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Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the

error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned

similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforce-

ment to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent

performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their

learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-

based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between

exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had

greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by

increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn

and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise.
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Introduction
Motor learning relies on interacting mechanisms that are

thought to engage different neural circuits (for recent re-

views see Haith et al., 2013; Taylor and Ivory, 2014). Two

major classes of motor learning are supervised and re-

inforcement learning, which have typically been studied in

isolation. The extent to which these processes interact both

behaviourally and neurally is not understood.

The form of supervised learning that has been studied

most extensively is error-based adaptation. This mechanism

requires subjects to have access to the error arising from

their action—in a reaching movement this might be the

vector from their final hand position to a target. Error-

based learning is typically driven by predictable perturb-

ations to a movement, resulting in errors that are corrected

on a trial-by-trial basis (Helmholtz, 1962; Shadmehr and

Mussa-Ivaldi, 1994; Krakauer et al., 2000). Many studies
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have shown that people with focal cerebellar damage have

deficits in error-based learning of visuomotor (Weiner

et al., 1983; Martin et al., 1996; Tseng et al., 2007) and

force field perturbations in reaching movements (Mashke

et al., 2004; Smith and Shadmehr, 2005) as well as split-

belt adaptation in walking (Morton and Bastian, 2006).

Loss of this adaptive ability results in poorly calibrated

movements.

In contrast, reinforcement learning relies on simple scalar

measures of outcome such as success or failure. This mech-

anism requires subjects to explore in order to determine

which actions will lead to success and those movements

are reinforced. Learning using this mechanism can be

driven by reward prediction errors, allowing one to select

advantageous actions based on the probability of their

yielding future rewards (for review see Sutton and Barto,

1998; Lee et al., 2012). Indeed, most real-world tasks,

from learning to walk to causing a swing to go higher,

do not have an explicit error at each point in time.

Therefore, such tasks rely on reinforcement signals

(e.g. the height of the swing). Simple laboratory examples

of reinforcement learning involve rewarding reaches

that conform to some hidden feature the experimenter

wishes the participant to learn, such as the curvature of a

movement (Dam and Körding, 2013; Wu et al., 2014) or

an unseen visuomotor rotation (Izawa and Shadmehr,

2011).

Reinforcement learning has been thought to function in-

dependently of cerebellar processes, instead relying on cir-

cuits involving the basal ganglia (for review see Knowlton

et al., 1996; Schultz, 2006; Ramayya et al., 2014). In add-

ition there are behavioural differences. For example, when

learning a visuomotor rotation, reinforcement does not lead

to recalibration of proprioception, unlike error-based learn-

ing (Izawa and Shadmehr, 2011). Thus, reinforcement

learning may allow individuals to update their movements

without relying on sensory prediction mechanisms. Izawa

and Shadmehr (2011) hypothesized that reinforcement

learning may represent a spared mechanism for motor

learning following cerebellar damage, but this has yet to

be formally studied.

Here we examine how learning a new reaching move-

ment differs in acquisition and retention between condi-

tions with error-based versus binary reinforcement

feedback. By comparing a gradual error-based adaptation

and two binary reinforcement tasks with different reward

schedules, we show that reinforcement learning enhances

retention compared to adaptation. Examining cerebellar

subjects in both error-based and binary reinforcement

tasks we found that they show both learning and retention

in the reinforcement task, although less than age-matched

controls. Using a mechanistic model we demonstrate that

the deficit appears not to be in the reinforcement learning

algorithm itself, but is attributable to additional motor vari-

ability, which reduces the efficacy of reinforcement

learning.

Materials and methods

Subjects

The study was approved by the Johns Hopkins institutional
ethics review board and all subjects gave written informed
consent prior to participation. For Experiment 1, 60 right-
handed young controls were recruited and were divided into
three groups (six males and 14 females each), each performing
one of the experimental tasks: error-based adaptation (error-
based group: 26.2 � 11.1 years), open-loop reinforcement
(open-loop group: 22.0 � 3.1 years), closed-loop reinforcement
(closed-loop group: 25.2 � 5.4 years). For Experiment 2, we
recruited 12 patients with cerebellar degeneration and 12
healthy controls matched for age (cerebellar group:
61.5 � 10.0 years, control group, 59.6 � 9.0 years) and
gender (eight males, four females). Further details about the
patients’ characteristics and other participants are shown in
Table 1. The severity of patients’ movement impairment was
assessed using the International Cooperative Ataxia Rating
Scale (ICARS; Trouillas et al., 1997).

Apparatus

Participants made reaching movements in a KINARM exoskel-
eton robot (B-KIN Technologies). Each participant’s right arm
rested in trays in this device and they performed movements in
the horizontal plane below a screen that prevented them from
viewing their arm. All visual feedback was projected on to the
screen’s surface.

Procedure

Experiment 1

Participants completed one of three reach learning tasks: an
error-based adaptation, an open-loop reinforcement, or a
closed-loop reinforcement task. In all tasks, we introduced a
15� visuomotor rotation between the index finger location and
the position of a cursor, which participants were told repre-
sented the finger position (Fig. 1A). This cursor was either
visible (error-based feedback) or invisible (reinforcement-
based feedback) throughout each reach. Within each group
the rotation direction was counterbalanced across subjects
(clockwise or counter-clockwise). All participants performed
a 40 trial baseline phase with no rotation, a 320 trial perturb-
ation phase in which a visuomotor rotation was introduced
and finally a 100 trial retention phase in which no visual feed-
back or knowledge of outcome was provided.

