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Abstract: Electrospun fibers containing tea tree oil (TTO) can be explored for practical applications
due to the antimicrobial and anti-inflammatory activities of TTO. Considering that there are poten-
tially toxic components in TTO, it is necessary to eliminate or reduce its content in the preparation
process of TTO-doped electrospun fibers. In this work, electrospun TTO-PVP (polyvinylpyrrolidone)
fibers containing an 18.18 wt.% decreased content of 1,8-Cineole were successfully fabricated by in-
tense evaporation of a self-made reduced-pressure electrospinning (RP-ES) setup (as low as 94.4 kPa).
In addition, such intense evaporation led to a morphology change, where a typical average fiber
diameter increased from 0.831 to 1.148 µm, fewer and smaller beads in fibers, along with a rougher
and grooves fiber surface. These morphology changes allowed Terpinen-4-ol to remain in the fiber
for a more extended period. In addition, RP-ES proved the possibility for intense evaporation and
continuous vapor removal by continuously environmental vacuum pumping of electrospinning.

Keywords: electrospinning; reduced pressure; evaporation; tea tree oil

1. Introduction

Tea tree oil (TTO) is a volatile essential oil extracted from Australian Melaleuca alterni-
folia by steam distillation and is valued globally for its antimicrobial and anti-inflammatory
activities [1,2]. There have been works of literature focusing on the prominent effects of TTO
and the synthesis of TTO-doped composites. For example, Ge et al. [3] reported dispersed
and immersed TTO emulsion droplets in chitosan films for wound healing applications.
Silva et al. [4] prepared tea tree oil-loaded core–shell nanocapsules for acne treatment.
El-Wakil et al. [5] reported antimicrobial bio-composites based on rice bran with TTO with
excellent possibility of food packaging and biomedical purposes.

Here, Terpinen-4-ol is the primary functional component of TTO and shows promising
antibacterial [6–8], anti-inflammatory [9], anti-mite [10], and anti-lice [11] properties. How-
ever, 1,8-Cineole, another component of TTO, is responsible for potential skin irritation [12]
and potential toxicity of kidneys [13] and fetal [14]. The TTO standard proposed by the
International Organization for Standardization (ISO) proposed stipulates a limit for the
1,8-Cineole concentration in products, and selective removal of 1,8-Cineole from TTO is
necessary for safe and comfortable use of TTO [15].

A possible solution to the selective removal of 1,8-cineole from TTO is based on the
volatility differences. It has been reported that the boiling point of 1,8-Cineole (176–177 ◦C)
is lower than Terpinen-4-ol (212 ◦C). In addition, 1,8-Cineole shall have a higher vapor
pressure (1.90 mmHg at 25 ◦C) than Terpinen-4-ol (0.048 mmHg at 25 ◦C) [16–19]. This
assumption has been experimentally proved by literature work as well. It has been reported
by Leach et al. [20], that 1,8-Cineole has higher volatility, and with compared, Terpinen-4-ol
has relatively low volatility. In this case, it is possible to control and adjust the content
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of 1,8-Cineole and Terpinen-4-ol in TTO-doped materials if the environmental pressure
during material synthesis shall be reduced.

This work was to fabricate microscale TTO-doped fibers using electrospinning tech-
nology, which is widely studied and future industrialized with various applications such
as drug delivery, medicine, sensors, and cosmetics. Here, fast evaporation is essential for
the electrospinning process [21–23]. This paper proposed a self-design reduced-pressure
electrospinning (RP-ES) setup was to enhance the evaporation and continuous vapor re-
moval ability of the polymer-solvent and volatile components. The reduced pressure is
based on a vacuum pump that continuously vacuums the chamber with a considerable
size (0.15 m3) where RP-ES is located. Through our tests, this setup successfully fabricated
different electrospun fiber mats. Upon a reduced pressure, more 1,8-Cineole volatilized
of jetting micron-sized droplets, resulting in a high content of the Terpinene-4-ol solution,
which could improve the application quality of TTO-doped electrospun fibers.

