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Use of longer sized screws 
is a salvage method for broken 
pedicles in osteoporotic vertebrae
Ming‑Kai Hsieh1,2,3, Mu‑Yi Liu4, Jin‑Kai Chen5, Tsung‑Ting Tsai2,3, Po‑Liang Lai2,3, 
Chi‑Chien Niu2,3 & Ching‑Lung Tai2,3,5*

Screw loosening due to broken pedicles is a common complication resulting from the insertion of 
screws either with inadequate diameters or into an osteoporotic pedicle. In this novel in vitro study, 
we tried to clarify the contribution of the pedicle to screw fixation and subsequent salvage strategies 
using longer or larger‑diameter screws in broken pedicles. Sixty L4 fresh‑frozen lumbar vertebrae 
harvested from mature pigs were designed as the normal‑density group (n = 30) and decalcified 
as the osteoporosis group (n = 30). Three modalities were randomly assigned as intact pedicle 
(n = 30), semi‑pedicle (n = 15), and non‑pedicle (n = 15) in each group. Three sizes of polyaxial screws 
(diameter × length of 6.0 mm × 45 mm, 6.0 mm × 50 mm, and 6.5 mm × 45 mm) over five trials were 
used in each modality. The associations between bone density, pedicle modality and screw pullout 
strength were analyzed. After decalcification for 4 weeks, the area bone mineral density decreased 
to approximately 56% (p < 0.05) of the normal‑density group, which was assigned as the osteoporosis 
group. An appropriate screw trajectory and insertional depth were confirmed using X‑ray imaging 
prior to pullout testing in both groups. The pullout forces of larger‑diameter screws (6.5 mm × 45 mm) 
and longer screws (6.0 mm × 50 mm) were significantly higher (p < 0.05) in the semi‑ and non‑pedicle 
modalities in the normal‑density group, whereas only longer screws (6.0 mm × 50 mm) had a 
significantly higher (p < 0.05) pullout force in the non‑pedicle modalities in the osteoporosis group. The 
pedicle plays an important role in both the normal bone density group and the osteoporosis group, as 
revealed by analyzing the pullout force percentage contributed by the pedicle. Use of a longer screw 
would be a way to salvage a broken pedicle of osteoporotic vertebra.

Pedicle screw fixation during spinal surgery has been a common procedure for several  decades1–3. Screw loos-
ening due to broken pedicles is a common complication resulting from the insertion of screws either with 
inadequate diameters or into an osteoporotic  pedicle4–7. In a well-designed L4 sawbone  model4, the pedicle 
contributes to the screw pullout strength, and only 29–39% of the pullout strength is retained after the pedicle 
breaks. However, there is a lack of biomechanical studies addressing the pullout strength of broken pedicles under 
normal bone density and osteoporosis conditions that are more clinically practical. Biomechanical testing has 
shown a decrease of 80.7% in elastic modulus, 74.7% in yield stress and 74.5% in ultimate stress in decalcified 
vertebral bodies compared with non-decalcified  bodies8, but the strength of the pedicle cannot be evaluated 
only by the vertebral body strength. Varghese et al. used polyurethane foam blocks to investigate the effects of 
bone density, insertion depth and insertion angle on pedicle screw pull out strength and insertion torque. The 
contribution of bone density was found to be the most influential factor for the pullout strength and insertion 
 torque9,10; however, their result was hardly convincing, as polyurethane foam blocks were used instead of an 
anatomical vertebral model.

To the best of the authors’ knowledge, no existing research has addressed the effect of the absence of pedi-
cles on screw anchoring power using different-density porcine vertebrae rather than test blocks or simulated 
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sawbones. The present study is the first to determine any difference in pullout strength on the fixation stability 
of pedicle screws in different broken pedicle modalities and under different bone densities.

In this novel in vitro experimental study, we compared the pullout strength of screws between the intact 
pedicle, semi-pedicle and non-pedicle modalities in normal and osteoporotic porcine vertebral models and then 
examined subsequent salvage strategies.

We hypothesized that the pedicle contributes to the screw pullout strength in both the normal bone density 
group and the osteoporosis group, and both longer and larger-diameter screws could be used for salvage methods.

