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Single-shot structural analysis by 
high-energy X-ray diffraction using 
an ultrashort all-optical source
R. Rakowski1, G. Golovin   1, J. O’Neal1, J. Zhang1, P. Zhang1, B. Zhao1, M. D. Wilson2,  
M. C. Veale   2, P. Seller2, S. Chen1, S. Banerjee1, D. Umstadter   1 & M. Fuchs   1

High-energy X-rays (HEX-rays) with photon energies on order of 100 keV have attractive characteristics, 
such as comparably low absorption, high spatial resolution and the ability to access inner-shell states 
of heavy atoms. These properties are advantageous for many applications ranging from studies of bulk 
materials to the investigation of materials in extreme conditions. Ultrafast X-ray diffraction allows 
the direct imaging of atomic dynamics simultaneously on its natural time and length scale. However, 
using HEX-rays for ultrafast studies has been limited due to the lack of sources that can generate pulses 
of sufficiently short (femtosecond) duration in this wavelength range. Here we show single-crystal 
diffraction using ultrashort ~90 keV HEX-ray pulses generated by an all-optical source based on inverse 
Compton scattering. We also demonstrate a method for measuring the crystal lattice spacing in a 
single shot that contains only ~105 photons in a spectral bandwidth of ~50% full width at half maximum 
(FWHM). Our approach allows us to obtain structural information from the full X-ray spectrum. As target 
we use a cylindrically bent Ge crystal in Laue transmission geometry. This experiment constitutes a first 
step towards measurements of ultrafast atomic dynamics using femtosecond HEX-ray pulses.

Experiments using HEX-rays with photon energies on order of 100 keV can access information that is comple-
mentary to that obtained by lower-energy hard X-ray methods, which typically operate at photon energies around 
10 keV. In particular, due to the comparatively low photo-absorption cross-section, HEX-rays have a high pene-
tration depth which allows the investigation of bulk materials1 or solids and liquids in extreme conditions2, such 
as under high pressures and at high densities3 or at high temperatures4. The large momentum of HEX photons can 
be used in scattering to access information that cannot be obtained with lower-energetic X-rays. More specifically, 
the large momentum transfer in HEX diffraction experiments enables measurements with a significantly higher 
spatial resolution and the almost flat Ewald sphere allows the observation of a large part of reciprocal space span-
ning several Brillouin zones in a single geometry. This can be of particular advantage in measurements of phonon 
distributions via diffuse scattering experiments1.

Tunable HEX-ray beams are routinely generated using synchrotron emission from relativistic electron beams 
that propagate through dipole magnets or permanent-magnet wigglers5. The wavelength of the emitted radiation 
can be adjusted over a wide range by varying the energy of the electron beam6. However, the pulse duration of 
storage-ring based synchrotron facilities is typically limited to 30–100 ps, which is not sufficiently short to per-
form studies of ultrafast dynamics on the atomic temporal scale. HEX-ray pulses with a duration of 20 ps have 
been generated using a more compact source that is based on inverse Compton scattering of optical photons 
(laser wiggler) from a relativistic electron beam7. X-ray pulses with sub-picosecond duration using storage-ring 
based sources have been generated by sophisticated electron beam manipulations8 and by a perpendicular 
Compton scattering geometry9 however at the cost of greatly reduced photon flux. Recently, X-ray free-electron 
lasers (XFELs)10,11 that are capable of ultrashort X-ray pulses with enormous intensities have become available. 
However, current facilities cannot reach high-energy X-ray photon energies.

