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A B S T R A C T   

This research entails a comparison of the effectiveness of unmodified Luffa cylindrica fiber in a 
fully packed bed (RLCF) and NaOH-modified Luffa cylindrica fiber in another fully packed bed 
(MLCF) in the context of phenol removal from wastewater. Experimental data obtained through 
batch adsorption experiments were utilized to determine the most suitable model. It was observed 
that as the initial concentration of phenol increased from 100 to 500 mg/l, the maximum per-
centage removal increased from 63.5 to 83.1% for RLCF-PB and from 89.9 to 99.5% for MLCF-PB. 
The correlation coefficient (R2) was calculated for the Langmuir, Freundlich, Temkin, Harkin- 
Jura, Halsey, and Flory-Huggins models for both materials. The analysis revealed that the 
pseudo-second-order model was the most suitable, followed by the Elovich model, with the 
pseudo-first-order model being the least suitable. The Weber-Morris diffusion model suggested 
that pore diffusion was the rate-determining step, and diffusion at the border layer was deter-
mined to be endothermic, feasible, heterogeneous, and spontaneous. In summary, this study in-
dicates that MLCF-PB is a promising material for the efficient removal of phenol from aqueous 
solutions.   

1. Introduction 

Releasing untreated wastewater into the environment poses a major threat to both human health and the ecosystem. The effects of 
untreated wastewater can be severe and wide-ranging, impacting not only human health but also the environment and the economy [1, 
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2]. There has been an increasing awareness in recent times of the consequences of water pollution and the need for effective man-
agement strategies to prevent contamination and ensure the safety of our water supply [3–5]. One of the major pollutants commonly 
found in wastewater is phenol, which is a toxic and hazardous organic compound. 

Phenol is a common water contaminant that can have significant impacts on individual well-being and the environment. It is 
commonly present in industrial effluents from chemical, petrochemical, and pharmaceutical industries, where it is used in the pro-
duction of plastics, resins, and other industrial chemicals [6–8]. While phenol is not considered a major water pollutant, it becomes 
toxic and dangerous when present in water at elevated levels [9]. Consumption of food or drink that contains elevated levels of phenol 
can pose a serious health risk, particularly for vulnerable populations such as children and the elderly. These health implications of 
phenol include respiratory irritation, skin burns, and even death in extreme cases [10,11]. It can also have harmful effects on aquatic 
ecosystems, such as killing fish and other aquatic life [12]. The importance of monitoring and controlling phenol levels in water is 
therefore critical. 

Numerous techniques have been created to eliminate phenol from wastewater, including coagulation, biological treatment, 
oxidation, and adsorption. The adsorption method is often preferred because of its ease of use, efficiency, and affordability [13,14]. 
The potential of using adsorbents like activated carbon, zeolites, and natural fibers to eliminate phenol from wastewater has been 
explored. Among these, natural fibers are particularly attractive due to their high availability, low cost, and biodegradability [15]. 

Luffa cylindrica fibers (LCF) are a natural fiber that has shown potential as an adsorbent for phenol removal. Luffa cylindrica is a 
Cucurbitaceae plant species that is native to tropical regions [16]. It is composed of lignocellulosic biomass that contains cellulose, 
hemicellulose, and lignin. Due to its fibrous structure, it possesses a high surface area and pore volume, which make it a feasible option 
for phenol adsorption [17]. Previous studies have shown that LCF can be used to remove various pollutants from wastewater, including 
dyes [18], heavy metals [19], and organic compounds [20,21], among others. However, limited research has focused on their potential 
for phenol removal from wastewater. Furthermore, there are some limitations on using agricultural residue as an adsorbent for phenol 
uptake from water, such as its requirement for pre-treatment before use to remove impurities and ensure optimal adsorption capacity 
[22–24]. While treatment of the biosorbents with chemicals can potentially enhance their adsorption capacity and efficiency, it may 
result in the production of even more dangerous by-products. 

In this study, we investigate the potential of raw and modified LCF to remove phenol from wastewater. Raw Luffa cylindrica fibers 
(RLCF) were used as a reference material, while modified Luffa cylindrica fibers (MLCF) were treated with NaOH to enhance their 
adsorption capacity. The ability to select the most effective adsorbent for the removal of a specific contaminant from water is one of the 
major challenges facing the adsorption process. Nonetheless, it is crucial to assess the viability and appropriateness of a cheap, 
renewable material for addressing the threat of phenol contamination. Herein, the adsorption of phenol onto RLCF and MLCF was 
carried out in a fully packed bed to simulate the practical application of these materials. The present investigation adds to the existing 
knowledge on the utilization of natural fibers as an adsorbent for treating wastewater. 

2. Methodology 

2.1. Materials 

Luffa cylindrica pods were sourced from a farm in Ilorin, Nigeria. The chemical activator employed in this work was analytical-grade 
sodium hydroxide (Sigma Aldrich), which was obtained from a local market. 

2.2. Adsorbent preparation 

The Luffa cylindrica pods were gathered, and the sponges underneath were meticulously removed, rinsed with distilled water, and 
dried at 80 ◦C to get rid of any residual moisture. They were split into similar parts and stored for subsequent analysis. The sample was 
labeled raw Luffa cylindrica fibers (RLCF). For the pre-treatment, samples of the fibers were soaked in a 5% solution of sodium hy-
droxide and allowed to stay on the bench for 24 h. The fibers were then washed and rinsed with distilled water at room temperature 
until they reached a neutral pH. They were then oven-dried to a consistent weight at 105 ◦C. The resulting NaOH-modified Luffa 
cylindrica fibers (MLCF) were stored in the desiccator for the adsorption experiment. The modification with NaOH because prior 
research has demonstrated its ability to enhance fiber wettability, break down cellulose molecules, and boost fiber surface roughness 
[16]. 