A trial began with the participant’s finger at the home pos-
ition (1-cm radius circle) �40 cm directly in front the subject.
Once the hand was held in the start position for 500 ms, a
target appeared on the screen (1-cm radius circle). The centre
of the target was positioned directly in front of the subject,
10 cm distal to the home position. Participants were asked to
reach so that their index finger passed through the target. The
trial ended when the hand exceeded a distance of 10 cm from
the home position. Participants were asked to then relax their
arm and the robot passively brought their index finger back to
within 2 cm of the home position. A cursor representing the
position of the index finger was then presented to allow
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participants to move their hand into the home position to start

the next trial. To encourage participants to make movements
within 200–600 ms after leaving the home position, the target

turned blue or red for movements that were too slow or too

fast, respectively. Prior to beginning the experiment, all par-
ticipants were given a 40-trial practice block with no cursor

rotation to familiarize themselves with the task and movement

speed requirements.
In the error-based adaptation task, participants received

cursor feedback throughout the reach (0.5-cm radius filled

grey circle updated at the screen refresh rate of 60 Hz).
During the perturbation phase of the task, a 15� visuomotor

rotation was gradually introduced in steps of 1� every 20 trials

with an additional 20 trials at the full rotation (Fig. 1B).
Successful trials were those in which the visual cursor was

seen to make contact with the visual target. When the visuo-

motor rotation was introduced, this required the subjects to
move their finger though a rotated reward zone (dotted circle,

Fig. 1A—invisible to the participant), which had a width

of � 5.7� around the rotation angle, corresponding to the

width of visual target. Thus, participants had to learn to
reach at an angle, relative to the visual target, that countered

the visuomotor rotation. The reach angle was defined as the

angle between two vectors: one from the initial finger position
to the target and the other from initial finger position to the

finger location when 10 cm from the home position: movement

endpoint. In this task, cursor feedback was extinguished as
soon as participants’ hands crossed a 10-cm radius around

the centre of the home target and was not displayed during

the return of the hand to the home position.
In the two reinforcement learning tasks, participants received

only binary (success or failure) feedback about the outcome of

their movement—no cursor feedback was shown. If the invis-
ible cursor, would have touched the visual target (i.e. if the
finger passed through the reward zone; Fig. 1A), the visual
target turned green indicating success, otherwise the visual
target disappeared to signal trial completion and that the
target had been missed. In the open-loop reinforcement task,
the perturbation phase introduced a gradual visuomotor
rotation that was identical to the error-based task, with the
exception that no cursor feedback was provided (Fig. 1B). In
the perturbation phase of closed-loop reinforcement task, the
rotation angle depended on the participant’s previous reaches.
That is, the rotation angle was calculated as the moving aver-
age of participants’ previous 10 reach angles (or 15� if the
moving average was greater than this; Fig. 1C). Stated a dif-
ferent way, subjects were rewarded if their reach was rotated
beyond the average of their last 10 reaches in the direction that
countered the rotation. We only provided participants with
outcome (reinforcement) feedback on valid trials; that is,
trials in which the duration criteria (200–600 ms) were met.
To control for possible different numbers of valid trials be-
tween participants we performed additional analyses to
ensure that the number of valid trials did not affect our results.

For all tasks the retention phase was identical. All feedback
was extinguished (no cursor displayed or success feedback)
and participants were instructed to continue to reach and
aim for the visual target.

Experiment 2

The objective of this experiment was to compare reinforcement
learning and gradual error-based adaptation in individuals
with cerebellar degeneration and healthy age-matched controls.
In two sessions, performed on separate days, participants

Table 1 Subject demographics

ICARS

Subjects Age (years) Sex Handedness Diagnosis Total (/100) Kinetic (/52)

CB01* 54 F R OPCA 36 16

CB02 51 M R Sporadic 64 36

CB03 63 M R ADCA III 12 1

CB04 61 F R SCA 6 55 21

CB05 42 M L SCA 8 59 23

CB06 61 M R SCA 6/8 66 25

CB07 66 F R ADCA III 54 18

CB08 80 M R ADCA III 45 23

CB09 74 M R Sporadic 34 8

CB10 57 M R SCA 7 54 49

CB11 64 M L SCA 6 13 4

CB12 65 F R SCA 6 39 19

CB group 61.5 � 10.0 M = 8/12 R = 10/12 44.3 � 18.1 20.3 � 13.2

OC group 59.6 � 9.0 M = 8/12 R = 12/12

ERR YC group 26.1 � 11.1 M = 6/20 R = 20/20

OLR YC group 22.0 � 3.1 M = 6/20 R = 20/20

CLR YC group 25.2 � 5.4 M = 6/20 R = 20/20

ICARS = International Cooperative Ataxia Rating Scale; CB = cerebellar patient; OC = older control, age matched to cerebellar group; YC = young control; ERR = error-based

adaptation; OLR = open-loop reinforcement; CLR = closed-loop reinforcement; F = female; M = male; R = right; L = left; OPCA = olivopontocerebellar atrophy; ADCA

III = autosomal dominant cerebellar ataxia type 3 which has only cerebellar signs; SCA = spinocerebellar ataxia types 6, 7 and 8; Sporadic = sporadic adult-onset cerebellar ataxia;

Group data: mean � SD. *Subject did not complete ERR task. None of the patients or controls had sensory loss in clinical tests of proprioception and monofilament testing for tactile

sensation (Campbell, 2005). One patient (Patient CB01) had atrophy in the brainstem by MRI, but showed no extra-cerebellar signs. One patient (Patient CB10) presented with

hyperactive reflexes in the lower limbs, but reflexes were normal bilaterally in the upper limbs. No signs of white-matter damage or spontaneous nystagmus were seen among any

patients.