Here, we use an all-optical inverse Compton scattering source where both, the relativistic electron beam and 
the optical wiggler are generated by a laser12. The relativistic electron pulse is produced by a laser-wakefield 
accelerator, in which a high-power femtosecond laser pulse is focused into a gas target where it excites a plasma 
wave13. Electrons are accelerated by this wave to relativistic energies within a distance of only a few millimeters. 
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This method can be used to drive an X-ray source with a relatively compact footprint. More importantly, it ena-
bles the possibility of investigating atomic dynamics on an ultrafast time scale as the generated electron bunches 
(and thus the subsequently generated X-ray pulses) are intrinsically only a few femtoseconds long with a perfect 
temporal synchronization to the driver laser14,15. However, these sources typically generate pulses with a compar-
atively broad bandwidth (a few tens of percent) and operate at a relatively low repetition rate on order of 1 Hz. An 
additional challenge resulting from the compact geometry of these sources is the background radiation that is 
mainly generated by scattering of the relativistic electron beam at the chamber walls and the beam dump as well 
as the highly noisy environment typically present at high-power laser interactions.

Here we demonstrate a technique that enables diffraction experiments using such beam parameters. To 
this end, we use HEX-rays to observe diffraction from the (220) reflection of a cylindrically bent Ge crystal. 
The crystal was used in a Laue transmission X-ray spectrometer geometry16,17. As detector we used a pixelated 
energy-resolving X-ray camera in single-photon counting mode18. In this arrangement, we were able to filter the 
diffraction signal in photon energy by using the energy resolution of the camera. The additional independent 
spectral information obtained by the spatial dispersion of the crystal diffraction allowed us to determine the 
crystal lattice constant despite significant background contamination. A similar energy-resolved approach based 
on powder diffraction has been proposed as in-line X-ray diagnostics19 and has been used as in situ shock com-
pression diagnostics using a flat crystal20. We were able to demonstrate that through energy filtering of the dif-
fraction signal, it is possible to use the full X-ray spectrum of ~50% (FWHM) for the determination of the crystal 
lattice spacing. Specifically, we were able to resolve the Ge(220) lattice spacing to be 2 Å with a spatial resolution 
of 2.1 pm (one standard deviation). We extended the method to demonstrate that we can measure the lattice 
constant using only a single pulse that contained just ~105 X-ray photons in a 50% bandwidth at a central photon 
energy of 90 keV. Single-shot determination of the lattice constant is of particular interest for experiments that 
measure systems with many degrees of freedom, such as investigations of time-resolved dynamics that require 
measurements at many different time steps or for experiments that investigate non-reversible excitations. Since in 
our case the lattice constant is well known, we also used the method to retrieve the source spectrum with minimal 
background contamination.

Results
Experimental Setup.  For the experiment, we used an ultrafast all-optical X-ray source12. The X-rays were 
produced by inverse Compton scattering of an optical laser beam (800 nm) from a relativistic electron beam, 
which was generated using laser-wakefield acceleration (for more details see methods). The source is capable of 
generating up to 106 photons per shot and for this experiment was operated at a central photon energy of ~90 keV 
with a relative energy spread of ~50% (FWHM). The X-ray beam has a divergence on order of ~10 mrad and a 
shot-to-shot pointing fluctuation of ~10 mrad. As target we used a 0.16 mm thick cylindrically bent Ge crystal 
with a radius of curvature (ROC) of 0.254 m located in air at a distance of 2.25 m from the X-ray source (see 
Fig. 1a). The Ge crystal is placed in a Cauchois-type transmission spectrometer setup21. In this geometry, X-rays 
of equal energy that are diffracted by the crystal from a position close to the spectrometer axis are focused onto a 