2.3. Adsorbent characterization 

The characteristics of both RLCF and MLCF were established through the use of Fourier transform infrared (FTIR) and scanning 
electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). The FTIR (Shimadzu FTIR-8400S instrument, 
Japan) was employed to identify the functional groups within the materials. On the other hand, SEM-EDX (Phenom ProX, Phenom- 
World BV, Netherlands) was utilized to determine the morphology and elemental composition of the adsorbents. 

2.4. Preparation of adsorbate 

Phenol (99.9% purity, Aldrich) was used as an adsorbate. 1.0 g of phenol were solubilized in 1 L of distilled water to produce a stock 
concentration of 1000 mg/l. Diluted stock solutions using distilled water were used to make the experimental solutions in a series of 
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steps to get the desired concentrations (100–500 mg/l) for batch equilibrium experiments. 

2.5. Construction of a packed bed 

The filter bed was made from a 1.3 dm3 polypropylene (PP) plastic jar with an opening valve at the base for sample collection and 
an openable lid at the top for simulated wastewater (phenolic wastewater) entry flow. A diagrammatic representation of the filter bed 
is presented in Fig. 1. Both the untreated and treated fibres had a 0.075 packing factor in each packed bed. This is the greatest packing 
that could be achieved [25]. 

2.6. Adsorption experiments 

Batch adsorption studies in a number of packed beds were conducted to measure the effectiveness of phenol adsorption onto LCF 
(1300 cm3). Each column was packed with LCF and initially contained 13 g of adsorbents and 100 mL of solutions with varying 
concentrations (ranging from 100 to 500 mg/l). A mechanical rotary shaker was used at 200 rpm until equilibrium was attained after 4 
h. To reach maximum equilibrium, a time contact equal to 240 min was fixed for all experiments. The effluent concentrations of the 
samples were examined using a UV/Vis spectrophotometer (UV-6100A) at 270 nm. Eqn. 1 was used to calculate the adsorbent’s 
adsorbed capacity to phenol, and the removal efficiency was calculated using Eqn. (2): 

Adsorption capacity (qe)= (CO − Ce)
V
M

(1)  

Removal Efficency (%)=
(CO − Ce)

CO
∗ 100 (2)  

Where the initial and equilibrium phenol concentrations (mg/l) are represented by Co and Ce, respectively. The dry mass of added 
adsorbent is M (g), and the aqueous solution’s volume is V (l). 

2.7. Studies on adsorption isotherms 

Six different models (Langmuir, Freundlich, Temkin, Harkins Jura, Halsey, and Flory-Huggins) were utilized to fit the adsorption 
data; the best fit for this investigation was determined by calculating the constants of these models. The R2 value was also computed to 
indicate the level of relationship between the experimental data and the predicted values. The expressions for the linear forms of 

Fig. 1. Schematic diagram of the filter bed.  
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Langmuir, Freundlich, Temkin, Harkins Jura, Halsey, and Flory-Huggins are given in Eqns. 3-8. From the plot of Ce
qe

against Ce, the 
Langmuir constants KL, RL, and qmax were calculated. A dimensionless equilibrium unit can be used to express the main essence of the 
Langmuir model (RL). The constants KF and 1/n for the Freundlich model were obtained by plotting log qe against log Ce. For the 
Temkin and Harkins Jura models, the constants A and B were gotten from the linear graph of qe against ln Ce and 1

q2
e

against log Ce, 
respectively. The Halsey constants K and 1/n were derived from the graph of ln qe against ln Ce, and the Flory-Huggins constants, KFH 
and nFH were obtained when ln θ

CO
was plotted against ln(1 − θ). 

Ce

qe
=

1
qm

Ce +
1

qmKL
(3)  

log qe =
1
n

log Ce + log Kf (4)  

qe =B ln Ce + B ln AT (5)  

1
q2

e
=

B
A
−

1
A

log Ce (6)  

ln qe =
1
n

ln K −
1
n

ln Ce (7)  

ln
θ

CO
= n ln(1 − θ) + ln(1 − θ) (8)  

Where the equilibrium adsorption capacity is qe, KL is the free energy (L/mg), the maximal adsorption capacity (mg/g) at monolayer 
coverage is given by qm, Kf and n are the Freundlich constants, A and B are the Temkin constants, and θ denotes the number of ad-
sorbates occupying sorption sites. 

2.8. Adsorption kinetics studies 

In order to learn more about probable rate-controlling processes and adsorption mechanisms, the kinetics were analyzed using 
pseudo-first-order (PFO) (Eqn. (9)), pseudo-second-order (PSO) (Eqn. (10)), and Elovich models (Eqn. (11)). Their linear plots were 
determined using Eqns. (9)–(11). The performance of the adsorption process was predicted using all of the factors derived from the 
plots. 

ln(qe − qt)= ln qe − K1t (9)  

t
q(t)

=
1

K2q2
e
+

t
qe

(10)  

qt =

(
1
β

)

ln t +
(

1
β

)

ln αβ (11)  

2.9. Test of the kinetics model 

The accuracy of the kinetic models is evaluated by the combination of the sum of squared errors (SSE) and the average relative error 
(ARE). In addition to determining the R2 value, the reliability of both kinetic models was verified by analyzing the SSE and ARE. The 
adsorption kinetics of phenol onto raw Luffa cylindrica fiber-packed beds (RLCF-PB) and modified Luffa cylindrica fiber-packed beds 
(MLCF-PB) were tested at varying concentrations. The effectiveness of the model was evaluated using Eqn. (12) and 13 as shown 
below. 

