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We thank Remiro-Azócar, Heath, and Baio (R-AHB) for their letter to the editor,1 in response to our recent article
presenting a simulation study comparing the performance of methods for population-adjusted indirect comparison.2
R-AHB discuss the important issue of target estimands with noncollapsible effect measures, expanding upon the discus-
sion in sections 4.3 and 7 of our article.2 R-AHB distinguish between marginal and conditional treatment effect estimates
and explain that matching-adjusted indirect comparison (MAIC) targets marginal effects whereas simulated treatment
comparison (STC) and multilevel network meta-regression (ML-NMR) target conditional treatment effects. They con-
clude that “methods like MAIC are valid for population-based inference, but not “fit for purpose” when inference is
at the individual level, whereas methods like ML-NMR are valid for inference at the individual level, but not designed
for population-based inference.” Furthermore, they assert that marginal treatment effect estimates are necessary for
population-based inference as required for decision-making in Health Technology Assessment (HTA).

We welcome and encourage debate of these issues, which—despite much discussion in the literature on randomized
controlled trials (RCTs)3-6 and observational epidemiology7-9—have largely been overlooked in the literature on popu-
lation adjustment and meta-analysis to date. However, whilst we agree with R-AHB that population-based inference is
required for HTA, we disagree that methods like ML-NMR are not appropriate to obtain population-average estimates for
HTA. In this response, we further clarify the use of conditional estimates to inform population-average treatment effects
and why we believe these are appropriate target estimands for decision making. We also correct some important inaccu-
racies in R-AHB’s letter regarding the characterization of the methods (in particular ML-NMR) and interpretation of our
simulation study results.

1 TARGET ESTIMANDS FOR DECISION MAKING

Healthcare decision making requires estimates of average relative treatment effects between each treatment of interest in
the decision target population. Ideally, such estimates would be provided by a well-designed, representative RCT compar-
ing all treatments of interest in the decision target population. To help solidify ideas and define terminology, let us first
consider the analysis of this ideal RCT.

The simplest analysis of this ideal RCT is an unadjusted analysis (eg, ANOVA or regression including only the main
effect of treatment). However, this is not the most efficient approach. Instead, it is recommended practice to include
prespecified prognostic factors in the analysis model (eg, ANCOVA or regression including main effects of covariates
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and treatment).3-6,10 The adjusted analysis is more powerful and more efficient because some of the additional varia-
tion in the outcome not due to treatment has been conditioned on the covariates.3-6 The unadjusted analysis results
in marginal treatment effect estimates, whereas the adjusted analysis results in conditional treatment effect estimates.
Since only main effects of covariates and no interactions with treatment have been included in the adjusted analysis,
the conditional treatment effects apply over the entire study population; they do not vary by covariate values and are
not subgroup-specific. Thus, they can be considered population-average conditional treatment effects, and can be used
to make treatment decisions for the entire population represented by this ideal RCT. When working with noncollapsible
effect measures such as odds ratios or hazard ratios, conditional and marginal treatment effects do not in general coin-
cide; conditional effects will lie further from the null.11 We should also be clear that the everyday usage of “conditional”
to mean “depends upon” is misleading here: indeed, marginal estimates are more strongly dependent on the popula-
tion than these conditional estimates, because the marginal estimates are affected by differences in all prognostic factors
(observed and unobserved) whereas the conditional estimates will not be affected by differences in observed prognostic
factors.4

R-AHB are correct that other types of conditional effects depend on specified covariate values when
treatment-covariate interactions have been included in the analysis, and are then appropriate for decision-making
for individuals. To avoid further confusion, we refer to these conditional effects from analyses including interac-
tions as individual-level conditional treatment effects, and refer to conditional effects from analyses without inter-
actions as population-average conditional treatment effects. However, R-AHB conflate these individual-level and
population-average conditional treatment effects, which have different interpretations and different uses for deci-
sion making. The ML-NMR model is parameterized in terms of individual-level conditional treatment effects, since
treatment-covariate interactions are included in the analysis model in order to adjust for differences in effect modifiers
between studies (population adjustment). However, ML-NMR can still produce estimates of marginal and conditional
population-average treatment effects by integration over the covariate joint distribution in the target population, as we
have described previously2,12 and reiterate in the following section.