Cerebellar damage and reinforcement learning BRAIN 2016: 139; 101–114 | 103



completed the error-based and closed-loop reinforcement tasks
with the order counterbalanced within each group. We chose
to only use a clockwise rotation in this experiment because
cerebellar patients exhibit a clockwise bias in their reaches to
the target we used (Gibo et al., 2013). By using a clockwise
rotation, we ensured the participants would not perform well
under the rotation simply because of their bias, and would be
required to learn a new reach angle to achieve task success.
Again, we only gave binary feedback in the reinforcement con-
dition when trials met the movement speed criterion. This was
particularly important for the cerebellar patients because fast
movements will exacerbate their reach errors. Additional ana-
lyses were performed to control for any differences in the
number of valid trials in the reinforcement condition. We

chose not to add in extra trials for any invalid trials to
avoid effects of fatigue.

Measurements and analysis

Data from the clockwise and counter-clockwise conditions in
Experiment 1 were analysed together—we flipped the counter-
clockwise data to correspond to clockwise rotation partici-
pants. Statistical analysis used a mixed model design. In
Experiment 1, between groups comparisons were made using
the factor of task (Error-based, Open-loop, Closed-loop).
Within groups, measures were compared over five experiment
phases: the mean of the Baseline block, Early and Late
Perturbation (trials 41–80 and last 40 trials), Early and Late
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Figure 1 Task overview and schematic of feedback conditions. (A) Participants were required to make a 10 cm reaching movement

from a home position to move a cursor through a visual target. The hand was hidden from view below a screen. At baseline, the visual cursor

represented the index fingertip position. In the perturbation phase, the cursor was gradually rotated relative to the index fingertip. This required

participants to learn to alter their reach angle to counter the rotation and move the cursor toward the visual target. Participants were given either

error-based or binary reinforcement feedback. In the error-based task, the cursor was presented throughout each reach and successful reaches

were those in which the cursor was seen to hit the visual target. This required participants to reach through the reward zone. In the

reinforcement tasks, the cursor was not shown and participants received only binary feedback about task success or failure. Here, reaches that

successfully crossed the reward zone were rewarded with the visual target turning green. If a reach failed to counter the rotation, the visual target

disappeared to signal the end of that trial. (B) In the error based adaptation and the open-loop reinforcement tasks, the rotation was gradually

introduced during the perturbation phase. The yellow region shows the reward zone. (C) The closed-loop reinforcement task rewarded reaches

that fell between the mean of the participant’s previous 10 reaches and the outer bound of the reward zone.
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Retention (first and last 40 trials). One-way ANOVA was used
to compare total learning (difference between Late
Perturbation and Baseline), early and late retention (percentage
of Early and Late Retention relative to Late Perturbation) and
within subject standard deviation (SD) at baseline.

In Experiment 2, a mixed-model design was used with a
between subjects factor of group (Cerebellar, Older Control)
and within subjects factors of task (Error-based, Closed-loop)
and phase (Baseline, Early Perturbation, Late Perturbation,
Early Retention, Late Retention). Total learning and early
and late retention were compared between groups and
within task. In this experiment only the valid trials were
included in the analysis.

All post hoc means comparisons were performed using
Bonferroni corrections for multiple comparisons. All data
were tested for normality using the Shapiro-Wilk test.
Homogeneity of variance was also evaluated using Mauchly’s
Test of Sphericity and Levene tests for mixed-model and one-
way ANOVAs, respectively. Tests of sphericity revealed un-
equal variance between groups across phase in Experiments
1 and 2. Levene tests also revealed unequal variance between
groups for mean values for total learning, late retention and
Baseline within subject standard deviation in Experiment 1 and
model parameters in the modelling analysis. In these cases,
Greenhouse-Geisser corrections and Brown-Forsythe tests for
equality of means were used for mixed model ANOVA and
one-way ANOVA, respectively, to ensure that significant ef-
fects were robust to heteroscedasticity. All data analysis was
performed using custom written software in Matlab
(Mathworks). In all tasks, bivariate correlations were per-
formed between dependent variables in the cerebellar group
and ICARS total scores as well as Kinetic subscores.
Statistical analysis was performed using SPSS software (IBM).

To examine learning in Experiment 2 corrected for the
number of feedback (valid) trials experienced, we performed
a bootstrap analysis between the groups. To compare the cere-
bellar participants to the older group, we considered each cere-
bellar participant individually. First we took the difference
between their reach angle, averaged over their last 20 valid
trials in the perturbation session, and the average of the
trials matched for the number of valid trials from a randomly
selected older subject who had at least the same number of
valid trials. This compares learning for the trials that occur
after the same number of perturbation trials with outcome
feedback. We then summed these differences across cerebellar
subjects to produce a single bootstrap sample and repeated this
procedure 10 000 times and calculated the P-value as the pro-
portion of the samples that were less than zero. We repeated
this process for the other group comparisons and for both
reach angle and total learning.

Model analysis

To model the reinforcement learning task we used a simple
mechanistic model which incorporates both exploration and
motor noise. We assume that on any trial, t, subjects have
an internal estimate of the state of the rotation angle, xt (or
equivalently an estimate of the reach angle which would lead
to success). We include variability in participant’s reaches from
two sources, motor noise and exploration variability that both
affect reach direction. The key difference between these two
sources of variability is that we assume participants are

unaware of the motor noise, but have full awareness of their
exploration variability. On each trial, both sources of variabil-
ity are modelled as draws from zero mean Gaussian distribu-
tions with standard deviations of �m and �e, for the motor and
exploration components. A mathematically similar way of ex-

pressing this is that there is a total variability
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

e þ �
2
m

p� �
in a

participant’s reach direction and that he or she is aware of (or

corrects for) a proportion of this variability, � ¼
�2

e

�2
eþ�

2
m
.

On each trial the reach angle, yt, is modelled as yt =
xt + et + mt, where et and mt are samples of the exploration
variability and motor noise, respectively. If a subject is unsuc-
cessful and misses the target, the internal estimate of reach
direction is unchanged (xt + 1 = xt), However, if the subject is
successful then they update the estimate of their reach angle by
the exploratory noise on that trial, xt + 1 = xt + et. Although this
formulation appears to have a learning rate of unity we can
instead consider the update such that � is the proportion of the
full variability that subjects correct for if rewarded.