For practical TTO-doped fiber composites, there are different polymer hosts such as
TTO-polylactic acid (PLA) [24], TTO-polyethylene oxide (PEO) [25,26], and TTO-polyurethane
(PU) [27]. This study selected polyvinylpyrrolidone (PVP) as the polymer host to fabricate
TTO-PVP electrospun fibers. PVP has a wide range of safe applications among various
polymers in medicine, pharmacy, cosmetics, and industrial fabrication because it is non-
toxic, physiologically compatible, temperature resistant, pH stable, chemically inert [28].

2. Materials and Methods
2.1. Materials

Tea tree oil (TTO) was obtained from Guangdong Academy of Forestry (Guangzhou,
China), and GC-MS analyzed it according to Tranchida et al. [19]. The TTO comprised
38.68% Terpinen-4-ol and 4.29% 1,8-Cineole, which was complied with ISO 4730:2017.
Polyvinylpyrrolidone (PVP average MW 1,300,000) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Ethanol (99.5%) was purchased from Wako Pure Chemical Industries
(Osaka, Japan).

For the quantitative analysis of TTO components, the 1,8-Cineole standard (99%,
CAS: 470-82-6, Catalog Number: C80601) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). The Terpinen-4-ol standard (CAS: 562-74-3, Catalog Number: T117500) was
purchased from Toronto Research Chemicals (Toronto, ON, Canada).

2.2. Methods
2.2.1. Experimental Setup

As described in Figure 1, a typical electrospinning system was placed in a 0.15 m3

acrylic chamber connected to a rotary vane vacuum pump (GHD-030, ULVAC, Inc.,
Miyazaki, Japan ) and a ball valve controlling the pressure from atmospheric (ATM) pres-
sure (101.3 kPa) to reduced-pressure (RP) 94.4 kPa. The flow rate was set as 0.4 L/min, and
fresh air from the airflow meter was set to remove solvent vapor. A high-pressure syringe
pump (PHD-Ultra 4400, Harvard Apparatus, Holliston, USA) was injected into a 0.25 mm
needle at a 0.1 mL/min flow rate. A DC voltage of 12 kV power supply (HARb-30P1, Mat-
susada Precision, Osaka, Japan) applied an electric field to the TTO-PVP polymer solution
to produce a jet that accelerated from the needle to the collector at a distance of 12 cm [29].
The above experiments were carried out at 22–24 ◦C and 21–28% relative humidity using a
digital thermo-hydro indicator (THI-HP, AS ONE Corporation, Osaka, Japan).

2.2.2. GC-MS Analysis

The phytochemical parameters of the TTO, pure PVP and TTO-PVP electrospun fibers
were identified by Gas Chromatography-Mass Spectrometry (GC-MS; Agilent 7890A GC
and Agilent 5975C MS; Agilent Technologies, Inc., Santa Clara, CA, USA) and an HP-5ms
capillary column (30 mm, 0.25 mm i.d., 0.25 µm film thickness; Agilent Technologies, Inc.,
Santa Clara, CA, USA). The chromatograph was programmed from 50 to 280 ◦C at a rate of
3 ◦C/min. Helium was used as the carrier at a 24 mL/min flow rate.
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collector, (4) high-pressure syringe pump, (5) high-voltage power supply, (6) vacuum pump, (7) 
pressure control ball-valve, (8) baffle plate, (9) airflow meter, (10) barometer gauge, (11) humidity 
gauge, (12) temperature gauge. 
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quantitative linear correlation coefficients (R2) were 0.9959 and 0.9975, respectively. 
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Figure 2. Linear calibration curve of the relationship between peak area and concentration with (a) 
1,8-Cineole, and (b) Terpinen-4-ol by GC-MS. 