Figure 1.  Schematic of the experimental setup. (a) shows the schematic of the inverse Compton X-ray source. 
The X-rays are generated by backscattering of a high-intensity laser beam from a relativistic electron beam that 
is produced by a laser-plasma interaction. Subsequently, the electrons are bent out of the X-ray path by a dipole 
magnet and the optical laser pulse is filtered out by a thin Al foil, while the X-rays are transmitted. The spectrum 
of the electron beam is diagnosed with a phosphor screen. A cylindrically bent Ge crystal is positioned at 2.25 m 
downstream of the X-ray source. The diffraction signal is observed with an energy-resolving pixelated CdTe 
X-ray camera. (b) shows an enlarged schematic of the HEX-ray spectrometer showing the bent Ge crystal with 
radius of curvature (ROC) of 0.254 m and the detector. The (220) planes of the crystal are used for diffraction. 
The crystal is enclosed in a housing with a lead entrance window that blocks the direct beam except for a 
small pinhole. A slit is placed at the position where the diffracted X-rays cross the spectrometer axis in order 
to block any direct line-of-sight between the source and the detector. The X-rays are detected in a plane close 
to the Rowland circle indicated by the dashed line. The distance of the slit to the focal circle is indicated by B 
and the distance of the detector position from the focal circle by D. The whole spectrometer is shielded from 
background through a lead and Teflon enclosure.
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circle (Rowland circle) with a diameter that is equal to the ROC of the bent crystal16. The spectral dispersion XD 
of photon energy E on a flat detector located a distance D behind the focal circle is given by21
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where n is the diffraction order, h the Planck constant, c the speed of light, dlatt the crystal lattice spacing of the 
used reflection, R the crystal radius of curvature and B the distance from the slit to focal circle (see Fig. 1b). 
The dispersion distance XD from the spectrometer axis scales linearly inverse with the photon energy E. We 
used the (Laue) reflection of the (220) planes of a Ge crystal, for which dlatt ~2 Å. As detector we used a pix-
elated energy-resolving high energy X-ray HEXITEC camera based on a CdTe crystal18. It has an active area of 
20 × 20 mm2 with 80 × 80 pixels each with a size of 250 × 250 µm2. In order to work in single-photon counting 
mode, the detector was located at 2.5 m from the source.

Photon-energy resolved dispersion measurement.  The diffraction signal was recorded for every 
X-ray shot. The total signal obtained by the summation of 87 consecutive shots is shown in Fig. 2. The lower-right 
corner of the image shows the undispersed direct beam transmitted through a pinhole in the spectrometer 
entrance window. Due to the finite chip size only a fraction of the dispersed beam was recorded.

At the photon energy range used in the experiment, the X-ray camera has an intrinsic energy-resolution of 
~1 keV (FWHM)18, which allows us to spectrally filter the observed signal. By using the combined information of 
the energy resolution of the X-ray detector and the spatial dispersion of the crystal diffraction we can significantly 
increase the signal to noise ratio. To this end, for each individual shot we spectrally filter the recorded images 
into narrow energy bands in a range of 50–150 keV using the camera energy resolution. We integrate the filtered 
images along the vertical (non-dispersion) dimension. An example of this method for selected energy bands can 
be seen in Fig. 3. To verify the validity of this method, we compare the peak of the integrated lineout that we have 
obtained for each energy band with the expected spectral dispersion given by equation (1). Figure 4 shows the 
excellent agreement of the camera energy-selected peaks with the theoretical dispersion curve adjusted for our 
spectrometer setup (see methods).

Retrieved source spectrum.  Since in our case the lattice constant of the crystal is well known, we can use 
the energy-filtered diffraction signal to determine the spectrum of the X-ray source. In principle, the source spec-
trum can be obtained from either the crystal dispersion or by using the energy-resolution of the X-ray camera. 
However, the recorded diffraction images contain a significant background that is mainly due to the interaction 
of the relativistic electron beam with the beam dump and is visible despite massive shielding of the detector. The 
comparison of background to signal can be approximately estimated from the photon-energy filtered images 
shown in Fig. 3. The background can be measured by only operating the electron accelerator while blocking the 
backscattering laser pulse, such that no inverse Compton scattering X-rays are generated. However, it is challeng-
ing to correct for in a single shot as it strongly varies in both, energy and spatial distribution from shot to shot. 
In order to obtain a spectrum with significantly decreased background contamination, we use the combined 
information obtained from the spatial dispersion due to the crystal diffraction and the camera energy-filtered 