Results
BMD during specimen decalcification. The serial changes in area BMD from normal to decalcified states 
are shown in Fig. 1. The serial area BMD was recorded as 1.02 ± 0.04 g/cm2 in the normal group, 0.9 ± 0.07 g/
cm2 in the first week, 0.81 ± 0.05 g/cm2 in the second week, 0.68 ± 0.07 g/cm2 in the third week and 0.57 ± 0.02 g/
cm2 in the fourth week. After treatment with EDTA for 4 weeks, the area BMD decreased to approximately 
56% (p < 0.05) of that of the normal vertebrae and reached the osteoporotic  stage8. Specimens that had been 
treated with EDTA for 4 weeks were assigned to the osteoporosis group, and those without EDTA treatment were 
assigned to the normal-density group.

Image analysis. An appropriate screw trajectory and insertional depth were confirmed using X-ray imag-
ing prior to pullout testing in the normal-density group (Fig. 2) and osteoporosis group (Fig. 3). Intact (Figs. 2, 
3, all right-side screws in axial views), semi-pedicle (Figs. 2, 3A–C, left-side screws) and non-pedicle (Figs. 2, 
3D–F, left-side screws) modalities for all screws were convergently inserted into the vertebral body, and an 
additional 5 mm of depth was clearly observed in the 6.0 × 50-mm group (Figs. 2, 3, B, E, H) compared with 
the other modalities. The semi-pedicles in the osteoporosis group (Fig. 3A–C) were not as clear as those in the 
normal-density group (Fig. 2A–C) because of the decalcified effect. No fractures or defects in the vertebrae were 
detected in either view.

Pullout strength. In the normal-density groups, 6.0 mm × 45 mm, 6.0 mm × 50 mm, and 6.5 mm × 45 mm 
screws had mean pullout strength values of 1,710.1 ± 387.6 N, 2039.1 ± 443.1 N, and 2,493.1 ± 383.2 N, respec-
tively, in the intact pedicle modality; 762.6 ± 341.8 N, 1,325.1 ± 282.6 N, and 1686.1 ± 327.4 N, respectively, in 
the semi-pedicle modality; and 565.2 ± 226.9 N, 1,019.4 ± 324.8 N, and 901.3 ± 127.6 N, respectively, in the non-
pedicle modality (Fig. 4; Supplementary Table S1). Compared with the 6.0 mm × 45 mm-screw (primary), the 
pullout force of larger-diameter screws (6.5  mm × 45  mm) was significantly higher in all pedicle modalities, 
whereas the pullout force for longer screws (6.0 mm × 50 mm) was significantly higher in the semi- (p = 0.0162) 
and non-pedicle modalities (p = 0.0113) (Supplementary Table   S2).

In the osteoporosis groups, the 6.0 mm × 45 mm, 6.0 mm × 50 mm, and 6.5 mm × 45 mm screws had mean 
pullout strength values of 162.2 ± 34.7 N, 189.1 ± 36.0 N, and 217.3 ± 15.3 N, respectively, in the intact pedi-
cle modality; 89.5 ± 42.6 N, 124.7 ± 49.1 N, and 145.4 ± 41.4 N, respectively, in the semi-pedicle modality; and 
43.1 ± 22.0 N, 88.2 ± 17.1 N, and 101.4 ± 62.1 N, respectively, in the non-pedicle modality (Fig. 5; Supplementary 
Table S3). Compared with the 6.0 mm × 45-mm screw (primary), the pullout force of the larger-diameter screw 
(6.5 mm × 45 mm) was significantly higher only in the intact pedicle modality (p = 0.0136); in addition, the 
pullout force of the longer screw (6.0 mm × 50 mm) was significantly higher only in the nonpedicle modality 
(p = 0.0209) (Supplementary Table   S4).