SSE =
∑n

i=1

(
qe,cal − qe,exp

)2

n
(12)  

ARE=
100

n
∑n

i=1

(
qe,exp − qe,cal

qe,exp

)

(13)  

Where qe,cal is the sorption capacity calculated at equilibrium (mg/g), qe,exp is the experimental equilibrium sorption capacity (mg/g), 
and n denotes the total number of experimental data points. 
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2.10. Adsorption thermodynamic 

The thermodynamic characteristics of phenol adsorption onto RLCF-PB and MLCF-PB were determined through analysis of 
experimental data at various temperatures. The data were used to determine thermodynamic parameters like entropy (ΔS◦), Gibbs 
energy (ΔG◦), and enthalpy change (ΔH◦). The volume of the phenolic solution (300 mg/l), dosages (13 g), and agitation speed (200 
rpm) were unaltered. The temperature range of 40–60 ◦C at 10–60 min was used. The treated effluents were withdrawn and tested with 
a UV/Vis spectrophotometer according to the design. ΔS◦ and ΔH◦ were determined by plotting ΔG◦ against temperatures. The 
equilibrium constant Kd was determined using Eqn. (14) and 15 

ΔGO = − RT ln Kd (14)  

ΔGO =ΔHO − TΔS (15) 

Combining Eqn. (14) & 15 gave Eqn. 16 

ln Kd =
ΔH
R

×
1
T
−

ΔS
R

(16) 

R (8.314 J/mol K) represents the gas constant, T (K) represents the temperature (absolute), and Kd is the equilibrium constant. 

Fig. 2. FTIR spectra of (a) RLCF and (b) MLCF.  
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3. Results and discussion 

3.1. Characterization of the adsorbents 

The FITR spectra for RLCF and MLCF are shown in Fig. 2(a) and (b), respectively. In the FTIR spectra of RLCF, the peak observed at 
2972 cm− 1 is attributed to the asymmetric and symmetric stretching vibrations of CH2 (methylene) and CH3 (methyl) groups [20]. 
Following the NaOH treatment, this peak diminishes, shifting to 2851 cm− 1. The presence of functional groups corresponding to 
carbonyl groups and aromatic C––C stretching is shown by the peaks at wavenumbers 2171 cm− 1 and 1570 cm− 1, respectively. 
However, a substantial portion of the peak is located in the fingerprint region. Additionally, peaks at 1054 cm− 1 and 1032 cm− 1, which 
undergo a shift to 1038 cm− 1 post-modification, are linked to C–O stretching vibrations in alcohol. The occurrence of peaks in the 
range of 574–510 cm− 1 indicates the presence of bending deformations in lignin and hemicellulose [26]. In the FTIR spectrum of 
MLCF, notable shifts are observed in some peaks. The peak at 3100 cm− 1 implies aliphatic C–H stretching. Peaks at 1697 cm− 1 and 
1597 cm− 1 are associated with C––C and C––O stretching in aromatic components, while the peak at 1169 cm− 1 is attributed to the 
asymmetric C–O stretching of C–O–C in cellulose and hemicellulose [27]. 

The SEM images in Fig. 3 reveal the surface characteristics and structural features of RLCF and MLCF. In Fig. 3a, depicting the raw 
Luffa cylindrica fiber (RLCF), a smooth and uniform surface is evident. Upon modification, illustrated in Fig. 3b for MLCF, the 
morphology undergoes changes, revealing the formation of voids and crevices. The surface of MLCF becomes notably heterogeneous 
and rough, resulting in an interconnected porous structure with a hierarchical arrangement. This hierarchical porosity is ascribed to 
the elimination of silica during the modification process, as indicated by EDX analysis. The removal of silica facilitates the generation 
of pores and voids in MLCF [27]. The existence of voids is advantageous, providing ample binding sites for adsorbates during the 
adsorption process [28]. 

Fig. 4 illustrates the elemental composition of the adsorbents as determined by energy-dispersive X-ray spectroscopy (EDX). In 
Fig. 4a, the primary elements in RLCF are silicon and aluminum, with weight concentrations of 45.95% and 34.71%, respectively. This 

Fig. 3. SEM images of (a) RLCF and (b) MLCF.  

Fig. 4. EDX spectrum of (a) RLCF and (b) MLCF.  
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indicates a significant amount of silicon and aluminum in RLCF, typical constituents found in natural fibers. The presence of silicon 
suggests the existence of minerals, potentially derived from the plant structure, while aluminum may be linked to the fibrous matrix. In 
MLCF (Fig. 4b), carbon dominates the composition with a weight concentration of 67.39%, indicating a significant presence of organic 
material in MLCF. This implies that the primary carbon-based component of plant fibers, cellulose, may have been exposed as a result 
of the NaOH treatment, which also may have eliminated some inorganic elements like silica and alumina. The results also indicate the 
presence of diverse elements in varying quantities, potentially influencing the overall physicochemical properties of both RLCF and 
MLCF and thereby affecting their adsorption capacity. 