Figure 2.  Raw X-ray diffraction signal. The figure shows the X-ray diffraction signal from the (220) Laue 
reflection of a bent Ge crystal, summed over consecutive 87 shots. The crystal spectral dispersion direction is 
horizontal. The top edge of the detector chip was blocked by the spectrometer entrance window, which is shown 
by the white dotted line. The signal above this line is indicative of the background. On the lower right a small 
part of the undispersed direct beam that is transmitted through a pinhole in the entrance window can be seen.
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signal. We filter out the background in the data post-processing by correlating the spatial position of a photon on 
the detector with its energy. To this end, we select a narrow photon energy-band with a width according to the 
camera resolution (~1 keV), spatially filter the image according to the crystal spectral dispersion given by equa-
tion (1) and then vertically integrate (perpendicular to spectral dispersion direction) the signal. Extending this 
method over the whole energy range allows us to retrieve the spectral photon density of the source (see Fig. 5). In 
order to obtain the source photon number, we have taken into account the integrated Laue diffraction efficiency 
of the Ge(220) reflection extracted from Fig. 6a of ref.21 for each photon energy (see methods) and the beamline 
transmission. Note that on average we detect only part of the total X-ray beam. This is because the solid angle 
of the fraction of the crystal, for which the diffraction pattern is detected by the camera is ~5 × 10−5 sr and the 
beam divergence and shot-to-shot pointing fluctuation each are on order of 10 mrad in the horizontal and verti-
cal direction. By using a long propagation distance of ~2.5 m between the source and the detector we sufficiently 
decrease the photon flux on the camera to operate in single-photon counting mode. Regardless, our method is 
robust to photon pile-up, a process where two photons that are simultaneously detected by the same pixel appear 
as a single photon of higher energy. In case of pile-up, the camera would detect a higher photon energy, which 
would skew the measured shape of the spectrum. However, due to the additional discrimination of the spatial 
location of the detected photons, in our case pile-up does not distort the measurement.

Figure 3.  Hitmap of photon-energy filtered diffraction signal. The observed diffraction signal is separated 
into narrow spectral bands using the photon-energy selectivity of the camera. The figure shows spatial photon 
hit maps for bands at 84–88 keV (I), 89–93 keV (II), 119–123 keV (III), and 139–143 keV (IV). The vertically 
integrated signal can be seen below each image. The solid white lines indicate the theoretical position according 
to the spectral dispersion of the crystal diffraction given by equation (1). The signal above the white dotted 
line, where the X-ray beam was blocked by the entrance window, gives an estimate on the background. 
Each individual shot is processed and then summed. The figure shows the combined signal of 87 shots. The 
undispersed direct beam transmitted through a pinhole in the entrance window can be seen on the lower right 
corner of each image.
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Determination of the Ge(220) lattice constant.  We can also use this method to determine the lattice 
constant of the crystal. In particular, the correlation of the photon-energy filtered data with the crystal spectral 
dispersion allows us to get a high-resolution measurement of the lattice parameter, even from a single shot with 
only ~105 photons and a comparably broad spectrum of ~50% (FWHM). Figure 6 shows the photon-energy 
resolved diffraction pattern for the sum of 87 shots. The figure has been generated by energy-filtering the total 

Figure 4.  Spectrometer dispersion curve. The figure shows a comparison between the experimentally observed 
positions of the energy-filtered peaks and the crystal spectral dispersion. The blue data points indicate the peak 
positions of the vertically integrated energy-filtered camera images for selected energies. The horizontal error 
bars are the FWHM-widths of the integrated peak and the vertical error bars the widths of the selected energy 
band. The curves for the calibration of the bent-crystal spectrometer in a standard configuration with the 
detector located directly on the Rowland circle (D = 0) is shown in green and the theoretical curve according 
to equation (1) in red. Note that the two curves almost completely overlap. The magenta curve shows the 
spectrometer dispersion adjusted for the configuration used in this experiment, which includes a small offset 
of the X-ray camera position from the Rowland circle (D/B = 0.11) and a small rotation of the Ge crystal (see 
methods).