Figure 1.  The serial BMD changes from normal to weekly decalcification. The values were 1.02 ± 0.04 g/cm2 in 
the normal group, 0.9 ± 0.07 g/cm2 in the first week, 0.81 ± 0.05 g/cm2 in the second week, 0.68 ± 0.07 g/cm2 in 
the third week and 0.57 ± 0.02 g/cm2 in the fourth week. Only 56% (p < 0.01) of the normal vertebral BMD was 
retained after 4 weeks of decalcification.
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A comparison of the pullout force between the normal-density group and the osteoporosis group for vari-
ous screw sizes and pedicle modalities is shown in Fig. 6. The maximal pullout force in the osteoporosis group 
was significantly lower than that in the normal density group, reaching only 9–12% for the same screw size and 
pedicle modality.

The pullout force percentage contributed by the pedicle for the normal and osteoporotic groups is shown 
in Fig. 7. The pullout force percentage of the pedicle in either the normal or osteoporotic group is calculated as 
follows:

where “MPF” denotes the maximum pullout force.
The pullout force percentage of the pedicle was 60 ± 11% in the normal-density group and 57 ± 19% in the 

osteoporosis group, but the difference was not significant (Fig. 7). Only 40% and 43% pullout strength were 
retained after pedicles were broken in the normal-density group and osteoporosis group, respectively. In our 
previous study, in which a standard sawbone was used to investigate the screw pullout strength contributed by the 
 pedicle4, the results revealed that pullout strengths of only 41–45% in the semipedicle group and 29–39% in the 
nonpedicle group were retained for all three screw sizes. These results indicate that the pullout force percentage 
contributed by the pedicle reaches 59–71%. The pullout force contributed by the pedicle seems to be higher in 
standard sawbone than in porcine vertebrae.

Percentage of pullout force =
(MPF in intact−MPF in nonpedicle)

MPF in intact

Figure 2.  X-ray images showing screw trajectory and insertional depth in the normal-density group. An 
appropriate screw trajectory and insertional depth were confirmed by the axial view (A–F) and sagittal view 
(G–I). Intact (right-side screws in A–F), semi-pedicle (left-side screws in A–C) and non-pedicle (left-side 
screws in D–F) modalities for all screws were inserted convergently into the vertebral body, and an additional 
5 mm of depth was clearly observed in the 6.0 × 50-mm screw (B, E, H) compared with the other screws (A, 
C, D, F, G, I). The difference in pedicles between the three groups cannot be distinguished in the sagittal view 
(G–I). No fractures or defects in the vertebrae were detected in either view.
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Discussion
The primary goal of this study was to determine any difference in pullout force contributed by the pedicle between 
the normal bone density and osteoporosis groups. We used L4 porcine vertebrae with different bone densities 
instead of standard L4 sawbones to simulate true clinical applications.

The availability of fresh frozen human cadavers is very limited, and the porcine spine can be a good alternative 
model because of the similar geometric characteristics of the vertebral body, spinal canal, and pedicle  shape11,12. 
L4 porcine vertebrae shared a more similar pedicle width with humans compared with goats, sheep and  dogs13; 
meanwhile, a study demonstrated similar biomechanical results between formalin-fixated specimens and fresh 
frozen  cadavers14.

Interpretation of the pedicle screw fixation in an osteoporosis spine is clinically  practical15–17. In our study, 
decalcified porcine vertebrae reaching a BMD < 0.57 g/cm2 of the normal bone density (Fig. 1) were allocated to 
the osteoporosis  group8. In this study, we used a lower custom-made grip capable of x–y plane translation and 
rotation (Figs. 8, 9) to achieve coaxial alignment of the pedicle screw with the pullout ram. We ensured that the 
screws and the direction of the pullout force were along the same axis to prevent an 8% error by mounting the 
screws onto a material testing machine at different  angles9.