3.2. Optimization studies 

3.2.1. The influence of contact time 
To determine the optimum contact time to attain equilibrium, 13 g of RLCF and MLCF were combined with phenol in each packed 

bed at varying times (10–240 min). Fig. 5(a–e) illustrate the results, showing how the percentage of phenol removal by the adsorbents 

Fig. 5. Effect of time on % removal of (a) 100 (b) 200 (c) 300 (d) 400 (e) 500 mg/l of phenol.  

S. Ogunniyi et al.                                                                                                                                                                                                      



Heliyon 10 (2024) e26443

8

is influenced by contact time. The results indicate that the adsorption process removes phenol rapidly in the first 120 min. After that, 
the rate of adsorption slowed down until it reached equilibrium. This trend can be attributed to the fact that active sites were readily 
available for adsorption at the start of the process, but as the phenol molecules started to accumulate on the active sites, they gradually 
became occupied, leading to a decrease in the rate of adsorption [29]. The highest percentage removal at 100, 200, 300, 400, and 500 
mg/L phenol concentrations for the RLCF were 79.1, 83.1, 80.0, 80.1, and 63.5%, while for the MLCF, they were 89.9, 94.9, 99.5, 99.3, 
and 94.7%, respectively. When compared to the RLCF, the MLCF had a greater adsorption capacity and percentage elimination. 

3.2.2. The influence of temperature 
The operating temperature is a crucial parameter that can affect the rate of adsorption in a positive or negative way. The set-up 

procedure was done at an initial phenol concentration of 300 mg/l, an adsorbent dosage of 13 g, and pH 7. It has been asserted 
that the adsorption process is endothermic when the percentage of phenol removed increases as the temperature rises [6]. This might 
be because when the temperature rises, there are more adsorption sites available and the phenol is more mobile [30]. Fig. 6 presents 
the analysis of the effect of temperature, ranging from 40 to 60 ◦C, on the removal efficiency of phenol using RLCF and MLCF. The 
findings indicate that a rise in temperature resulted in a greater removal percentage of phenol for both adsorbents. This suggests that 
the adsorption is an endothermic process. The highest removal efficiency of 57.6% and 84.5% were observed at 60 ◦C for the RLCF and 
MLCF, respectively. 

3.3. Adsorption isotherm 

The dispersion of phenol molecules between the aqueous mixture and the adsorbents in different packed beds of RLCF and MLCF 
was explained using different isotherm models. The plot of Ce

qe 
versus qe (Fig. 7a), linear method was used to establish the Langmuir 

model using RLCF and MLCF packed beds. The Langmuir constants were obtained from the gradient 1
qm 

and intercept 1
qmKL 

(Tables 1 and 
2). The R2 obtained for the RLCF-PB (0.0001–0.4385) and for the MLCF-PB (0.0199–0.9185) are comparably good for the modified 
packed bed but essentially low for the RLCF-PB. This indicates that adsorption to the RLCF-surface PB’s is not monolayer [31]. The KL 
(mg/g) and the equilibrium constant for RLCF-PB and MLCF-PB ranged from − 0.0002–0.0757 mg/g and 0.0004− − 0.0153 mg/g, 
respectively. The KL values are proportional to the distribution’s intensity, which describes the adsorbent-solute affinity [32]. 

The separation factor (RL), (0 < RL < 1), which gave a positive number, suggests that the adsorption experiment is feasible. The 
separation factors (RL) values for MLCF-PB (0.2639–0.8509) and RLCF-PB (0.3321–1.3116) revealed that the procedure was beneficial 
since it fell between the agreeable range of 0 and 1 except for RL = 1.0851 and 1.3116, which is slightly above 1 [33,34]. This indicates 
that phenol adsorption onto the MLCF-PB is very favorable, with a high level of irreversibility, as RL approached the lower satisfactory 
range (close to zero). 

For the Freundlich model (plot shown in Fig. 7b), the Freundlich exponent, n, is in the range of 1–2. This value indicates moderately 
good, suggesting the adsorption’s favorability. Values of 2–10 for n indicate ’good,’ while less than 1 indicates ’bad’ adsorption 
characteristics [35]. The n values found in this study for MLCF-PB (1.0783–1.7221) were consistently moderate throughout the 
experiment (as shown in Table 2), while RLCF-PB has a mixture of ‘poor’ and “good” adsorption qualities (Table 1). The R2 values for 
the Freundlich isotherm were generally high (ranging from 0.6866 to 0.9734) for both adsorbents, but with some lower values 
(ranging from 0.0193 to 0.9727) in comparison to the Langmuir model, which had R2 values that ranged from 0.0199 to 0.9185 for 
RLCF and 0.0001 to 0.4385 for MLCF, respectively. This suggested that the Freundlich model rather than the Langmuir model better 
predicts phenol adsorption. The results show that as time passed, the adsorption intensity (KF) values increased, which signifies that 
the chemical used for the modification of the packed bed has a substantial effect on the adsorbent [36]. 

The equilibrium-binding constant (A) of the Temkin isotherm (Fig. 7c) gave a set of positive values, which is favorable at equi-
librium time [37]. It increased as contact time increased [38]. These heat of adsorption values B (J/mol) rose at the first 60 min of the 
experiment using the RLCF-PB, which later declined towards the end of the experiment, while the values increased as time increased 
for the MLCF-PB [39]. According to the Temkin isotherm, the R2 values for RLCF-PB (0.0019–0.8976) and MLCF-PB (0.5280–0.9617) 

Fig. 6. Plot of temperature on phenol removal efficiency of RCLF and MCLF.  
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were higher than those derived from the Langmuir isotherms, but they were lower than those from the Freundlich isotherm. This 
indicates that the Freundlich isotherm is a better model for explaining the adsorption behavior, suggesting that the modified packed 
bed is characterized by a multilayer surface structure [40]. 