Figure 5.  Measured double-differential spectrum of the inverse Compton X-ray source. The spectrum is 
generated by post-processing each shot individually and then averaging over 87 shots (blue). The expected 
spectral shape (red) is calculated for a 5% energy spread in the laser beam and an electron beam with 5% 
energy spread, 5% shot-to-shot energy fluctuation and a 10 mrad divergence. The retrieved spectrum takes into 
account the diffraction efficiency of the Ge(220) reflection, the detector efficiency and the transmission through 
the beamline (see methods). The detector observes an effective solid angle of ~5 × 10–5 sr. Due to the divergence 
and pointing fluctuations of the X-ray beam, on average only a fraction of the whole beam is detected.
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signal using the X-ray camera resolution and vertically integrating the image for each energy. Note that unlike for 
the extraction of the source spectrum, in this case the signal is not filtered by the horizontal dispersion position. 
Despite the noisy background, a clear diffraction signal from the Ge(220) planes can be seen. This method allows 
us to perform structural analysis of the crystal lattice using the full bandwidth of the X-ray spectrum.

In order to infer the lattice constant of the crystal from the photon-energy resolved diffraction signal we deter-
mine for each detected photon its energy E and spatial position Xd. Through equation (1), we can determine an 
effective lattice constant d for each photon. We perform this analysis for every shot. The histogram for all 87 shots 
can be seen in Fig. 7a. The known lattice parameter for Ge is d = 5.658 Å and for the (220) planes is expected to be  

= + + ≈ .d d h k l Å/ 2 0220
2 2 2 , where h, k and l are the Miller indices of the reflection. The histogram shows a 

peak well above background at 2.0 Å. From the histogram, we can infer a measurement precision of 2.1 pm (1 
standard deviation) for all 87 shots, corresponding to the resolution of our measurement. The main sources of 
measurement uncertainties are the accuracies of the determination of the spatial positions of the detected 

Figure 6.  Photon-energy resolved diffraction signal. The figure shows the spatially dispersed diffraction pattern 
from the bent Ge crystal resolved by photon energy. Each row is obtained by filtering the signal into ~1 keV 
bands using the photon-energy resolution of the X-ray camera and then vertically integrating the image, similar 
as shown in Fig. 3. The energy ranges shown in Fig. 3 (I–IV) are indicated by white lines. A clear correlation 
signal can be observed for a lattice spacing that corresponds to the Ge(220) reflection, despite significant 
background. The theoretical curve for our experimental conditions according to equation (1) is shown in 
green (see methods). The figure shows the signal summed over 87 shots. The energy-resolved direct beam that 
is transmitted through a pinhole in the entrance window of the spectrometer can be seen as vertical stripe 
centered around the 67th pixel.

Figure 7.  Histogram of measured effective lattice constant. (a) Histogram of 87 X-ray shots. The crystal lattice 
constant is determined from the photon-energy resolved diffraction pattern. For each detected photon, the 
photon energy E and the spatial position Xd are deduced. An effective lattice constant d is determined using 
equation (1). The peak at d = 2 Å corresponds to the lattice spacing of the Ge(220) planes. By fitting a Gaussian 
distribution (inset), we find a standard deviation of 2.1 pm. The histogram is generated from the sum of 87 
shots, the bin width is 1.1 pm (total 500 bins). (b) Histogram of a single shot with bin width of 2.8 pm.
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photons due to the finite width of the camera pixels of 250 µm and the finite camera energy resolution of ≲1 keV 
for our photon energy range. The inter-planar distance is determined to be d = 2 ± 0.021 Å.