2.2.3. Antibacterial Test 
The density of Staphylococcus aureus (NBRC® 12732™) strains suspension was grown 

in the Trypticase Soy Broth and adjusted by using a UV-vis spectrophotometer (V-550, 
JASCO, Tokyo, Japan) for 0.5 McFarland Standard with 0.1 reading absorbance at 600-nm 
[30]. The 10-day room condition exposed electrospun nanofiber discs (20 mg) were placed 
on Muller Hinton Agar and incubated at 37 °C medium for 48 h. 

Figure 1. Experimental setup for electrospinning; (1) 0.15 m3 acrylic chamber, (2) nozzle, (3) fiber col-
lector, (4) high-pressure syringe pump, (5) high-voltage power supply, (6) vacuum pump, (7) pressure
control ball-valve, (8) baffle plate, (9) airflow meter, (10) barometer gauge, (11) humidity gauge,
(12) temperature gauge.

As shown in Figure 2, the absolute calibration curves between peak area and concen-
tration of 1,8-Cineole and Terpinen-4-ol were plotted, and the four-point quantitative linear
correlation coefficients (R2) were 0.9959 and 0.9975, respectively.
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Figure 2. Linear calibration curve of the relationship between peak area and concentration with
(a) 1,8-Cineole, and (b) Terpinen-4-ol by GC-MS.

2.2.3. Antibacterial Test

The density of Staphylococcus aureus (NBRC® 12732™) strains suspension was grown in
the Trypticase Soy Broth and adjusted by using a UV-vis spectrophotometer (V-550, JASCO,
Tokyo, Japan) for 0.5 McFarland Standard with 0.1 reading absorbance at 600-nm [30]. The
10-day room condition exposed electrospun nanofiber discs (20 mg) were placed on Muller
Hinton Agar and incubated at 37 ◦C medium for 48 h.

2.2.4. Other Characterizations

The TTO, pure PVP, and TTO-PVP electrospun fibers were characterized using scanning
electron microscope (SEM; S-4300, Hitachi, Tokyo, Japan) with a gold sputtering coating
(RMC-Eiko RE vacuum coater, Eiki Engineering Co., Ltd., Ibaraki, Japan), thermogravimetric–
differential thermal analysis (TG-DTA; TGA-50, Shimadzu, Kyoto, Japan), differential
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scanning calorimetry (DSC; DSC-60A, Shimadzu, Kyoto, Japan), and Fourier transform
infrared spectroscopy at 4 cm−1 resolution (FT-IR; PerkinElmer Ltd., Waltham, MA, USA).

3. Results and Discussion
3.1. Fibers Morphologies
3.1.1. The Ratio of TTO to PVP

PVP was first dissolved in ethanol for the polymer solution at a concentration of
10 wt.% based on previous research [31,32]. As shown in Figure 3, TTO-PVP electrospun
fiber mats were prepared under an atmospheric environment. When the TTO concentration
(of polymer solution) was higher than 15 wt.%, the electrospun fiber mat was deformed
and became a transparent slimy film. The TTO of 10 wt.% or less could obtain electrospun
fiber. Therefore, 10% by weight has a relatively high TTO percentage for the functional
TTO-PVP electrospun fiber mats. The weight percentage of TTO:PVP = 1:1 electrospun
fibers was to study for the following research.
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3.1.2. Fibers Formation by RP-ES

Figures 4 and 5 showed that pure PVP and TTO-PVP electrospun fiber mats could
be fabricated with 7–10 wt.% pure PVP and 7–10 wt.% TTO-PVP ethanol-based polymer
solution at the environmental pressures from atmospheric 101.3 kPa to reduced-pressure
94.4 kPa. It is viewed from SEM images that the individual electrospun fibers were ran-
domly distributed on the supporting base, with no branch structure or large knots. It
also supported the feasibility of operating reduced pressure electrospinning to obtain the
micro-scale fibers.
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3.1.3. Fibers Diameter by RP-ES

The averaged fiber diameter was measured by SEM image using ImageJ 1.51 w at
150 randomly selected fibers. As shown in Figure 6, the average diameters of 7, 8, 9,
10 wt.% TTO and PVP electrospun fibers were increased as the pressure decreased with
intense vacuum pumping. For example, the diameter of 10 wt.% TTO-PVP electrospun
fiber increased from 0.831 µm of atmospheric 101.3 kPa to 1.148 µm of reduced pressure
94.4 kPa. This result could also indicate that if an electrospun fiber mat product with a
smaller diameter is required, the wt.% of PVP in the polymer solution in RP-ES could be
appropriately reduced.