To fit this stochastic model to each subject’s data we used a
particle filter (Doucet and Johansen, 2009). This is necessary
as the model is complex as reward depends not only on the
internal estimate of state of the current trial, but also on the
actual reach angles on the previous 10 trials, thereby making
an analytic fit intractable.

We simulated R = 10 000 particles for each setting of our
model parameter � ¼ �m; �ef g. We chose the parameters
equally spaced on a 50 � 50 grid of �m = {0.01� 8.5} and
�e = {0.01� 5.5} degrees. This grid was wide enough to con-
tain the optimal estimates. For each parameter setting, all par-
ticles were initialized at the average reach angle of the Baseline
phase. The particles represented estimates of the perturbation
such that xr

t is that rotation estimate for particle r at time step
t. Each of the T steps (corresponding to the trials) of the simu-
lation involved:

(1) Computing the weight for each particle r

wr
t ¼ P ytjx

r
t

� �
¼ N yt;x

r
t ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m þ �
2
e

q� �

(2) Calculating an estimate of the likelihood for that data point

lt ¼ 1=Rð Þ
X

r

wr
t � P ytjy1; . . . ; yt�1ð Þ

(3) Normalizing the weights so that they sum to 1 across the particles

ŵr
t ¼ wr

t=
X

r

wr
t

(4) Resampling R particles such that for each sample the probability

of sampling particle r is ŵr
t .

(5) if t5T go to 1 with t = t + 1

The key idea behind the particle filter is that the set of par-
ticles represent the posterior distribution over the rotation
angles and that we can calculate the log likelihood of the
data given the parameters as

logLð�Þ ¼
X

t

loglt

For each subject we found the parameters that maximized
the log-likelihood. Note that unlike fitting mean square error
(Izawa and Shadmehr, 2011) this method takes into account
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the non-independence across trials of the simulated and actual
data. Confidence intervals were calculated using the profile
likelihood method (Appendix A in McCullagh and Nelder,
1989). That is, the (1��) confidence interval encloses all
values of � for which the log likelihood is within �2

1��ðdÞ=2
of the maximum log likelihood, where d is the number of
parameters (2) being estimated via the method of maximum
likelihood. To show sample simulation of the fits we simulated
10 000 simulations using the maximum likelihood parameters
and calculated the mean squared error to the subjects’ data
and chose the simulation with the median mean squared error.

To evaluate the model’s goodness of fit we compared the
log-likelihood of the data (using R = 1000 particles) for each
subject, using the maximum likelihood parameters of the
model, to the log-likelihood of 1000 simulated data sets gen-
erated from the model with the same maximum likelihood
parameters (Goris et al., 2014). We considered a model fit
acceptable if the log-likelihood of the real data lay within
the central 95% of the distribution of log-likelihood of the
simulated data. This was the case for the vast majority of
participants (30 of 34) suggesting the model is generally ac-
ceptable for this task.

Results

Behavioural analyses

Experiment 1

The experiment was designed to compare the learning and

retention of visuomotor rotations under error-based feed-

back and two types of reinforcement feedback. Figure 2A

shows the time series of reach angles for the different

groups. All groups could reach within the target zone

during the baseline phase. During the perturbation phase

all groups learned and on average were within the final

target zone centred on 15�. The open- and closed-loop

groups were able to match the desired duration time

window for most trials and did not have a significantly

different proportion of trials outside the range (invalid

trials, 5.7% and 3.7%, respectively, P = 0.18). During re-

tention, when both the cursor and outcome feedback were

removed, each group initially maintained their learned

reach angle, though the error-based group showed some

decay over this period.

A mixed model ANOVA of reach angle showed no group

effect, but a significant effect of experimental phase

[F(4,228) = 79.176, P50.001; Greenhouse-Geisser cor-

rected, F(2.267,129.198) = 79.176, P5 0.001] and a sig-

nificant group � phase interaction [F(2,228) = 6.849,

P50.001]. Thus, the three groups responded differently

across phase. We used post hoc comparisons to examine

the key features of learning and retention. We found

differences at baseline with the open-loop group having a

significantly more negative reach angle compared to the

error-based group (P5 0.05). In addition the closed-loop

group showed significantly more learning in the early

perturbation phase compared to the error-based and

open-loop groups (both P5 0.001). All groups showed sig-

nificant learning from baseline to the late perturbation

phase (all P5 0.001) and similar reach angles early in re-

tention, but in late retention the error-based group showed

significant decay from late perturbation compared to the

other groups (P5 0.001). This suggests that learning with

error feedback yielded reduced retention of the learned

movement relative to reinforcement feedback.

Figure 2B shows total learning (difference between

Baseline and End Perturbation) and the per cent early

and late retention (measured as the ratio of Early and

Late Retention angle to End Perturbation). One-way

ANOVA on total learning revealed a significant main

effect of group [F(2,57) = 5.446, P5 0.01], driven by a sig-

nificant difference between the error-based and open-loop

group. This effect was preserved in Brown-Forsythe testing

of mean differences, which accounts for unequal variances

within groups [F(2,38.439) = 5.446, P50.01].

