain circRNA expres-
sion abundance also with this tool. Note that these methods
encompass five different read aligners (Bowtie2, BWA-MEM, Sege-
mehl, STAR and TopHat-Fusion), plus one re-alignment method
based on BWA-MEM, thus limiting possible biases derived from
the mapping algorithms.

We explored the circRNA expression of each comparison data
set by performing the principal component analysis (PCA) on
the CirComPara2 expression estimates and removing circRNAs
detected in less than three samples. PCA plots showed circRNA
expression patterns associated with the main groups, indicating
significant variation of circRNA expression between conditions
(Supplementary Figure S25).

Five strategies to discard circRNAs were applied independently
to the circRNA expression matrices. Each circRNA must be
detected in (i) any sample (unfiltered data), (ii) at least three
samples, (iii) at least half the samples, (iv) all the biological
replicates of at least one group (to keep only the circRNAs
consistently expressed within a condition) and (v) at least as
many samples as the size of the smallest group (such a filter
can be helpful when groups have largely different numbers of
replicates).

Details of the goodness-of-fit analysis are reported in Supple-
mentary Material.

Semi-parametric simulations
The SPsimSeq R package v1.4.0 [40] was used to simulate data
sets from real data. SPsimSeq uses the Gaussian-copulas to retain
the between-genes correlation structure and allows generating
of arbitrarily large data sets. The original data sets underwent
preliminary processing that considered the removal of circRNAs
expressed in less than three samples, followed by selecting sam-
ples with a similar library size in both the sample groups. No
samples were discarded for IDC and IPF data sets; the DM1 data
set resulted in five control and six tumour samples, and the MS
data set resulted in 12 control and 18 tumour samples. For each
original data set, 30 simulations were run considering two sample
groups of an equal number of samples, with set sizes of 6, 10
and 20 samples and unvaried library sizes between simulations.
The number of circRNAs simulated corresponded to the circRNAs
detected in the original data sets after the quality filters: 1490
in DM1, 7540 in IDC, 2485 in IPF and 7217 in MS. Two types of
data sets were generated: ‘null’ data sets, where no differentially
expressed circRNAs were simulated, and ‘signal’ data sets, where
10% circRNAs were significantly differentially expressed between
the sample groups and with an absolute log-fold-change ≥0.5.
Each simulated data set underwent a preliminary filter to remove
the simulated circRNAs with non-zero counts in less than three
samples.

The quality metrics of the simulated data sets were computed
with the countsimQC package’s functions [41] custom optimized
for parallel execution.

Non-parametric simulations
We performed a preliminary quality assessment of the PC data set
to determine sample batches via inspection of the first two prin-
cipal components (Supplementary Figure S26). Then, we selected
samples of only one batch to obtain homogeneous samples, for
a total of 8239 circRNAs from 20 normal tissues and 76 prostate
cancer samples.

We performed non-parametric simulations with the SimSeq
tool [48], which does not impose any distribution assumption
on the simulated data. We generated 90 instances for ‘null’ and
‘signal’ data sets with 6, 10 and 20 samples of two equal replicate
number condition groups.

Differential expression tools used in this study
In our analysis, we considered the following differential expres-
sion tools and package versions: CircMeta v1.0.2 [22], DESeq2
v1.22.2 [23], DEsingle v1.14.0 [76], edgeR v3.36.0 [24, 31, 34],
glmGamPoi v1.6.0 [77], Limma v3.50.0 [78], Limma-Voom v3.50.0
[35], lncDIFF v1.0.0 [79], MAST v1.20.0 [80], metagenomeSeq
v1.36.0 [81], Monocle v2.22.0 [82], NBID v0.1.2 [33], NOISeqBIO
v2.38.0 [83], PoissonSeq v1.1.2 [84], ROTS v1.22.0 [85], SAMSeq v3.0
[86], Seurat v4.1.0 [87, 88], the Wilcoxon test, ZINB-Wave v1.16.0,
genefilter v1.76.0, scran v1.22.1 and sctransform v0.3.3. Further
details on the parameter configurations used in the differential
expression pipelines are reported in Supplementary Methods.

For all algorithms, the P-values from genes with a non-zero-
sum of read counts across samples were adjusted using the
Benjamini–Hochberg procedure [89].

Type I error control
For this analysis, we used the ‘null’ simulated data set without
differentially expressed circRNAs. The P-values returned by each
method were used to compare the number of false discoveries
upon thresholds of 0.1, 0.05 and 0.01. For NOISeqBIO, we used its
scores in place of P-values only for completeness, but they were
not considered for comparison with other methods.

Concordance at the top
We used the concordance at the top (CAT) to evaluate concor-
dance for each DEM. Starting from two lists of ranked features
by P-values, the CAT statistic was computed in the following way.
For a given integer i, concordance is defined as the cardinality
of the intersection of the top i elements of each list, divided by
i, i.e. #{L1:i∩M1:i}/i, where L and M represent the two lists. This
concordance was computed for values of i from 1 to R.

Depending on the study, only a minority of features may
be expected to be differentially expressed between two experi-
mental conditions. Hence, the expected number of differentially
expressed features is a good choice as the maximum rank R.
The CAT displays high variability for low ranks as few features
are involved, whereas concordance tends to 1 as R approaches
the total number of features, becoming uninformative. We set
R = 100, considering this number biologically relevant and high
enough to permit an accurate concordance evaluation. We used
CAT for Between-Method Concordance (BMC), in which a method
is compared to other methods in the same simulated data set
to evaluate consistency. To summarise this information for all
pairwise method comparisons, we computed the area under
the curve, giving a better score to the method pairs consistently
concordant for all values of i from 1 to R.

Additional software used in this study
The featureCounts function [90] from the Rsubread v2.8.1 package
[91] was used to compute read alignment counts. AUPRC were
computed with the PRROC v1.3.1 R package [92] using the Davis &
Goadrich algorithm [46]. Plots were generated using ggplot2 v3.3.5.
The computational time of differential expression tools was mea-
sured with the tictoc v1.0.1 R package. All simulation analyses
were run using the SummarizedBenchmark v2.12.0 framework
[63].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac612#supplementary-data
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Key Points

• CircRNA expression RNA-seq data is characterized by a
high proportion of small counts and zeros.

• Traditional methods for differential expression assess-
ment underperform when applied to circRNA expression
data, especially in small-size data sets.

• Specific parameter configurations can improve differ-
ential expression methods’ performance on circRNA
expression analysis.

• Differential expression tools devised for single-cell RNA-
seq data analysis perform reasonably with circRNA
expression data.

• Differential expression methods perform best in data
sets with large number of replicates.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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