3.1.4. Less Bead-Fibers by RP-ES

For 8 wt.% pure PVP and 8 wt.% TTO-PVP electrospun fibers, it has been observed that
the typical atmospheric electrospun of Figure 7a,e usually have the largest size and more
micron-sized beads. The size and number of beads decrease with the enhanced vacuum
pumping of Figure 7b–d,f–h. Bead-fibers are related to the concentration of PVP. When the
PVP concentration is low, micron beads appear because of their low viscosity and cannot
overcome the surface tension of the solution [33]. Increasing the concentration of PVP can
avoid the appearance of bead-fibers. It also shows that RP-ES increases the viscosity of the
polymer solution through the evaporation of the solvent.
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Figure 7. SEM images of PVP8 electrospun fibers fabricated at (a) atmospheric 101.3 kPa, reduced
pressure of (b) 98.9 kPa, (c) 96.6 kPa, (d) 94.4 kPa, and TTO8-PVP8 electrospun fibers fabricated at
(e) atmospheric 101.3 kPa, reduced pressure of (f) 98.9 kPa, (g) 96.6 kPa, (h) 94.4 kPa.

3.1.5. Non-Smooth Fibers Surface by RP-ES

10 wt.% TTO-PVP electrospun fibers were obtained at atmospheric of Figure 8a and
reduced-pressure of Figure 8b–d conditions. It shows that mostly smooth surface fibers
were obtained during the electrospinning process conducted at atmospheric pressure.
Conversely, this fiber surface morphology became unsmooth or corrugated when the
process was operated at low operating pressures of RP-ES. Due to the rapid evaporation,
low operating pressure seems to cause wrinkles on the fiber surface of Figure 8b–d. When
this phase separation occurred quickly, the solidified fiber skin was formed during fiber
elongation before the polymer-solvent and volatile components of TTO were removed.
Then, it diffused out of the fiber skin slowly, resulting in the non-smooth rougher and
grooves surface morphology of the electrospun fiber [34–37].
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3.2. Fibers Components Analysis
3.2.1. TTO-PVP Fibers Compounds

The TTO essential oil extracted by steam distillation is the most widely used aromatic
compound, containing various single molecular chains, molecular olefins and other chains,
aromatic compounds, and alcohol groups. Here, each 2 mg of 10 wt.% TTO-PVP electrospun
fiber mats were dissolved in 1.5 mL ethanol and injected via an autosampler device into
the GC-MS apparatus to observe the TTO component contents. The original TTO was
dissolved in ethanol and injected into the GC-MS device as a reference. Table 1 shows the
list of main TTO components that remained in the TTO-PVP electrospun fiber products
fabricated under atmospheric 101.3 kPa and reduced-pressure 94.4 kPa conditions. The
result indicates that volatile components (the components before Terpinolene of Peak No.
7 measured by GC-MS) more evaporated during micron-sized polymer solution droplets
jettied at high speed, remaining a high concentration Terpinen-4-ol of low volatility.

Table 1. Main Volatile Chemotypes of TTO Determined by GC-MS.

Peak No. Compound Name Retention Time [min] Boiling Point [◦C]
Peak Area in Concentration [%] *

ATM RP TTO

1 α-Pinene 6.84 155–156 0.72 0.45 2.28
2 α-Terpinene 9.64 173–174 5.37 4.57 10.63
3 p-Cymene 9.95 177 6.21 5.58 4.23
4 β-Phellandrene 10.11 171–172 1.04 0.87 1.53
5 1,8-Cineole 10.16 176–177 3.92 3.59 4.29
6 γ-Terpinene 11.29 183 15.42 14.04 21.59
7 Terpinolene 12.52 184–185 2.90 2.69 3.60
8 Terpinen-4-ol 16.30 211–213 49.60 52.86 38.68
9 α-Terpineol 16.85 214–217 3.62 4.11 2.82