Single-shot Determination of Ge lattice constant.  We also demonstrate that this method allows us to 
determine the lattice constant with a high-resolution using a single shot with only ~105 photons and a compara-
bly broad spectrum of ~50% (see Fig. 7b). A clear peak well above background can be seen at the Ge(220) lattice 
spacing. The bin width for the histogram has been chosen to be on order of the measurement uncertainty that has 
been determined from the sum of 87 shots.

Discussion
We have observed a diffraction signal from a bent single crystal using an ultrafast all-laser driven high-energy 
X-ray source operated at ~90 keV. By energy-filtering the diffraction signal using an energy-resolving HEX-ray 
camera, we were able to extract a nearly background free spectrum of the source. More importantly, we were 
able to demonstrate a technique that can take advantage of the full X-ray bandwidth for atomic-scale struc-
tural analysis. This allowed us to deduce the crystal lattice constant using only a single X-ray shot with just ~105 
photons and 50% bandwidth. This is of particular interest for experiments that require measurements at many 
different parameter points, such as investigations of the ultrafast time-evolution of structural dynamics. Despite 
significant background contamination, the measured signals were well above background. This approach can 
be beneficial for experiments that are performed in a highly noisy environment as often present in high-power 
laser interactions. The observed signal can be further enhanced by source developments and by decreasing the 
X-ray propagation distance to the sample. This is possible as the method is robust to photon pile-up. The method 
demonstrated here enables the use of novel ultrafast HEX-ray sources that typically generate a comparably low 
number of photons per shot in a broad bandwidth and operate at relatively low repetition rates for diffraction 
experiments. In a next step, we will extend this technique to flat crystal samples. In the future, we expect that our 
approach will enable time-resolved investigations of ultrafast dynamics using novel next-generation femtosecond 
high-energy X-ray sources.

Methods
All-optical Inverse Compton Scattering Source.  The experiments were performed in the Extreme Light 
Laboratory at the University of Nebraska – Lincoln using the Diocles laser facility. The high-energy X-ray radia-
tion is generated using an all-optical X-ray source. The X-rays were created through inverse Compton scattering 
of an optical (800 nm) laser beam from a relativistic electron beam, which was simultaneously generated using the 
same laser system. To this end, the laser beam is split into a driver for the electron accelerator and into a backscat-
tering pulse. The driver pulse (1.4 J, 34 fs) is focused to an intensity of 5.4 × 1018 W/cm2 using an f/14 off-axis 
parabolic mirror and interacts with a gas jet to generate an electron beam via laser-wakefield acceleration. A dual 
gas-jet target has been used as accelerator for this experiment22. The X-rays are subsequently generated by the 
interaction of a backscattering laser pulse (0.3 J, 40 fs) focused to an intensity of 1 × 1018 W/cm2 with the electron 
beam in a nearly counter-propagating geometry. The source is capable of producing X-ray beams (~106 photons 
per shot) with photon energies tunable in the range of a few tens of keV to around 10 MeV. Taking into account a 
5% energy spread in the laser beam and an electron beam with 5% energy spread, 5% shot-to-shot energy fluctu-
ation and a 10 mrad divergence results in a FWHM bandwidth of the X-ray pulse of ( / ) 67%ω ω∆ ≈ . The photon 
energy can be increased by increasing the electron beam energy. For this experiment, the source was operated at 
a central photon energy of ~90 keV. Because of the comparably small normalized vector potential of the backscat-
tering laser beam of a0 = 0.7, the radiation is mainly emitted into the fundamental peak centered at around 85 keV 
with a negligible harmonic content. The divergence of the X-ray beam is ~10 mrad and the shot-to-shot pointing 
fluctuations are also ~10 mrad.