In the normal-density group, the pullout forces of the larger-diameter screws (6.5 mm × 45 mm) and longer 
screws (6.0 mm × 50 mm) were significantly higher than those of the 6.0 mm × 45 mm screws in the semi- and 
non-pedicle modalities, which means that switching to larger-diameter screws or longer screws could be a salvage 
method when the pedicle is broken during surgery in individuals with normal bone density. However, in the 
osteoporosis group, the significantly higher pullout force in the non-pedicle modality belonged only to the longer 
screw, which implies that the use of only a longer screw can be considered a means of salvaging. Reasons for the 

Figure 3.  X-ray images showing screw trajectory and insertional depth in the osteoporosis group. An 
appropriate screw trajectory and insertional depth were confirmed in the axial view (A–F) and sagittal view 
(G–I). Intact (right-side screws in A–F), semi-pedicle (left-side screws in A–C) and non-pedicle (left-side 
screws in D–E) modalities for all screws were convergently inserted into the vertebral body, and an additional 
5 mm of depth was clearly observed for the 6.0 × 50-mm screws compared with the other screws (A, C, D, F). 
The semi-pedicles in the osteoporosis group (Fig. 3A–C) were not as clear as those in the normal-density group 
(Fig. 2A–C) because of the decalcified effect.
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difference in salvage conditions between the normal bone density and osteoporosis groups are the following: 
(1) a result of the bone density decreasing from the surroundings to the center of the vertebral body during the 
decalcification process, which implies that a longer screw rather than a larger-diameter screw would be suitable 
for the inner undecalcified bone (Fig. 10); and (2) pullout strength was created by friction force between the 
implant and engaged  bone18–20, which was higher for larger diameter screws in the normal-density group, but 
decreased cancellous bone in the osteoporosis group reduce the engaged bone volume and, thus, alleviated the 
effect of the larger diameter screw.

In our study, the pullout force decreased to 9–12% of that of the osteoporotic group (Fig. 6), which is not 
comparable with other studies. Schulze et al.21 reported that the 503 N (279/731) pullout force in the osteo-
porotic human spine, which is significantly larger than that found in our study in the osteoporosis group, could 
be explained using different pedicle contributions and different pedicle anatomical sizes between humans and 
 swine22. Lee et al.8 stated that approximately 16.02% of the mean compression ultimate strain in similar osteo-
porotic vertebrae is conducted in a biomechanical axial compression system instead of a pullout test. The similar 
decrease in BMD did not imply the corresponding reduction in strength due to the use of different anatomical 
sites for measurement and testing methods. Lai et al.23 reported that larger diameter screws (5.0 mm × 35 mm) 
achieved a higher pullout strength than that of smaller (4.35 mm × 35 mm) screws in an osteoporotic model. The 
osteoporotic density was not uniform, and tests were performed in human thoracic vertebrae, yielding different 
results than those of this study.

Figure 4.  Mean ultimate pullout forces for various screw sizes and pedicle modalities in the normal-density 
group. Compared with the 6.0 mm × 45 mm screw (primary), the pullout force of larger-diameter screws 
(6.5 mm × 45 mm) was significantly higher in all pedicle modalities, whereas the pullout force in longer screws 
(6.0 mm × 50 mm) was significantly higher in the semi- and nonpedicle modalities.

Figure 5.  Mean ultimate pullout forces for various screw sizes and pedicle modalities in the osteoporosis 
group. Compared with the 6.0 mm × 45 mm screw (primary), the pullout force of the larger-diameter screw 
(6.5 mm × 45 mm) was significantly higher only in the intact pedicle modality; in addition, the pullout force of 
the longer screw (6.0 mm × 50 mm) was significantly higher only in the non-pedicle modality.
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In our normal-density porcine vertebrae, the average pullout strength after the complete percentage of the 
pedicle contributed to the pullout force reached 40% (Fig. 7), which is slightly higher than the pullout force 
(29–39%) in the nonpedicles of  sawbones4 because of the different pedicle sizes between humans and  swine11,22. 
A higher pullout force contributed by the pedicle in sawbones is predictable because the pedicle width and height 
are significantly larger in humans than in  pigs11.

To the best of the authors’ knowledge, no biomechanical reports have addressed the pullout strength of the 
pedicle in a normal BMD and osteoporotic porcine vertebral model or the subsequent salvage strategies to 
prevent screw loosening. The percentage of pullout force contributed by the pedicle reached 60% in the normal-
density group and 57% in the osteoporosis group, without a significant difference, which indicates the important 
role of the pedicle in either normal bone density or osteoporotic vertebrae through the whole screw pullout 
performance. Due to the preserved force of only 9–12% after decalcification, longer screws with supplementary 
strengthening  materials24–29 or  methods30–32 should be applied clinically, especially when pedicles are broken in 
osteoporotic spines.