Both marginal and population-average conditional estimands reflect a “population-average treatment effect” as both
apply to the entire population and are averaged over the distribution of covariates in the population. The marginal
estimand reflects the average treatment effect over individuals in the target population without any knowledge of the
distribution of prognostic covariates in the sample. The population-average conditional estimand reflects the average
treatment effect over individuals in the target population accounting for the distribution of prognostic covariates.

We consider that the population-average conditional treatment effect is the most appropriate target estimand for deci-
sion makers, primarily because it reflects the recommended analysis that would be undertaken in the ideal evidence
scenario described above. Decision makers typically have a well-defined target population in mind, however, the marginal
estimand does not make full use of this information. The population-average conditional estimand is more efficient
because it accounts for the known distribution of prognostic factors in the target population.3-6

2 PRODUCING ESTIMATES OF TARGET ESTIMANDS

Although the ML-NMR model is parameterized on individual-level conditional treatment effects on a given linear predic-
tor scale, ML-NMR can produce population average estimates for a range of quantities of interest in a target population
through appropriate use of integration, as described in section 2.5 of Phillippo et al.12

When the quantities of interest are population-average conditional treatments effects dab(P) between treatments b and
a in population P, integration simplifies to plugging in mean covariate values x(P) in the target population since these are
defined on the linear predictor scale, as given in equation (9) of our article:2

dab(P) = ∫𝔛

(
𝜇(P) + xT

(
𝜷1 + 𝜷2,b

)
+ 𝛾b

)
f(P)(x)dx − ∫𝔛

(
𝜇(P) + xT

(
𝜷1 + 𝜷2,a

)
+ 𝛾a

)
f(P)(x)dx

= xT
(P)

(
𝜷2,b − 𝜷2,a

)
+ 𝛾b − 𝛾a, (1)

where 𝜷2,b and 𝜷2,a are coefficients for effect modifier interactions, and 𝛾b and 𝛾a are individual-level treatment effects at
the reference level of the covariates x = 0. 𝜷1 are coefficients for prognostic (main) effects of covariates, 𝜇(P) is a distribu-
tion for baseline response in population P, f (P)(⋅) is the joint covariate distribution in population P with support 𝔛. This
does not mean that the resulting estimate is only appropriate for individuals with the mean covariate values, as suggested
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by R-AHB. It just happens that the population-average conditional treatment effect estimate on the linear predictor scale
is equivalent to that for individuals with the mean covariate values.

Health economic models typically require population-average absolute effects, such as average event probabilities pk(P)
on treatment k, which can be produced following Phillippo et al.12 and using the notation in our article2 as

pk(P) = ∫𝔛
g−1 (

𝜇(P) + xT
(
𝜷1 + 𝜷2,k

)
+ 𝛾k

)
f(P)(x)dx, (2)

where g(⋅) is a suitable link function (eg, logit).
Contrary to the assertion of R-AHB that ML-NMR cannot produce marginal population-average treatment effect esti-

mates, ML-NMR can indeed estimate the marginal population-average treatment effect Δab(P) between treatments b and
a in population P, simply by working with the population-average absolute effects from (2):

Δab(P) = g(pb(P)) − g(pa(P)). (3)

Estimates of other summaries of marginal population-average treatment effects such as risk differences or relative
risks can be produced by similar manipulation of pb(P) and pa(P). Again, we note that dab(P), pk(P), and Δab(P) are not
subgroup-specific but apply over the entire target population P, since all covariates (including effect modifiers) have been
integrated over.

MAIC directly targets the marginal population-average treatment effect, and cannot estimate the (more efficient)
population-average conditional treatment effect unless suitable adjusted estimates are available from the AgD study.
As described by both R-AHB and ourselves,2 STC in typical usage estimates neither the marginal or conditional
population-average treatment effect and will be biased for either estimand, because in typical use STC combines con-
ditional and marginal effects. Moreover, Equations (2) and (3) make it clear that marginal population-average relative
effects depend not only on the distribution of effect modifiers, but also on the distribution of all prognostic variables
and the population baseline risk. Thus, the marginal population-average treatment effects Δab(P) depend more strongly
on the population of interest than the population-average conditional treatment effects dab(P), and are less generaliz-
able/transportable as a result.4 This is an additional concern for MAIC and STC, which produce marginal treatment
effect estimates specific to the aggregate study population in a population-adjusted indirect comparison, and may not be
representative of the decision target population in either prognostic factors or effect modifiers.13,14

3 COMMENT ON SIMULATION STUDY RESULTS

As we have argued above, population-average conditional treatment effects are appropriate target estimands for effi-
cient decision making. Our simulation study2 is therefore designed to evaluate the performance of the methods against
the population-average conditional treatment effects dab(P)—not the individual-level conditional treatment effects 𝛾k as
R-AHB claim.