One-way ANOVA showed similar early retention (mean

of first 40 retention trials) for all groups [F(2,57) = 2.833,

P = 0.067] but a significant difference in late retention

[mean of last 40 retention trials F(2,57) = 5.056,

P5 0.05] and post hoc test showed this was driven by

the decay in the error-based group compared to the open-

loop group (P5 0.05). To examine differences in retention

between groups when equated for total learning (and there-

fore discounting potential effects of the number of valid

trials), we selected 10 subjects (of 20) from each of the

open-loop and closed-loop groups so as to match their

total learning mean and variance to the error-based

group. To do this we computed the mean and variance

of all possible subgroups of 10 subjects in the open-loop

and closed-loop groups, respectively. We chose the sub-

group that minimized the Jensen-Shannon divergence be-

tween that subgroup and the error-based group’s total

learning distributions. Figure 2C shows the time series of

reach angles for these matched subgroups and the error-

based group. Group means for total learning were not sig-

nificantly different following matching, [F(2,37) = 3.215,

P = 0.052; Brown-Forsythe, F(2,17.182) = 2.645, P = 0.10;

Fig. 2D]. Analysis of both early and late retention in the

matched subgroups revealed a significant main effect of

group [early retention, F(2,37) = 6.573, P5 0.01; late re-

tention, F(2,37) = 8.916, P5 0.01; Fig. 2D]. The main

effect for late retention was preserved following Brown-

Forsythe tests [F(2,19.406) = 9.097, P50.01] indicating

that the result was robust to unequal variance across

groups. In both early and late retention, main effects

were driven by significantly reduced retention in the

error-based group compared with the two reinforcement-

learning groups. Thus, learning with reinforcement feed-

back yielded enhanced retention of the learned reach

angle compared with online error feedback.

To examine variability in performance we analysed

within subject standard deviations in the reach angles of

the overall groups over the 40 baseline trials. One-way

ANOVA revealed a significant main effect of group
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[F(2,57) = 7.251, P5 0.01], which was repeated following

Brown-Forsythe testing [F(2,42.044) = 7.251, P5 0.05].

Post hoc comparisons revealed that the effect resulted

from significantly greater within subject reach angle vari-

ability in the two reinforcement groups compared to the

error-based group (both P5 0.01). The main effect of

group was replicated when within subject reach angle

standard deviation was analysed in the resampled reinforce-

ment groups matched to the performance of the error-based

group [F(2,37) = 7.496, P50.01; Brown-Forsythe,

F(2,20.587) = 5.695, P5 0.05]. Overall, these findings sug-

gest that online error feedback reduces behavioural vari-

ability compared with binary reinforcement feedback.

Experiment 2

This experiment was designed to compare reinforcement

learning and error-based learning in individuals with cere-

bellar damage and age-matched, healthy controls (older

controls). Both groups could, on average, reach within

the target zone during the baseline phase of both tasks

(Fig. 3A and B). By the late perturbation phase, control

subjects were on average within the final target zone

(centred on 15�) in both tasks. However, the cerebellar

group on average only reached the final target in the

error-based task. Both groups maintained their learned

reach angle throughout retention in the closed-loop task.

In the error-based learning task, older control subjects ini-

tially maintained their learned reach angle, but their per-

formance decayed over the retention period. In contrast,

the cerebellar subjects showed no retention as their per-

formance immediately returned to close to baseline.

We used a mixed-model ANOVA to examine differences

in reach angle between the groups, tasks and phases. We

found significant main effects of group [F(1,21) = 8.6,

P5 0.01], task [F(1,21) = 6.3, P5 0.05] and phase

[F(4,84) = 50.1, P5 0.001; Greenhouse-Geisser corrected,

F(2.4,49.8) = 50.1, P5 0.001]. The interaction among

these factors was also significant [F(4,84) = 4.73,

P5 0.01]. Post hoc analysis showed that both groups

learned from baseline to the late perturbation phase in

both tasks (for the cerebellar group in the closed-loop

task, P5 0.05, all others, P5 0.001). Total learning was

greater for the error-based task compared to the reinforce-

ment task [F(1,21) = 24.7, P5 0.001, Fig. 3C]. Although

there were differences in the mean learned reach angle be-

tween older control group and cerebellar group in the

closed-loop task (P5 0.01), total learning was not signifi-

cantly different across the groups in either task (P = 0.235).
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Figure 2 Comparison of error-based, open- and closed-loop reinforcement. (A) Reach angle (group mean � SEM) across trials for the

error-based adaptation, open- and closed-loop reinforcement tasks. (B) Group mean of total learning (left), early retention (middle) and late

retention (right). (C) Reach angle (as in A) from a subset of the subjects in each of the open- and closed-loop reinforcement groups (10 of 20)

chosen to match the learning in the error-based group. (D) Group mean results for data in C. Error bars indicate SEM. *P5 0.05, **P5 0.01.

Cerebellar damage and reinforcement learning BRAIN 2016: 139; 101–114 | 107



In the closed-loop condition, the cerebellar and older

control group did not have a significantly different propor-

tion of invalid trials (10.9 and 11.5%, respectively,

P = 0.90) whereas the young controls had only 1.7% in-

valid trials. We used a bootstrap analysis to compare reach

angles at the end of the perturbation phase as well total

learning, both adjusted for the number of valid trials (see

‘Materials and methods’ section). This showed that the

cerebellar group had a significantly smaller reach angle at

the end of the perturbation phase compared to the older

and younger groups (P5 0.001), but the older group was

not significantly different from the younger group

(P = 0.24). However, for total learning all groups showed

significantly different amounts of learning with the older

learning more than the cerebellar group (P = 0.026) and

the younger learning more than the older group

(P50.001).

In the error-based task, both groups showed a significant

decay from late perturbation to early and late retention

(older control: P5 0.001, P5 0.05, respectively; cerebel-

lar: both P5 0.001). However, the decay in early retention

was much greater for the cerebellar group as they returned

to near baseline performance (P50.001).

To take into account the final learning level, we exam-

ined the per cent early and late retention (Fig. 3D and E).