10 Aromadendrene 27.44 258–259 1.84 1.87 1.23
11 Alloaromadendrene 28.32 265–267 0.82 0.85 0.55
12 Ledene 29.73 268–270 2.28 2.39 1.61
13 δ-Cadinene 30.85 279–280 2.66 2.78 1.81

others 3.61 3.33 5.15

* Concentrations as relative % of peak-area calculation from GC-MS; ATM: TTO10-PVP10 electrospun fiber
fabricated at atmospheric pressure (101.3 kPa); RP: TTO10-PVP10 electrospun fiber fabricated at reduced-pressure
(94.4 kPa); TTO: Tea Tree Oil.

As shown in Figure 9a,b of peak areas, the content of 1,8-Cineole (Peak 1) in TTO-
PVP electrospun fiber mats fabricated by RP-ES decreased by 18.18 wt.% (Peak area
decreased from 58,909,143 to 48,920,123 units), while the main functional component,
Terpinen-4-ol (Peak 2), only reduced by 2.05 wt.% (Peak area decreased from 744,520,273 to
720,972,528 units). This TTO-PVP electrospun fiber with a lower 1,8-Cineole concentration
could have a safer application prospect. It also shows that RP-ES has the intense ability to
evaporate the volatiles of the mixed solution.

3.2.2. Fibers Exposure Test

In the electrospun fiber mats placement test, each TTO-PVP electrospun fiber (12–14 mg)
was placed to ambient settings of 14–16 ◦C and 35–40% humidity to test the encapsulation
ability of Terpinen-4-ol and 1,8-Cineole with PVP. It can be observed from Figure 10 and cal-
culated by the standard Linear Calibration Curve of Figure 2 that at the beginning (0 days),
Terpinen-4-ol of the TTO-PVP fiber electrospun at atmospheric pressure (0.391 (%w/w))
was slightly higher than that of the RP electrospun fiber (0.383 (%w/w)). After 10 d of
aging, there was still a Terpinen-4-ol residual of 0.058 mg/mg in the fiber electrospun at
atmospheric pressure, while the Terpinen-4-ol residual in the RP-ES fiber was 0.093 mg/mg
(60.34 wt.% higher). Because the fiber electrospun with RP-ES was thicker than that at at-
mospheric pressure, the Terpinen-4-ol inside the fiber was more difficult to evaporate in an
exposed environment. In contrast, when using typical electrospinning or RP-ES, 1,8-Cineole
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vanished in the exposed TTO-PVP electrospun fiber on day 5 and later analysis. It indicated
that 1,8-Cineole could not combine well with PVP. In addition, under room conditions,
1,8-Cineole was far more volatile than Terpinen-4-ol, which supports the hypothesis that
RP-ES could evaporate and remove more 1,8-Cineole than typical electrospinning methods.
It is viewed that RP-ES can produce a lower-content 1,8-Cineole of potentially toxic in
TTO-PVP electrospun fibers, thus improving the application safety. In addition, GC-MS
results showed that 10 wt.% of TTO-PVP electrospun fibers fabricated by RP-ES contained
Terpinen-4-ol after placing for 10 days.
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Staphylococcus aureus (S. aureus) is one of the most common bacterial infections in
humans and is the causative agent of many human infections [38]. Terpinen-4-ol exhibits a
strong ability of antibacterial and antibiofilm against S. aureus [39]. The experimental results
showed that the 10 wt.% TTO-PVP electrospun fibers after-10-day placement (Figure 11b)
had approximately 3 times the inhibition zone area on the agar compared to the pure PVP



Polymers 2022, 14, 743 10 of 16

electrospun fibers (Figure 11a). The results showed that the 10 wt.% TTO-PVP electrospun
fibers fabricated by RP-ES had the ability to resist S. aureus for 10 days.
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3.3. Fibers Properties Analysis
3.3.1. FT-IR Analysis