The present study had some limitations. First, inherent limitations, such as different geometries or density 
distributions of porcine vertebra compared with those of humans may limit clinical  practice12,33. Second, the lack 
of blindness of practitioners, data collectors and analysts could result in potential selection bias. Third, limited 

Figure 6.  Maximum pullout force in the osteoporosis group, presented as a percentage compared with the 
normal-density group. Only a 9–12% pullout force was preserved in the osteoporosis groups.

Figure 7.  The pullout force percentage contributed by the pedicle in the normal-density and osteoporosis 
groups. The pullout force contributed by the pedicle was 60 ± 11% and 57 ± 19% in the normal and osteoporosis 
groups, respectively. No significant difference between groups was found (p < 0.05).
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Figure 8.  Schematic drawing and photograph showing the screw pullout test in a vertebral specimen. The 
polyaxial screw head was fixed to a 10-mm diameter cylindrical rod with an outer thread that matched the inner 
thread of the screw head via the universal head (A). The cylindrical rod was then clamped to the upper wedge 
grip of the MTS testing machine (A). The potted specimen was secured on a lower custom-made grip capable 
of x–y plane (A, red double arrowheads) translation and rotation (A, red curved arrow) to achieve coaxial 
alignment of the pedicle screw with the pullout ram. Front view (B) and lateral view (C) showed that the screws 
and the direction of the pullout force were along the same axis.

Figure 9.  Photograph showing the screw pullout test of vertebral specimens in an intact pedicle (A), a 
semipedicle (B), and a nonpedicle (C). All specimens were potted in metal boxes using specific epoxy resins 
without any screw-cement contact. The pedicle screws and the pullout force were directed along the same axis 
without deviation.
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number of specimens might increase variability of data and reduce the statistical reliability. Finally, data from 
standard experimental semi-pedicles and non-pedicles may not completely reflect clinical biomechanical data 
from irregular-shaped broken pedicles.

Conclusions
The pedicle plays an important role in both the normal bone density group and the osteoporosis group on the 
basis of the whole screw pullout performance. In the normal-density group, both longer and larger-diameter 
screws could be used for salvaging; however, in the osteoporosis group, only the use of a longer screw would be 
a salvage method.

Materials and methods
This study was approved by the review board of Chang Gung Memorial Hospital (CRRPG3H0082). All experi-
ments conformed to the regulations for the care and use of animals. The usage of the porcine spines was in 
accordance with the guidelines of replacement, reduction and refinement. A flowchart of the study design is 
presented in Fig. 11.

Specimen preparation and decalcified method. This study was performed using sixty L4 fresh-frozen 
lumbar vertebrae harvested from mature pigs (weight 100–120 kg; age 12–18 months). All animals were healthy 
before harvesting and never exposed to any drugs or procedures that could affect the bone density. All speci-
mens were separated into individual vertebrae after the surrounding musculature, ligaments, and periosteum 
were stripped off. Thirty of these 60 vertebrae were designed as the normal-density group and embedded in 
10% formalin solution (SIGMA-HT501640, Sigma Chemical Co.) for 24 h before the biomechanical and imag-
ing studies. The other 30 specimens were designed as the osteoporosis group and stored in a glass tank at room 
temperature for four weeks of decalcification. The glass tanks were filled with 500 ml, 0.5 Mof EDTA decalcifica-
tion solution (pH 7.4, Sigma), with renewal of the EDTA (SIGMA-E5134, Sigma Chemical Co.) every week after 
embedding in a 10% formalin solution for 24 h.

X‑ray image and bone mineral density during decalcification. X-ray images (RS Safire, Shimadzu 
Co.) were obtained every week during the decalcification process (Fig. 10). The post-processing BMD (bone 

Figure 10.  The vertebrae underwent X-ray imaging every week during the decalcification process. Progressive 
radiolucency over the vertebral body and pedicle was observed during the decalcification process from the first 
week to the 4th week.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:10441  | https://doi.org/10.1038/s41598-020-67489-2

www.nature.com/scientificreports/

mineral density) was measured and recorded every week by a dual-energy X-ray absorptiometer (QDR-4500, 
Hologic) by the same technician during the entire decalcification process.