Mixed model ANOVA of per cent early retention revealed

a significant main effect of task [F(1,21) = 54.8, P5 0.001]

and a significant interaction among factors group and task

[F(1,21) = 15.2, P50.01, Fig. 3D]. Post hoc analysis

showed that the cerebellar group had reduced retention in

the error-based task relative to the closed-loop task

(P50.001) and reduced retention in the error-based task

compared to controls (P5 0.01). ANOVA of per cent late

retention revealed a significant main effect of task

[F(1,21) = 11.3, P5 0.01, Fig. 3E], which was driven by

reduced retention in both groups the error-based task com-

pared to the closed-loop task. Together these results suggest

that cerebellar patients retained their learning in the closed-

loop task similarly to age-matched controls. Conversely,

while control participants showed some early retention of

the adaptation in the error-based task, the cerebellar group

showed no such retention.

We were surprised that the cerebellar group showed

almost complete adaptation in the error-based task, despite

no retention. This discrepancy could arise if the cerebellar

group relied on online visual feedback to control their

reaches. In support of this, examination of the initial por-

tion of the trajectory in the error-based group appears

more directed toward the visual location of the target late

in learning (Fig. 4, middle) and only curves towards the

target zone as the movement progresses. In contrast the

initial trajectory in the closed-loop task (in which visual

feedback cannot be used) is aimed towards the target

zone. In early retention (Fig. 4, right) the error-based

group make movements almost straight to the target sug-

gesting that the curvature seen in the later perturbation

movements are driven by visual feedback. In the closed-

loop task, however, the cerebellar group maintains some

of their initial trajectory deviation in the early retention

period. This suggests that the cerebellar group used

online feedback to correct their movements in the error-

based task resulting in the appearance of complete adapta-

tion, but without any true updating of feedforward models

of the correct movement.

To examine movement variability we analysed baseline

within subject reach angle standard deviation for each
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Figure 3 Comparison of error-based and closed-loop re-

inforcement in cerebellar subjects and matched controls.

(A) Reach angle (group mean � SEM) across trials for the closed-

loop reinforcement task. On average, the cerebellar patients did not

reach the final reward zone, unlike control subjects, but maintained

the learned reach angle once reinforcement feedback was removed

in the retention phase B. Reach angle (as in A) for the error-based

adaptation task. The cerebellar patients were able to follow the

gradual visuomotor rotation (as did control subjects) but showed

no retention of the rotation once feedback was removed. (C)

Group mean results for total learning (left) and per cent early and

late retention (middle and right, respectively) in the closed-loop re-

inforcement and error-based adaptation tasks. Error bars indicate

SEM. **P5 0.01, ***P5 0.001.
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subject in the two tasks. Mixed model ANOVA revealed a

significant main effect of group that was the result of

greater reach angle variability in the cerebellar group com-

pared to controls [F(1,21) = 14.0, P5 0.01]. The group -

task interaction was also significant [F(1,21) = 8.3,

P50.01]. Within the older control group, reach angle

variability was greater in the closed-loop task compared

to the error-based task (P5 0.01). Baseline reach angle

standard deviation in the cerebellar group was related to

their clinical impairment. The kinetic function sub-score of

the International Cooperative Ataxia Rating Scale (ICARS),

which is the component of the scale directly related to arm

ataxia, was correlated with baseline variability in both the

error-based (r = 0.8, P5 0.01, Fig. 5A) and closed-loop

tasks (r = 0.6, P5 0.05, Fig. 5B). No other significant cor-

relations were found between dependent variables and

ataxia rating scores.

Modelling

Many of the cerebellar subjects showed significant learning

and retention in the reinforcement condition. Further, we

saw individual differences in reinforcement learning within

the cerebellar and control groups with some subjects show-

ing substantial learning and others showing little learning.

In an attempt to understand these differences, we developed

a simple mechanistic model of the reinforcement learning

task and fit each subject’s closed-loop data. The model

considered the reach angle executed on a given trial to be

the result of an internal estimate of the ideal reach angle

(i.e. to counter the current rotation applied) with the add-

ition of two sources of variability: motor noise and explor-

ation variability. The important difference between these

two sources of variability is that we assume participants

are unaware of their motor noise, but have full awareness

of their exploration variability. When an action is re-

warded, the subject updates their internal estimate of

reach angle based solely on the contribution of exploration

variability. When an action is unrewarded, the reach angle

is not updated. The model has two parameters, the stand-

ard deviations of the Gaussian distributions that generate

the motor noise and exploration variability. We fit the

model to each individual subject’s data using maximum

likelihood estimation.

Three typical subject’s data (a cerebellar, old and young

control) are shown along with a typical simulation for each

(Fig. 6A–C and parameter estimates, see ‘Materials and

methods’ section). The cerebellar subject had the largest

motor noise, followed by the older control with the

young control having the smallest amount of motor

noise. In contrast, the younger control had the largest ex-

ploration variability. These parameters led to slower learn-

ing for the cerebellar and older control and faster learning

for the younger control. Figure 6D shows that group means

match reasonably well to the mean of the simulations (aver-

ages of 10 000 simulations with each subjects fitted

parameter).

The model predicts that the amount of learning and

reward depends on both the motor noise and exploration

variability. Figure 7A shows the proportion of rewarded

trials in late learning from the model for different settings

of the motor noise and exploration variability. This shows

that performance tends to decrease with motor noise and

intermediate values of exploration variability lead to the

greatest reward. Therefore for a given level of motor

noise there is an optimal level of exploration variability

that will lead to maximal adaptation. Achieving a good

level of adaptation thus requires a balance between explor-

ation and motor noise.