Figure 12 shows that FTIR spectroscopy could detect chemical bonds between un-
known materials and compounds in these contents. Therefore, the chemical structure
changes of PVP molecules with or without TTO could be observed after electrospinning.
As illustrated in curve (a), for the original TTO, a strong peak at 2962 cm−1 was detected.
It was ascribed to the stretching vibration peak of the C–H bond. Absorption bands at
1126 cm−1, related to the stretching vibration of the C–O bond of the tertiary alcohol in
terpenes and terpineol, were observed [40]. This FTIR spectrum also shows a peak at
3450 cm−1, ascribed to the O–H bond stretching vibration, and the 887 cm−1, 864 cm−1,
and 799 cm−1 regions are ascribed to the Terpinen-4-ol compound [41]. In curve (b) for PVP
fibers, the IR peaks located at 3410 cm−1, 2954 cm−1, 1654 cm−1, 1422 cm−1, 1288 cm−1,
and 841 cm−1 were assigned to the stretching vibrations of the O–H, C–H, C=O, C=C, C–N,
and =C–H groups, respectively [42,43]. The absorption peaks of Terpinen-4-ol were found
at 887 cm−1, 864 cm−1, and 799 cm−1 [41]. These results indicate that TTO has embedded
PVP, and the electrospinning process at reduced pressure did not shift the properties of
PVP and TTO as starting materials.

3.3.2. Thermal Properties

Figure 13 shows the curves of thermogravimetric–differential thermal analysis (TG-
DTA) under a nitrogen flow rate of 50 mL/min with 5 ◦C/min increased from 40 to
500 ◦C, where the weight shift during the analysis process was used to understand the
thermal behavior of the materials and their volatile component fractions. As shown in
curve (a), PVP electrospun mats show weight loss at 40–100 ◦C, attributed to moisture
evaporation. The primary weight loss of 380–460 ◦C could be attributed to the standard
thermal decomposition of PVP. The pure TTO of the curve (e) was evaporated completely
before 125 ◦C. As shown in curves (b) and (c), electrospun fibers containing 10 wt.%
TTO have three-step weight loss, namely below 175 ◦C, 175–370 ◦C, and over 370 ◦C.
There was no apparent difference between the two curves. When the amount of TTO
in the PVP solution as the starting material increases to 15% of the curve (d), the curve
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changes more obviously. Its results show that consistent with infrared spectroscopy analysis
(see Figure 12), TTO is present in PVP electrospun fiber products. It may change the
thermal stability of electrospun products through the interaction of C-H and C=O bond
conjugation [44]. It finally indicated RP-ES could successfully fabricate the 10 wt.% TTO-
PVP of polymer solution electrospun fiber mats.
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Figure 12. FTIR spectra of TTO10-PVP10 electrospun fibers fabricated at (a) reduced pressure 94.4 kPa,
(b) atmospheric 101.3 kPa, (c) PVP10 electrospun fibers of atmospheric 101.3 kPa, and (d) TTO.

Figure 14 shows the curves of differential scanning calorimetry (DSC) under a Nitrogen
flow rate of 50 mL/min with 10 ◦C/min increased from 0 to 100 ◦C. It can be seen that the
endothermic peak of the TTO-PVP electrospun fibers (curves (a, b)) is about 15 ◦C lower
than that of the PVP electrospun fibers (curves (c, d)). This may be because the TTO in
the TTO-PVP electrospun fibers volatilized when heated to ~60 ◦C resulting in the need
for endothermic heat of the fibers mat. In addition, probably because more volatilized
components such as 1,8-Cineole were already evaporated during the preparation of fibers
by RP-ES, the endothermic peak of TTO-PVP by RP-ES (curve (a)) was 1 ◦C higher than by
typical electrospinning (curve (b)). Similarly, for the pure PVP electrospun fibers produced
by RP-ES (curve (c)), the evaporation of the solvent could be more intense, resulting
in drier fiber mats, causing the endothermic peak to shift 1.5 ◦C higher than by typical
electrospinning. It further supported the enhanced evaporation of RP-ES for polymer
solvents and volatile components.
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Figure 14. DSC analysis of TTO10-PVP10 electrospun fibers fabricated at (a) reduced pressure
94.4 kPa, (b) atmospheric 101.3 kPa, and PVP10 electrospun fibers fabricated at (c) reduced pressure
94.4 kPa, (d) atmospheric 101.3 kPa.