Cauchois-Type Transmission X-ray Spectrometer.  A schematic of the spectrometer can be seen in 
Fig. 1b. The spectrometer uses a 0.16 mm thick cylindrically bent Ge crystal with a radius of curvature (ROC) of 
0.254 m in Laue transmission geometry21. The X-ray detector was located at a distance of 2.5 m from the source. 
The spectrometer was aligned using the drive laser beam. X-rays of equal energy that are emitted from a point 
source and are incident onto the curved crystal at small angles are focused through Laue diffraction. The X-rays 
are focused onto a point on the focal circle (Rowland circle) with a diameter that is equal to the ROC of the crystal. 
The (220) reflection was used in this experiment. According to Bragg’s law, the diffraction angle depends on the 
photon energy and the spectral dispersion at a detector placed near the Rowland circle is linear with the photon 
wavelength. The detector is shielded by a lead entrance window and a slit close to the center of the focal circle, such 
that there is no direct line-of-sight between the source and the detector except for a 1 mm pinhole that indicates 
the spectrometer axis. The entrance window has two symmetric rectangular openings (each 30.5 mm high and 
16.5 mm wide) separated by 6.5 mm opaque lead bar with the pinhole drilled in its center. In order to block any 
undiffracted radiation, a lead slit is placed where the diffracted polychromatic X-ray beam intersects the spectrom-
eter axis (at a distance B = 12.7 cm from the back of the focal circle). The diffraction pattern was measured with a 
pixelated 2D energy-resolving X-ray camera. Due to experimental constraints, the camera was located at a distance 
of D = 1.4 cm from the Rowland circle. The spectrometer was previously calibrated using an image plate placed at 
D = 0 and a tungsten K-alpha X-ray source and K-edges of Tb (52 keV), Pb (88 keV) and U (115.6 keV) thin foils. 
For the analysis, a correction for the detector position of D/B = 1.11 has been used in equation (1). Furthermore, a 
small rotation of the Ge crystal has been taken into account as a constant offset of −1 × 106 Å. In order to shield the 
detector from background radiation that is mainly generated by scattering of the relativistic electron beam at the 
chamber walls and the beam dump, the setup was enclosed a lead and Teflon housing.
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Energy-resolving Pixelated X-ray Detector.  The HEXITEC X-ray camera developed in the UK by the 
Science and Technology Facilities Council (STFC, UK) uses a 1 mm thick CdTe detector. The chip is composed 
of an array of 80 × 80 square pixels (250 μm side) with a total area of 20.35 mm × 20.45 mm ref.18. The camera 
was recording continually using a 100 μs exposure. Only frames with a detectable pinhole image signal (plus one 
frame earlier and one later) were analyzed. The energy of each detected photon can be deduced from the depos-
ited charge into the camera. The detector is sensitive to X-ray photon energies in the range of 4–200 keV with 
quantum efficiency of ~100%. In single-photon counting mode, the camera can spatially and spectrally resolve 
X-ray photons with an energy resolution of 0.8 keV at 59.5 keV (1.5 keV at 141 keV). Charge-sharing between 
pixels has been found to be negligible as an analysis between single pixels and binned 3 × 3 super-pixels has not 
shown any significant difference.

Extracted Source Spectrum.  The double-differential source spectrum d I dEd/( )2 Ω  per solid angle dΩ and 
unit photon energy dE can be determined from the measured signal at the detector S(E, dE) at photon energy E, 
the integrated reflectivity of the crystal δ(E), the quantum efficiency of the detector D(E) and the observed angle 
by the camera in the non-dispersive direction θy by

d I
dEd

S E dE
E D E
( , )

( ) ( ) y

2

Ω δ θ
= .

In our case, the integrated efficiency of the Ge(220) reflection is δ(E) ~ 7 × 10−6 rad at 50 keV (3 × 10−6 rad at 
100 keV)21, D(E) = 100% and θy = 6.4 mrad. The beamline transmission including a 8 mm borosilicate window 
has been taken into account.

Data Availability Statement.  The datasets generated during and analyzed during the current study are 
available from the corresponding author on reasonable request.
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