The R2 values obtained from the Harkins-Jura model (Fig. 7d) for MLCF-PB (0.9339) are superior to those for RLCF-PB (0.8730), 
but they are lower than those obtained from the Freundlich and Temkin models, indicating that the Harkins-Jura model is not the best 
fit for this experiment. The parameters A and B were estimated for both RLCF-PB and MLCF-PB, except for the negative values 
(− 3.3636 and − 2.5648) and (− 1.1473 and − 0.7063) obtained for A and B at 210 and 240 min, which may not be favorable at those 
specific times [41]. 

The large R2 values (0.9339) of the Halsey isotherm (Fig. 7e) using the MLCF-PB compared to Langmuir and Temkin explain further 
why the Freundlich isotherm model well predicts phenol adsorption onto the MLCF-PB. The coverage of adsorbate on the adsorbent 
surface is typically described by the Flory-Huggins isotherm model (Fig. 7f). The model, however, showed the lowest correlation 
coefficient in the study (R2 = 0.2415). The equilibrium constant for the Flory-Huggins model is denoted as KFH. The suitability order of 
the models is Freundlich > Halsey > Temkin > Harkins-Jura > Langmuir > Flory Huggins. Table 3 compares the values of the different 

Fig. 7. Isotherm models for phenol adsorption on RLCF-PB and MLCF-PB. Langmuir (a), Freundlich (b), Temkin (c), Harkins-Jura (d), Halsey(e), 
Flory-Huggins (f) models. 

S. Ogunniyi et al.                                                                                                                                                                                                      



Heliyon10(2024)e26443

10

Table 1 
Isotherm model estimated parameters for RLCF-PB.  

Isotherm Parameters Time 

10 20 30 40 50 60 90 120 150 180 210 240 

Langmuir Qm (mg/g) − 6.3251 − 3.4602 250.00 344.83 7.9554 15.015 4.6512 9.1827 6.3939 3.5932 4.1305 3.8124 
KL (mg/g) − 0.0002 − 0.0007 0.0001 0.0001 0.0016 0.0011 0.0089 0.0052 0.0138 0.0477 0.0627 0.0757 
RL 1.0851 1.3116 0.9705 0.9745 0.7376 0.8357 0.4292 0.6624 0.5743 0.3599 0.3460 0.3321 
R2 0.0109 0.2046 0.0003 0.0001 0.2483 0.0573 0.4385 0.0990 0.0827 0.2027 0.2190 0.2036 

Freundlich KF (mg/g) 0.0014 0.0012 0.0046 0.0053 0.0172 0.0200 0.2022 0.2122 0.4235 1.4629 2.0114 2.1193 
1/n 1.0391 1.1594 1.0009 1.0391 0.8953 0.9421 0.5113 0.5651 0.4572 0.0855 − 0.0302 − 0.0576 
N 0.9624 0.8625 0.9991 0.9624 1.1169 1.0615 1.9558 1.7696 2.1872 11.695 − 33.112 − 17.361 
R2 0.7753 0.9440 0.9727 0.9388 0.8963 0.8152 0.4213 0.3619 0.1633 0.0110 0.0026 0.0093 

Temkin A (L/mg) 0.0168 0.0159 0.0212 0.0239 0.0371 0.0439 0.1907 0.1908 0.4720 199.86 2.1E10 1.27E20 
B (J/mol) 0.3379 0.5804 0.6977 0.8639 0.9392 1.1566 0.7617 0.9723 0.8721 0.2698 0.0855 0.0459 
R2 0.6816 0.8223 0.8954 0.8973 0.8976 0.8816 0.5300 0.4786 0.2121 0.0366 0.0069 0.0019 

Harkins Jura A 0.0092 0.0216 0.0604 0.0772 0.1554 0.1880 0.5144 0.5693 0.7179 6.2854 − 3.3636 − 2.5648 
B 2.5220 2.4651 2.4268 2.3547 2.2740 2.1665 2.1884 2.0365 1.8542 5.1709 − 1.1473 − 0.7063 
R2 0.6740 0.7766 0.8730 0.7626 0.7476 0.6033 0.2551 0.2084 0.1384 0.0039 0.0284 0.0473 

Halsey K 570.41 325.18 217.43 155.13 93.569 63.467 22.799 15.539 6.5487 − 85.552 8.9E-11 2.17E-6 
1/n − 1.0391 − 1.1594 − 1.0009 − 1.0391 − 0.8953 − 0.9421 − 0.5113 − 0.5651 − 0.4572 − 0.0855 0.0302 0.0576 
R2 0.7753 0.9440 0.9727 0.9388 0.8963 0.8152 0.4213 0.3619 0.1633 0.0110 0.0026 0.0093 

Flory Huggins K 3.78E-4 0.0034 0.0012 0.0033 0.0007 0.0029 0.0022 0.0046 0.0104 0.0081 0.0077 0.0084 
N − 2.8966 3.7879 − 0.3543 1.0324 − 1.2483 0.1248 − 0.1873 0.1897 0.4577 0.2874 0.2095 0.2264 
R2 0.1008 0.1285 0.0005 0.0157 0.0594 0.0016 0.0225 0.0286 0.2388 0.2109 0.2021 0.2415  
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Table 2 
Isotherm model estimated parameters for MLCF-PB.  