Examining the fits across the subjects (Fig. 7B parameters

with 95% confidence intervals) shows that there is wide

variation of the parameters but that they tend to cluster

by group. In addition there is variability in the per cent

learning in the late perturbation period across subjects (per-

centage learning is shown as fill of the circular symbols in

Fig. 7B). The reason for this is that the model is probabil-

istic in nature and therefore even with identical parameters

for exploration variability and motor noise the actual time

series of reaches and adaptation will vary each time the

model is run. For example, sometimes the model will be

lucky and draw random samples of motor noise with less

variability and sometimes the model will be unlucky and

draw samples with more variability. We examined this by

looking at the distribution of adaptation expected from the

model when we performed many thousands of simulations

and then determined where a participant’s actual adapta-

tion lies within this distribution. Across all 34 participants

we find on average that participants’ adaptation was

ranked at 58 (where 1 is the model’s best and 100 the

model’s worst performance) and that this rank was not

significantly different from the expected value of 50

1 cm

BL
Late 

Perturbation
Early

Retention

Error-based
adaptation

Closed loop
reinforcement

Figure 4 Hand paths for the cerebellar subjects in the

error-based adaptation and closed-loop reinforcement

tasks. The left column shows the group mean over the 40 baseline

(BL) trials. The middle and right columns show late perturbation

and early retention paths. Paths were first averaged within a subject

and then averaged across subjects and are shown � SEM.
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(P = 0.11). Importantly, even though there was variation in

performance predicted by the model, the way in which a

participant changed their reach angle as a function of cur-

rent reach angle and reward (or lack thereof) allowed us to

extract model parameters with reasonably narrow confi-

dence limits.

Analysis of mean parameter values yielded significant dif-

ferences between groups. One-way ANOVA of motor noise

revealed a main effect of group [�m; F(2,31) = 7.6,

P50.01; Brown-Forsythe, F(2,19.9) = 7.2, P5 0.01;

Fig. 7C] that resulted from significantly greater motor

noise in the cerebellar group compared to both young

(P50.05) and age-matched controls (P5 0.01). One-way

ANOVA of exploration variability also revealed an effect

of group [�e; F(2,31) = 6.4, P50.01; Brown-Forsythe,

F(2,15.2) = 5.7, P5 0.05, Fig. 7C], which resulted from

significantly greater exploration in young controls com-

pared to both the cerebellar group (P5 0.05) and older

controls (P5 0.01). Importantly, one-way ANOVA of the

proportion of rewarded trials over the perturbation phase

of the experiment revealed a main effect of group

[F(2,31) = 8.232, P5 0.01] where the reward rate was sig-

nificantly lower for the cerebellar group (0.57 � 0.04) than

both the older (0.73 � 0.04) and young control

(0.76 � 0.03) groups (both P5 .01).

Although we have phrased the model as motor noise and

exploration variability, a mathematically similar way of ex-

pressing this is that there is a total variability in a partici-

pant’s reach direction and that he or she is only aware of a

proportion of this variability and corrects for this propor-

tion when rewarded (see ‘Materials and methods’ section).

We replot the parameter estimates as total variance and the

proportion corrected for in Fig. 7D. One-way ANOVA of

total variance revealed a main effect of group

[F(2,31) = 9.9, P5 0.001; Brown-Forsythe, F(2,21.

1724) = 10.0, P5 0.01] where both cerebellar (P5 0.001)

and young control (P5 0.05) groups showed significantly

greater variability than the older control group, but were

not different from each other. Analysis of rho showed a

significant main effect of group [F(2,31) = 4.8, P5 0.05;

Brown-Forsythe, F(2,11.2) = 4.1, P5 0.05] where the cere-

bellar group was aware of a smaller proportion of their

total variability compared with both older and young con-

trols. This comparison was significant between the cerebel-

lar and young control group (P5 0.05).

Discussion
We examined the learning and retention of a visuomotor

rotation using error-based and reinforcement feedback, and

whether these mechanisms depend on the integrity of cere-

bellar function. Reinforcement schedules produced better

retention compared with error-based learning. Moreover,

using a closed-loop reinforcement schedule, where the

reward was contingent on prior performance, produced

rapid learning. Cerebellar patients could learn under the

closed-loop reinforcement schedule and retained much

more of the learned reaching pattern compared to when

they performed error-based learning. However, cerebellar

patients varied in their learning ability in the reinforcement

condition, with some showing only partial learning of the

rotation. We developed a computational model of the re-

inforcement condition and found that learning was depend-

ent on the balance between motor noise and exploration

variability, with the patient group having greater motor

noise and hence learning less. Our results suggest that cere-

bellar damage may indirectly impair reinforcement learning

by increasing motor noise, but does not interfere with the

reinforcement mechanism itself.

We based the open-loop task on prior work showing

binary reinforcement could drive visuomotor learning in

r = 0.601, P = 0.039
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Figure 5 Baseline movement variability correlates with ICARS kinetic function score. Plots show correlations between within

subject reach angle standard deviation at baseline and kinetic function subscore on the International Cooperative Ataxia Rating Scale (ICARS). (A)

Error-based adaptation task. (B) Closed-loop reinforcement task.
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reinforcement task.
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controls (Izawa and Shadmehr, 2011). However, in open-

loop paradigms, subjects sometimes lag behind the per-

turbation to such an extent that they end up receiving

no reward and no longer adjust their reaches or explore

sufficiently to reacquire the target zone. We, therefore,

included a closed-loop condition to mitigate this problem

and to ensure that the reward schedule was set as close to

50% in the early period of learning. This was done by

rewarding any reach that exceeded the average of the

last 10 reaches in the desired direction (i.e. countering

the rotation). This closed-loop paradigm led to more

rapid learning than the open-loop reinforcement para-

digm, with similar final levels and retention across our

subjects.

While we designed our study to assess reinforcement and

error-based learning in isolation, in general these mechan-

isms will work together in real-world situations. In the re-

inforcement task participants clearly do not have access to

error information, whereas in the error-based task they

have both error and task success (reinforcement) informa-

tion. Nevertheless, our results show clear differences be-

tween the two paradigms, which suggests that we are

largely studying distinct processes—one that is driven pri-

marily by error that is not well retained and another clearly

driven by reinforcement that is well retained. This is

consistent with previous studies examining interactions be-

tween the two learning mechanisms, showing enhanced re-

tention of an error-based learning process when

reinforcement is also provided (Shmuelof et al., 2012;

Galea et al., 2015). In addition, combining error-based

and reinforcement learning has been shown to speed up

learning (Nikooyan and Ahmed 2015).