Specimen grouping and screw insertion. The specimens were divided into two groups: normal-den-
sity and osteoporosis; each group was designed to represent an intact pedicle, a semipedicle, or a nonpedicle 
 modality4. A pilot hole was drilled using a 2.5 mm “twist” metric drill bit attached to a Dremel 4000 rotary tool 
that was mounted on a Dremel WorkStation Model 220-01. This trajectory was selected based on previously 
reported morphometric characteristic  data33. The pilot track was followed with a standard straight pedicle probe 
to a depth of 45 mm. Three sizes of polyaxial screws (diameter × length of 6.0 mm × 45 mm, 6.0 mm × 50 mm, 
and 6.5 mm × 45 mm) (SmartLoc spinal polyaxial pedicle screws, A-spine Asia Co. Ltd., Taipei, Taiwan) were 
chosen and randomly implanted into each pedicle of the vertebrae by an experienced surgeon. These chosen 
screw sizes were based on the most commonly used clinically. Then, the specimens were randomly distributed 
into the intact pedicle modality (n = 30), the semipedicle modality (n = 15), or the nonpedicle modality (n = 15). 
These experiments were conducted over five trials for each screw size (Fig.  12). Before the pullout test, the 
specimens and screws were closely examined for signs of fracture and damage and any findings were carefully 
recorded.

Pullout test. Each of the 60 specimens was potted in metal boxes using specific epoxy resins (Buehler, Lake 
Bluff, IL, USA). Judicious potting was performed to ensure that the cement did not come into contact with any 
portion of the pedicle screw. The prepared specimens were mounted onto a material testing machine (Bionix 
858; MTS Systems Corp., MN, USA) to conduct axial pullout tests with the screws (Fig. 8). The polyaxial screw 
head was fixed to a cylindrical rod with an outer thread that matched the inner thread of the screw head via 
the universal head (Fig. 8A). The cylindrical rod was then clamped to the upper wedge grip of the MTS testing 
machine. The potted specimen was secured on a lower custom-made grip capable of x–y plane (Fig. 8A, red 
double arrowheads) translation and rotation (Fig. 8A, red curved arrow) to achieve coaxial alignment of the 
pedicle screw with the pullout arm. We ensured that the pedicle screws and the pullout force were directed along 
the same axis by clamping the potted specimen in a way that enabled free translation in the x–y plane and free 
rotation about the axis, and the direction of the pullout force could be adjusted through the polyaxial design 
of the screw head. Different views (Fig. 8B, C) showed that the screws and the direction of the pullout force 
were along the same axis. Images confirmed that no deviation of the axis occurred in the three different pedicle 
modalities (Fig. 9). The screws were then loaded in displacement control mode at a constant displacement rate of 
5 mm/min for a total displacement of 10 mm, which is in accordance with published literature on axial pullout 
 testing34,35. Data collection was set at 1 sample/0.05 mm (1.67 Hz). Failure was defined as the maximum load 

Figure 11.  A flowchart of the study design.
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or the load peak prior to a decrease in load associated with increasing  displacement36. After the pullout test was 
completed, the specimen and the screws were closely examined for signs of fracture and damage and any find-
ings were carefully recorded.

Statistics. Statistical software (SPSS for Windows version 12.0, SPSS Inc., Chicago, IL, USA) is used to ana-
lyze the pullout force of all specimens. All of the measurements were collected from 60 vertebrae and expressed 
as the mean ± standard deviation. Normal distribution of the sample was examined using Shapiro–Wilk test; 
whereas Levene’s test was used to test the Homogeneity of Variances. ANOVA test with post hoc LSD analysis 
was performed to evaluate the differences between groups if the data is normally distributed and homogeneity. 
Differences were considered significant at p < 0.05.

Received: 15 January 2020; Accepted: 5 June 2020
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