Isotherm Parameters Time (min) 

10 20 30 40 50 60 90 120 150 180 210 240 

Langmuir Qm (mg/g) 2.0227 1.4921 3.1358 2.6731 2.4178 4.8948 2.7847 2.9386 3.1980 3.5436 3.5361 3.4891 
KL (mg/g) 0.0004 0.0015 0.0012 0.0023 0.0047 0.0019 0.0081 0.0097 0.0115 0.0119 0.0141 0.0153 
RL 0.8509 0.6228 0.7020 0.5579 0.3987 0.6458 0.3183 0.3008 0.2906 0.3057 0.2777 0.2639 
R2 0.0199 0.2239 0.2282 0.4684 0.6850 0.7034 0.7605 0.8089 0.9185 0.9098 0.8685 0.8658 

Freundlich KF (mg/g) 0.0012 0.0050 0.0074 0.0143 0.0333 0.0151 0.0792 0.0960 0.1044 0.1074 0.1138 0.1193 
1/n 0.9274 0.7992 0.8307 0.7713 0.6727 0.8535 0.5899 0.5807 0.5989 0.6224 0.6335 0.6301 
N 1.0783 1.2513 1.2038 1.2965 1.4865 1.1716 1.6952 1.7221 1.6697 1.6067 1.5785 1.5870 
R2 0.6866 0.7785 0.8492 0.8096 0.7626 0.9734 0.7012 0.7187 0.8485 0.8609 0.8193 0.8011 

Temkin A (L/mg) 0.0158 0.0221 0.0240 0.0333 0.0548 0.0366 0.0839 0.1040 0.1020 0.1062 0.1158 0.1223 
B (J/mol) 0.1704 0.2665 0.4322 0.4797 0.5263 0.7196 0.6237 0.6691 0.7549 0.8350 0.8799 0.8818 
R2 0.5280 0.6843 0.7907 0.9046 0.8792 0.9617 0.8377 0.8450 0.9425 0.9538 0.8921 0.8602 

Harkins Jura A 0.0033 0.0167 0.0399 0.0650 0.1242 0.1158 0.2568 0.3129 0.3734 0.3985 0.4142 0.4229 
B 2.5905 2.5649 2.5042 2.4589 2.4203 2.3859 2.3385 2.2937 2.2209 2.1599 2.1102 2.0953 
R2 0.7052 0.7074 0.7133 0.6275 0.5779 0.9339 0.4871 0.5012 0.6303 0.6323 0.6034 0.5990 

Halsey K 1446.7 752.11 364.72 246.46 156.97 136.45 73.616 56.619 43.514 36.018 30.881 29.183 
1/n − 0.9274 − 0.7992 − 0.8307 − 0.7713 − 0.6727 − 0.8535 − 0.5899 − 0.5807 − 0.5989 − 0.6224 − 0.6335 − 0.6301 
R2 0.6866 0.7785 0.8492 0.8090 0.7626 0.9734 0.7012 0.7187 0.8485 0.8609 0.8193 0.8011 

Flory Huggins K 1.36E-4 1.34E-4 2.12E-4 2.75E-4 3.07E-4 7.08E-4 4.81E-4 4.58E-4 2.11E-4 1.97E-4 2.66E-4 3.06E-4 
N − 9.2764 − 7.9489 − 4.7788 − 3.4809 − 2.7315 − 1.2845 − 1.6239 − 1.5449 − 2.0467 − 1.9422 − 1.6186 − 1.4950 
R2 0.2560 0.3635 0.2802 0.3145 0.3985 0.3393 0.3775 0.3945 0.5961 0.5588 0.4337 0.3967  
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models obtained in this study for the adsorption of phenol with other reported values. 

3.4. Kinetics studies 

The PFO, PSO, and Elovich models were utilized to investigate the kinetic studies and rate constants of phenol adsorption by RLCF- 
PB and MLCF-PB. The obtained kinetic constants and correlation coefficients (R2) for phenol adsorption are provided in Tables 4 and 5. 
The values K1 and qe were obtained from the plots of ln(qe − qt) against t. The plot of the concentration (100–500 mg/l) for RLCF-PB 
and MLCF-PB showed a range of values for R2. Based on the results, the PSO model was determined to be the best suitable kinetic model 
for explaining the adsorption process of phenol onto RLCF-PB and MLCF-PB. This is supported by the higher values of the correlation 
coefficient (R2) and the agreement between the calculated and experimental adsorption capacities. This indicates that the adsorption 
rate is influenced by the availability of vacant binding sites [21]. The data obtained from the PFO model plots for both RLCF-PB and 
MLCF-PB did not fit well, indicating that the adsorption process did not conform to the PFO model. However, the plots for the PSO 
model showed a good fit, as depicted in Fig. 8(a–e), and the parameters K2 and qe for the PSO model were determined from the in-
tercepts ( 1

K2q2
e
) and slopes ( 1

qe
) of the plots of t

q(t) against t. It was found that PFO was only appropriate for the initial phase of the 
adsorption process, while PSO could accurately describe the entire range of adsorption contact time. PSO is considered a suitable 
model for describing adsorption processes that involve chemisorption, where strong chemical bonds are formed between the adsorbate 
and the adsorbent [46]. 