Cerebellar patients have known deficits in error-based

learning (Martin et al., 1996; Maschke et al., 2004;

Richter et al., 2004; Morton and Bastian, 2006). Yet, the

patients in our study were able to follow the gradual per-

turbation in the error-based condition. Analysis of their

reach trajectories suggests that this ability relied on the

patients using online visual feedback of the cursor to

steer their reaching movements toward the target. As

reach angles were calculated using the endpoint of each

movement (this was necessary to compare the error-based

task to the reinforcement tasks where reaches were re-

warded based on movement endpoint), this feedback-de-

pendent compensation made them appear to be learning.

However, when visual feedback was removed to assess re-

tention, the ability to correct the movement online was

immediately lost (i.e. no retention). Thus, cerebellar pa-

tients did not truly adapt to the visuomotor rotation in

the error-based task. Consistent with this, is that cerebellar
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patients cannot follow a gradual rotation when only end-

point cursor feedback is provided (Schlerf et al., 2013).

Reinforcement learning has been posited as a spared

mechanism of motor learning following cerebellar

damage. Consistent with this, Izawa et al. (2012) showed

that cerebellar subjects could counter a gradual visuomotor

rotation and generalize the new reach pattern to other tar-

gets when they learned with concurrent online visual cursor

feedback and binary reinforcement feedback. They sug-

gested that the cerebellar patients were relying on a re-

inforcement mechanism because they did not change the

perceived location of their hand in a proprioceptive recali-

bration test, whereas control subjects did. Such propriocep-

tive recalibration is thought to be a hallmark of error-based

adaptation (Synofzik et al., 2008). Here we specifically

show that cerebellar patients can use binary reinforcement

feedback alone to alter their reaching movements, although

some patients were able to learn more than others. All pa-

tients, regardless of how much they learned, showed almost

complete retention in the reinforcement task. This is in in

stark contrast to the same patients showing a complete lack

of retention in the error-based paradigm.

The failure of some cerebellar patients to learn in the

reinforcement task could be due to either deficits in the

reinforcement learning mechanism itself, or deficits in

other mechanisms which might limit the usefulness of re-

inforcement learning (or a combination of the two).

Cerebellar damage causes reaching ataxia, indicated by

curved and variable reaching movements (Bastian et al.,

1996). Patients with cerebellar damage also have proprio-

ceptive impairments during active movements that are con-

sistent with disrupted movement prediction (Bhanpuri

et al., 2013). Together these studies suggest that cerebellar

damage increases motor noise and/or reduces the sensitivity

with which they can locate their own arm. In other words,

this leads to variability in reaching that cannot be estimated

by the brain. We suspected that such variability (which we

consider a form of motor noise) might interfere with re-

inforcement learning.

To test this hypothesis we used a simple model of the

reinforcement task in which each subject was characterized

by two sources of variability—one that they were unaware

of, which we call motor noise, and one that they were

aware of, which we term exploration variability. We

chose to use a simpler model than the one used by Izawa

and Shadmehr (2011), in which reward learning was based

on a temporal difference learning algorithm. This algorithm

requires specification of a range of parameters a priori (e.g.

motor noise, discount rates, motor costs). In the temporal

difference rule the current reward is compared to the ex-

pected reward to drive learning. However, due to the

closed-loop nature of our paradigm, which set the perturb-

ation so that the expected reward rate was always close to

50%, getting a reward was in general better than expected

and failing to get a reward worse than expected. Therefore,

we simplified the rule to update the motor command only

for success and maintained the motor command for failure.

This allowed us to avoid setting any parameters a priori

and we fit two parameters to characterize subjects’ learn-

ing. Moreover, rather than fit squared error we were able

to use a full probabilistic model using maximum likelihood,

which allowed us to test whether our model was adequate

to explain the subjects’ data. The model provided a good fit

for the vast majority of subjects and showed that the pa-

tients’ had increased motor noise, but similar exploration

variability compared to the matched controls. In other

words, the majority of variability contributing to cerebellar

patients’ behaviour could not be used by the motor system

for learning. When reinforcement was received on success-

ful trials, updating of internal estimates of the correct

action (i.e. reach angle) was impaired—estimates could

only be updated based on a small proportion of the move-

ment variability (corresponding to the exploration compo-

nent) resulting in less learning. The younger group had

similar motor noise to the older control group but had

higher exploration variability, which led to improved

learning.

Previous work has noted that increased motor variability

in the rewarded dimension of a reinforcement learning task

is associated with more successful performance (Wu et al.,

2014). These results suggested that behavioural variability

might be a deliberate output of the motor system that is

necessary during learning to explore the task space, find the

optimal response and yield maximal reward. Our results

are in general agreement with these findings as in a re-

inforcement learning task, exploration variability is essen-

tial. In general, for reinforcement learning the optimal

amount of exploration variability will depend on the level

of motor noise. Therefore, for a fixed level of motor noise

subjects should ideally learn to set their exploration vari-

ability so as to have maximum adaptation. Although we

have phrased the model as exploration variability and

motor noise (Fig. 7C), a mathematically similar way of

expressing this is that there is a total variability in a par-

ticipant’s reach direction, but he or she is only aware of a

proportion of this variability or only corrects for a propor-

tion when rewarded (Fig. 7D). Under this interpretation of

the model, the cerebellar subjects have higher overall vari-

ability and correct for less of this variability when they are

successful.

In summary, we have shown that cerebellar patients are

able to use binary reinforcement feedback alone to learn

and retain a visuomotor reaching task. However, their

motor noise interferes with this process. Future work is

needed to determine if motor noise can be reduced or

if increasing exploration variability can benefit

these patients.
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