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Synaptotagmin I (Syt I) is the calcium 
ion sensor for regulated release of 

neurotransmitter. How Syt I mediates 
this cellular event has been a question 
of extensive study for decades and yet, 
a clear understanding of the protein’s 
diverse functionality has remained elu-
sive. Using tools of thermodynamics, we 
have identified two intrinsic properties 
that may account for Syt I’s functional 
plasticity: marginal stability and nega-
tive coupling. These two intrinsic prop-
erties have the potential to provide great 
conformational flexibility and suggest 
that Syt I’s functional plasticity stems in 
part from subtle rearrangements in the 
protein’s conformational ensemble. This 
model for Syt I function is discussed 
within the context of the nervous sys-
tem’s overall plasticity.

Neural Plasticity as a Model  
for Synaptotagmin I Function

The nervous system is known for its plas-
ticity, both in development when syn-
apses are being directed and connected 
and in life, as occurs with learning, mem-
ory and emotion.1-3 This plasticity of the 
nervous system is part of what enables 
great human diversity in response to 
stimuli. With this type of global behav-
ior, it might be expected that the compo-
nent parts of the nervous system function 
in analogous ways. For the neuronal cell 
membrane, this is likely true.4 The weak 
interaction energies between membrane 
lipids create a dynamic surface, but also 
allow for the possibility of protein-induce 
reorganization, a potential mechanism 
for mediating several cellular signal-
ing events through domain formation.5-7 
Weak energetics, in this case, are what 
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enable membrane plasticity and environ-
mental responsiveness.8 In addition to the 
membrane, there may also be plasticity in 
the proteins that mediate neuronal activ-
ity. Synaptotagmin I (Syt I), a key regu-
latory protein responsible for sensing the 
calcium ion (Ca2+) influx that triggers 
neurotransmitter release,9-11 may be one 
such example.

Like the immensely diverse neuro-
nal networks that develop from a lim-
ited set of neuronal genes, the origins 
of Syt I’s diverse in vivo functionality is 
incompletely understood.12,13 How Syt I 
is able to mediate vesicle docking, regu-
late SNARE complex function, enhance 
membrane disruption, facilitate vesicle 
and plasma membrane fusion and partici-
pate in the reuptake of synaptic vesicles is 
at odds with our current view of neuronal 
protein function.13-16 Recent experimen-
tal evidence may, however, shed light on 
how Syt I accomplishes these numerous 
but related cellular tasks.17,18 Much like 
the proposed selective stabilization of 
neuronal connections in developing net-
works12,19 and the refinement of neural cir-
cuits with environmental input,1,3,20 Syt I 
function may be the result of a molecular-
level stabilization and refinement. In this 
neural plasticity analogy, Syt I’s “primary 
connectivity” stems from the genetic code 
which provides a primary amino acid 
sequence that ultimately gives rise to a 
protein structure of low thermodynamic 
stability (and, consequently, a wide range 
of possible conformations).21,22 Protein 
conformers imparted with important bio-
logical functions are selectively stabilized 
(or induced) by ligand and their func-
tion further refined by additional bind-
ing partners in the immediate cellular 
microenvironment.
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binding-competent conformer is removed 
from the conformational equilibrium. To 
replenish this depleted conformer, the 
equilibrium of the ensemble shifts and 
more of the binding-competent conformer 
becomes available for additional ligation. 
The cycle of binding, conformer removal 
and equilibrium shifting repeats ulti-
mately resulting in the re-weighting of all 
conformers in the ensemble. Conformers 
that were of low initial probability may 
become more populated.

Because Syt I’s C2 domains have inter-
linked ensembles, however, the ligand-
induced redistribution in C2A not only 
stabilizes a subset of its own domain con-
formers, it also lowers the energetic barrier 
between the conformers of C2B through 
negative coupling (Fig. 1, bottom panel). 
Since the first binding event redistributed 
C2B’s ensemble, the C2A-induced desta-
bilization allows for a different subset of 
conformers (which may have different 
molecular ramifications) to become more 

effect is seen in C2A; C2A’s free energy 
decreases and gives the domain a higher 
degree of conformational flexibility. 
When the stability of the C2A domain is 
lower, the energetic barrier between dif-
ferent conformations is lower. This allows 
the domain to more easily access conform-
ers in the ensemble that were originally 
occupied with low probability (Fig. 1, top 
panel). If the now more readily accessible 
conformers are binding competent, their 
higher probability of being occupied will 
facilitate ligand binding (higher probabil-
ity of binding-competent conformers is 
indicated in Figure 1 by the appearance of 
sites in the protein model depicted in the 
upper left corner of each panel. Note that 
the appearance of a binding site in this 
MWC context serves only to indicate the 
increased probability of a binding-com-
petent conformer; though not initially 
shown in the model, those binding-com-
petent conformers would always be pres-
ent in the ensemble). As ligand binds, the 

Allostery and Instability:  
Possible Origins of Syt I Plasticity

The basis for the above analogy stems from 
recent experimental observations of Syt I; 
namely, that the protein’s two C2 domains 
(C2A and C2B) are marginally stable and 
negatively coupled.17,18 By discussing how 
each domain’s conformation changes as 
a result of both intrinsic properties dur-
ing two theoretical binding events, a pos-
sible origin for Syt I’s functional plasticity 
(that is physiologically consistent with the 
gross and microscopic features of the ner-
vous system) can be seen. The discussion 
starts within a Monod-Wyman-Changeux 
(MWC) context of allostery.23-25

In their unbound form, both C2 
domains have some basal level stability. 
When the first domain-specific ligand or 
binding partner binds to the C2B domain, 
for example, its free energy of stability is 
increased. Because the domains are neg-
atively coupled, however, the opposite 

Figure 1. Conceptual representation of negative coupling- and ligand-induced redistribution of C2 domain conformers. top panel: Initially, C2A 
(purple) and C2B (green) have basal level stability and corresponding distributions of conformers (note: colors correspond to models in upper left 
corner of diagram). upon binding of a C2B-specific ligand or binding partner, both conformer distributions change (dark purple to light; light green to 
dark). the resultant change weights conformers in each domain’s ensemble differently, allowing for C2A conformers that are initially less populated to 
become more significantly populated. Bottom panel: the more accessible conformers in the destabilized C2A domain, if binding-competent, can be 
selectively stabilized by ligand (or other binding partners) resulting in a ligand-induced redistribution of conformers (light purple to dark). this selec-
tive stabilization of C2A conformers simultaneously drives ensemble broadening in the adjacent C2B domain (dark green to light) through negative 
coupling. the end result of the negative coupling- and ligand-induced redistribution inter-play is different combinations of domain conformer subsets 
for mediating different molecular events of neurotransmitter release.
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phosphatidylserine, phosphatidylinositol) 
and binding partners (SNAP-25, syn-
taxin, synaptobrevin, complexin) known 
to interact with each C2 domain and 
that do so differentially, the complex-
ity of conformational change increases. 
When expanding the scope further still 
to incorporate influence from other lipid 
and protein species present in both vesi-
cle and plasma membranes as well as the 
cytosol, the intricacy of conformational 
changes are staggering. If within each 
C2 domain’s conformational repertoire 
there are distinct conformer subsets that 
mediate different molecular events of neu-
rotransmission,27 then ligand and bind-
ing partner-induced selections of domain 
conformer combinations (with subtle 
refinements from other constituents of the 
protein’s microenvironment) may permit 
the nuanced functions of Syt I observed 
in vivo.13-15 It is in this molecular stabiliza-
tion and subtle refinement of conformers, 
enabled by allostery and instability, that 
Syt I mimics nervous system plasticity.
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