3.4. Mechanism of Enhanced Evaporation by RP-ES

The above results indicate that the evaporation of polymer-solvent and TTO volatile
components in RP-ES was enhanced. This paper attempts to illustrate the mechanism of
enhanced evaporation of polymer-solvent ethanol. As shown in Figure 15a,b the average
angle of the Taylor cone increased from 72◦ to 76◦, which may be attributed to the stronger
evaporation of ethanol in the Taylor cone area that increased the concentration PVP in the



Polymers 2022, 14, 743 13 of 16

polymer solution at the Taylor cone region. As the viscosity of polymer solution increases,
resulting in stronger cohesion between the PVP chains and making it impossible to stretch
the molecules further that increased fiber diameter [45–47].
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(c) evaporation of electrospinning jet.

As shown in Figure 15a,c during the electrospinning jet, as the total pressure of the
electrospinning ambient environment decreases by continuous vacuum pumping, the
actual vapor pressure of the polymer-solution liquid surface is simultaneously reduced by
the partial pressures of Dalton’s law. According to Dalton’s law, the total pressure Ptot is
detailed as,

Ptot = PEtOH + Pair (1)

Ptot = nPEtOH (2)

It leads to an enlarged polymer-solvent pressure difference ∆PEtOH between the satu-
rated vapor pressure PsEtOH and actual vapor pressure PEtOH at a fixed temperature, which
results in intense vapor diffusion. The pressure difference ∆PEtOH is detailed as,

∆PEtOH = PsEtOH − PEtOH (3)

with the greater ∆PEtOH, the evaporation shall be faster. Simultaneously, from the rel-
ative humidity (RH) perspective, the partial water vapor pressure P decreases because
water molecules are continuously vacuum pumping, causing an increased water pressure
difference ∆P as,

∆P = Ps − P = Ps (1 − RH) (4)

Here, Ps is the saturated water vapor pressure. When the water vapor molecules
were pumped away, the dropped in P led to the dropped in RH. Several recent studies
have identified ambient RH is critical in controlling aqueous polymer-solvent evaporation
during electrospinning [48–50]. Pelipenko et al. [51] and Vrieze et al. [52], found that a
decreasing RH led to an increased diameter of PVP electrospun fibers. Here, since PVP
can be dissolved in water, the moisture absorption around PVP was less under a low
RH. Therefore, as the PVP solidified, the electrospun fiber cannot be elongated anymore,
resulting in thicker fibers [53], which agrees with our observations in this study.

In addition, Figure 15c shows that the fresh airflow by continuous vacuum pumping
could blow away the polymer-solvent vapor and maintain a significant vapor concentration
difference that tends to benefit a long-time working electrospinning system.

4. Conclusions

Compared with typical electrospinning methods, RP-ES can enhance the evaporation
of the polymer-solvent, thereby increasing the viscosity of the polymer solution in the
Taylor cone region and the process of jetting. This results in (1) thicker fibers, (2) fewer and
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size reduced bead of fibers, and (3) non-smooth grooves fiber surface morphology. FT-IR
and TG results showed that RP-ES did not change functional groups and thermal properties
of TTO-PVP electrospun fibers. In addition, with an 18.18 wt.% decreased concentration
of 1,8-Cineole, making this product safer for application. Based on the results and owing
to the enhanced evaporation capacity of RP-ES, it seems that, by reduced pressure and
continuous vacuum pumping to remove water and solvent vapor, RP-ES tends to keep
working longer than current electrospinning methods.
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