R-AHB suppose that much of the observed bias for MAIC in our simulation study is due to evaluating its performance
against the wrong estimand, since MAIC targets the marginal population-average treatment effect. However, standard
unadjusted Bucher indirect comparisons also target marginal estimands, and yet MAIC manages to substantially increase
the bias compared with these in some scenarios. Moreover, we would expect STC to perform poorly for the same reasons,
since it mixes conditional and marginal estimates. However, in our simulations STC performed well and was seen to be
unbiased when the requisite assumptions were met. Intuitively, therefore, our simulation scenarios must be such that the
differences between marginal and population-average conditional estimands are small. More formally, we can investigate
this claim using the formula of Matthews and Badi15 for the ratio between the conditional and marginal estimands, which
depends on the strength of the covariate effect and the variance within the population. Using this result, we determine
that—even in the worst cases—the difference between marginal and population-average conditional estimands in the
scenarios we investigated is less than 0.5%. Therefore, the performance issues demonstrated for MAIC are not due to any
meaningful difference in estimands, but are due to the fundamental inability of MAIC to extrapolate and the resulting
bias and instability as population overlap decreases.

R-AHB contrast our results against a simulation study of their own,16 which shows that MAIC can remain unbi-
ased (for the marginal estimand) even with only moderate overlap between populations. The observed difference in
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performance is due to R-AHB considering only matching covariate means across populations, whereas we consider
matching both means and variances (first and second moments) which is a common approach14 and follows the original
description of the method.17 The results of R-AHB suggest that matching on covariate means only might be less sensitive
to reduced population overlap and may be able to tolerate lower levels of overlap before issues arise, since this is a much
less exacting requirement. This has also been observed in other simulation studies.18,19 However, the question of when, if
at all, it is preferable or necessary to match higher moments between populations for MAIC remains an interesting area
for further theoretical research and simulation studies.

4 CONCLUSIONS

We welcome the much-needed discussion of target estimands in the letter from R-AHB, which has largely been overlooked
in the population adjustment literature to date. We hope that our response has served to further clarify the issues sur-
rounding estimands for noncollapsible effect measures. Here, we have argued the case for considering population-average
conditional treatment effects as appropriate targets for efficient decision making. In their letter, R-AHB state that “meth-
ods like ML-NMR are valid for inference at the individual level, but are not designed for population-based inference.”
However, we have demonstrated that this is not the case: ML-NMR can indeed support inference at the individual level,
but can also provide estimates of both marginal and conditional population-average treatment effects, as well as the
population-average absolute effects typically required for health economic modeling. Moreover, ML-NMR is likely to be a
more efficient approach than MAIC even when targeting marginal population-average treatment effects, since regression
adjustment is typically more efficient than weighting.20 We have shown that the results of our simulation study, including
the poor performance of MAIC in many scenarios, are not an artifact of noncollapsibility and incompatible estimands,
and are pertinent regardless of whether population-average conditional or marginal estimands are of interest.

R-AHB refer to ML-NMR as the “gold standard” for estimating conditional population-adjusted treatment effects from
mixtures of IPD and AgD, and suggest further work extending ML-NMR to estimate marginal population-adjusted as a
research priority. However, as we have described above, ML-NMR can be used to obtain marginal population-adjusted
treatment effects, and we would suggest therefore that ML-NMR may also be considered the “gold standard” for estimat-
ing marginal population-average treatment effects. Analysts and decision makers should carefully consider which target
estimand is most appropriate to their needs and, as we have argued, population-average conditional treatment effects as
targeted by a hypothetical “ideal RCT” may be a more efficient choice than marginal estimands which do not account for
known population characteristics.
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