The PSO model showed R2 values close to 1 for both RLCF-PB (0.9967) and MLCF-PB (0.9986), suggesting a strong fit of the model 
to the adsorption data. The adsorption rates measured for RLCF-PB and MLCF-PB in Tables 4 and 5 were relatively low, ranging from 

Table 3 
Assessment of different adsorbents for the elimination of phenol from aqueous solution.  

Adsorbent n QL RL References 

Raw Luffa cylindrica fiber − 33.112-11.695 − 6.325-344.83 0.3321–1.3116 This study 
NaOH-modified Luffa cylindrica fiber 1.0783–1.6952 1.4921–4.8948 0.2639–0.8509 This study 
Unmodified mango seed shell AC 1.5506–1.6918 35.971–44.843 0.2851–0.4484 [42] 
Nano-modified mango seed shell AC 1.1573–1.3385 − 99.01 to 62.11 0.7276–1.2029 [42] 
Organically modified manganite NA 52.19 0.084 [43] 
Modified Rhassoul (clay) NA 25 0.022 [44] 
Avocado kernel seed-activated carbon 4.73 0.215 9.4 × 10− 5 [45] 

NA= Not Available. 

Table 4 
Parameters of kinetic models for phenol adsorption onto RLCF-PB.  

Kinetics Parameters Concentration 

100 mg/l 200 mg/l 300 mg/l 400 mg/l 500 mg/l 

Pseudo 1st Order Qe (mg/g) 0.4135 0.7108 1.3862 2.0127 1.8658 
K1 (min− 1) 0.0104 0.0121 0.0143 0.0095 0.0130 
R2 0.2822 0.3572 0.4703 0.5511 0.5017 

Pseudo 2nd Order Qe (mg/g) 0.8802 1.6964 2.8019 4.0290 3.0516 
K2 (mg/g.min− 1) 0.0122 0.0082 0.0035 0.0017 0.0056 
R2 0.9650 0.7889 0.8987 0.8777 0.9967 

Elovich α (mg/g min) 0.0227 0.0598 0.0701 0.0771 0.1145 
β (g/mg) 5.3562 2.7778 1.7094 1.3303 1.5058 
R2 0.9868 0.8489 0.9739 0.9776 0.9904  

Table 5 
Parameters of kinetic models for phenol adsorption onto MLCF-PB.  

Kinetics Parameters Concentration 

100 mg/l 200 mg/l 300 mg/l 400 mg/l 500 mg/l 

Pseudo 1st Order Qe (mg/g) 0.2887 0.8716 1.0144 2.9411 2.8005 
K1 (min− 1) 0.0024 0.0099 0.0080 0.0170 0.0141 
R2 0.0217 0.3500 0.1983 0.5319 0.5839 

Pseudo 2nd Order Qe (mg/g) 0.0163 1.7355 2.9994 4.3029 4.4903 
K2 (mg/g.min− 1) 0.0056 0.0120 0.0055 0.0027 0.0041 
R2 0.9866 0.9851 0.9705 0.9865 0.9986 

Elovich α (mg/g min) 0.0299 0.0808 0.1076 0.1141 0.1821 
β (g/mg) 4.9505 2.6709 1.4560 1.0746 1.0248 
R2 0.9809 0.9476 0.9499 0.9755 0.9946  

S. Ogunniyi et al.                                                                                                                                                                                                      



Heliyon 10 (2024) e26443

13

0.0017 to 0.0122 mg/g min for RLCF-PB and 0.0027–0.0120 mg/g min for MLCF-PB. These results imply that the adsorption process 
was chemisorption. Additionally, the Elovich model was used to gain a better understanding of the adsorption process, and the 
maximum R2 values for RLCF-PB (0.9904) and MLCF-PB (0.9946) further supported the notion that phenol adsorption occurred via 
chemisorption. The plots for the Elovich model is shown in Fig. 9(a–e). PSO has also been reported as the best-fit kinetic model for 
phenol removal in previous studies by Mittal et al. [47], Kumar et al. [48], and El-Bery et al. [49], using agricultural materials such as 
deoiled soya, modified wood apple fruit shell, and activated sugarcane bagasse, respectively. The order of suitability for the models in 
this study was PSO > Elovich > PFO. 

3.4.1. Error analysis for the kinetic models 
The assessment of the kinetic models was performed based on the sum of squared errors (SSE, %) and average relative error, 

alongside the R2 value. Table 6 presents the results of the error test for the first- and second-order models of phenol adsorption onto 
RLCF-PB and MLCF-PB. A higher R2 and lower SSE values indicate a better model. The table demonstrates that the PSO model offers 
superior accuracy in predicting the adsorption kinetics of phenol onto RLCF-PB and MLCF-PB than the PFO model. 

Fig. 8. Plot of ln(qe − qt) against t for phenol adsorption onto RLCF-PB and MLCF-PB at concentrations of (a) 100, (b) 200, (c) 300, (d) 400, and (e) 
500 mg/l. 
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3.5. Adsorption mechanism 

The study investigated the possibility of intra-particle (Weber-Morris) diffusion and its effect on the rate of phenol adsorption onto 
packed beds. However, the plot did not touch some of the points during the experimental period, indicating that other factors influence 
the adsorption process [50]. As the intraparticle plots were extended up to the total duration of the experiment, which was 240 min, it 
was observed that the adsorption rate significantly decreased after the first 60 min as the system approached equilibrium over the next 
120–240 min. Fig. 10 (a–e) showed that the MLCF-PB had a faster initial rate of phenol adsorption than at later stages. This can be 
explained by the fact that LCF molecules occupy the external sites and channels, while phenolic molecules diffuse through the inner 
apertures of the materials. 

Ki were obtained from the gradients of the graphs of qt against t0.5 (shown in Fig. 10 (a–e). The intra-particle diffusion model was 
used to plot the graphs at various initial concentrations (100–500 mg/L), with the plot showing multilinearity. The value of the 
constant C for RLCF-PB (− 0.2001-0.1695) indicated a weaker adsorbent compared to MLCF-PB (− 0.0882-0.3221) as the concen-
trations rose from 100 to 500 mg/L (as shown in Table 7). The Ki values showed similar patterns, although the driving force of 

Fig. 9. Plot of log t
q(t) against t for phenol adsorption onto RLCF-PB and MLCF-PB at concentrations of (a) 100, (b) 200, (c) 300, (d) 400, and (e) 

500 mg/l. 
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concentration always had an impact on Ki, which was activated by a higher concentration of adsorbate [50]. 

3.6. Thermodynamic studies 

The positive ΔG◦ values presented in Table 8 for all three temperatures and contact times were obtained from the graph of 
ln Kd againt 1/T indicate that the products possess more enthalpy than the reactants, which suggests that the adsorption process is not 
spontaneous. The fact that the adsorption rate reduces as temperature increases suggests that the process is exothermic [51]. Addi-
tionally, as the contact time increased, the ΔG◦ values for both the RLCF-PB and the MLCF-PB decreased, indicating that the adsorption 
process became more feasible and spontaneous. The RLCF-PB had a larger ΔG◦ value than the MLCF-PB, which suggests that 
adsorption on the RLCF-PB is more favorable. The rise in ΔG◦ values as temperature rises can be clarified by the increased degree of 
spontaneity, which facilitates adsorption at elevated temperatures [3]. 

The ΔH◦ values obtained for the RLCF-PB and MLCF-PB were both positive, ranging from 4130.8 to 30902.6 J/mol for the RLCF-PB 
and 7928.6–25335.3 kJ/mol for the MLCF-PB. This demonstrated that the process absorbed heat, which is naturally endothermic. The 
small values of ΔS◦ (− 28.306 to 30.006 J/mol K) for RLCF-PB and (− 13.197 to 49.557 J/mol) for MLCF-PB indicate that the level of 
disorderliness on the solute/solid surface decreased during adsorption. 

4. Conclusion 

The study investigated the use of raw and NaOH-modified Luffa cylindrica fibers for sequestrating phenol from wastewater. The 
adsorption efficiency of both types of fibers in packed beds under various conditions was tested. The findings revealed that the NaOH- 
modified fiber was more effective than the raw fiber, achieving a removal efficiency of 99.5% at a phenol concentration of 300 mg/L, 
compared to 83.1% for the raw fiber at a concentration of 200 mg/L. It was also observed that the adsorption process was endothermic, 
as the highest removal efficiencies were achieved at higher temperatures. The thermodynamic characteristics of the adsorption process 
indicated its spontaneity and viability. Various isotherm models were used to fit the equilibrium data, and it was found that the 
Freundlich model was the best fit. This suggested that phenol molecules formed a monolayer on the surface of the NaOH-modified 
fiber. The study also examined the kinetics of phenol adsorption and found that the PSO model was the best fit for the data. Over-
all, the study has shown that NaOH-modified Luffa cylindrica fiber in a packed bed could be a promising material for phenol removal 
from aqueous media. The adsorbent’s advantages include its low cost, non-toxicity, high effectiveness, ease of use, and superficial 
synthesis and preparation. 
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Table 6 
Values for SSE and ARE in kinetic models.  

Kinetic model Concentration (mg l− 1) Raw Luffa cylindrica fiber PB Modified Luffa cylindrica fiber PB 

SSE ARE SSE ARE 

Pseudo 1st Order 100 0.0030 2.6293 0.0131 4.8258 
200 0.0026 3.6671 0.0278 3.3217 
300 0.0165 2.0244 0.1331 4.6226 
400 0.0157 1.4793 0.0007 0.2458 
500 0.0261 1.9224 0.0551 1.8758 

Pseudo 2nd Order 100 0.0064 3.8087 0.0374 4.1353 
200 0.0152 2.8032 0.0068 1.6456 
300 0.0786 4.4188 0.0434 2.6385 
400 0.2085 4.3870 0.1349 3.4989 
500 0.0327 2.1520 0.0640 2.0206  
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Fig. 10. Plot of qt against t0.5 for phenol adsorption onto RLCF-PB and MLCF-PB at concentrations of (a) 100, (b) 200, (c) 300, (d) 400, and (e) 500 
mg/l. 

Table 7 
Intra-particle diffusion model parameters.  

Conc. (mg/l) Raw Luffa cylindrica fiber PB NaOH- modified Luffa cylindrica PB 

Ki C R2 Ki C R2 

100 0.0446 − 0.0141 0.9409 0.0479 0.0275 0.9249 
200 0.0861 0.0833 0.8141 0.0896 0.1839 0.9097 
300 0.1378 − 0.0352 0.9045 0.1597 0.1610 0.8598 
400 0.1811 − 0.2001 0.9500 0.2249 − 0.0882 0.9545 
500 0.1598 0.1695 0.9503 0.2353 0.3221 0.9688  
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