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ABSTRACT Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has
provided insight into genotype–phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL
mapping methods present significant challenges for the multiple-testing burden, resulting in a limited ability to detect eQTL that reside
distal to the affected gene. To overcome this, we developed a novel eQTL testing approach, “network-based, large-scale identification
of distal eQTL” (NetLIFT), which performs eQTL testing based on the pairwise conditional dependencies between genes’ expression
levels. When applied to existing data from yeast segregants, NetLIFT replicated most previously identified distal eQTL and identified
46% more genes with distal effects compared to local effects. In liver data from mouse lines derived through the Collaborative Cross
project, NetLIFT detected 5744 genes with local eQTL while 3322 genes had distal eQTL. This analysis revealed founder-of-origin
effects for a subset of local eQTL that may contribute to previously described phenotypic differences in metabolic traits. In human
lymphoblastoid cell lines, NetLIFT was able to detect 1274 transcripts with distal eQTL that had not been reported in previous studies,
while 2483 transcripts with local eQTL were identified. In all species, we found no enrichment for transcription factors facilitating eQTL
associations; instead, we found that most trans-acting factors were annotated for metabolic function, suggesting that genetic variation
may indirectly regulate multigene pathways by targeting key components of feedback processes within regulatory networks. Further-
more, the unique genetic history of each population appears to influence the detection of genes with local and distal eQTL.

GENE expression is highly heritable, indicating a strong
genetic component (Cheung et al. 2003; Schadt et al.

2003). Expression quantitative trait loci (eQTL) mapping
strives to uncover the underlying genetic architecture of
transcriptional regulation. An important concept in dissect-
ing complex regulatory processes is to identify both local
and distal variants that are associated with gene expression.
Local eQTL are largely thought to regulate proximal genes
by affecting the activity of regulatory elements that directly
influence transcription rates, such as through alterations in
genomic sequence that affect binding affinities of regulatory

factors. In contrast, distal eQTL map to genomic locations
far from the affected gene, possibly on different chromo-
somes, and likely act initially on the expression or function
of some nearby, intermediate gene that then affects the as-
sociated target gene in trans. Notably, in genetically diverse
populations such as humans, the reported effect sizes and
significance levels for distal associations are weaker than for
local eQTL (Brem et al. 2002; Doss et al. 2005; West et al.
2007). This is likely attributable to the greater noise inher-
ent in indirect effects that occur within the context of a pro-
tein–protein interaction network.

Initial eQTL discovery analyses performed association
tests for all pairs of genomic variants and genes (Alberts
et al. 2011; Holloway et al. 2011; Mehta et al. 2012), lead-
ing to challenges in both sensitivity and interpretation.
Although recent methods have greatly reduced the com-
putational burden for this approach (Shabalin 2012), the
reduced statistical power due to multiple-testing correction
still presents significant problems, especially in detecting

Copyright © 2014 by the Genetics Society of America
doi: 10.1534/genetics.114.167791
Manuscript received July 29, 2014; accepted for publication September 9, 2014;
published Early Online September 16, 2014.
Available freely online through the author-supported open access option.
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.114.167791/-/DC1.
1Corresponding author: 120 Mason Farm Rd., CB 7240, Genetic Medicine Bldg.,
University of North Carolina, Chapel Hill, NC 27599. E-mail: tsfurey@email.unc.edu

Genetics, Vol. 198, 879–893 November 2014 879

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167791/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167791/-/DC1
mailto:tsfurey@email.unc.edu


distal eQTL. Using this technique, the reported frequency
of distal effects has varied from 2% to 75% of all detected
eQTL (Yvert et al. 2003; Göring et al. 2007; Mehta et al.
2012), and it remains unclear whether this is attributable
to differences in regulatory architecture or statistical power.
Indeed, in several recent eQTL analyses using human data,
distal eQTL mapping was either not performed or not reported
(Pickrell et al. 2010; Lappalainen et al. 2013), likely due to the
inability to detect any distal eQTL whatsoever. Additionally,
inferring the direction of effect of distal associations that result
from protein interactions is difficult when dealing with gene
expression data that are often noisy and highly correlated.

To detect distal eQTL with greater power, some recently
developed methods assume an underlying regulatory archi-
tecture in which the local regulation of an intermediate gene
leads to widespread expression variation in a large set of
target genes (Bottolo et al. 2011; Duarte and Zeng 2011;
Kompass and Witte 2011; Rotival et al. 2011). Modules of
target genes are defined by factor analysis or gene–gene
correlation statistics, and association testing is performed
between genotypes and summary statistics of each module.
In this setting, strong associations are thought to represent
master regulators that exert broad, but potentially weak,
effects in the regulatory network. These approaches re-
duce the multiple-testing burden, as thousands of genes are
replaced by a few dozen modules; however, several draw-
backs remain. First, if the regulatory activity of a trans-
acting factor (TAF) affects only a handful of target genes,
the initial clustering approach may not identify the small
gene module. Second, the intermediate genes regulating
the expression of gene modules are often not identified.
Finally, expression for individual genes belonging to a mod-
ule does not always correlate with the eQTL associated with
the module, raising doubts about the validity of the results
(Kompass and Witte 2011).

Others have developed methods focused on addressing
interpretability and directionality of associations, using
randomization of genetic variables (Chen et al. 2007) and
causal model selection tests (Neto et al. 2013) as a founda-
tion for statistical inference. In these methods, conditional
dependence between expression of genes and/or latent var-
iables is used to probabilistically determine whether the as-
sociation between the genetic variant and the target gene is
causal. In this study, we present a novel eQTL detection
method, “network-based, large-scale identification of dis-
tal eQTL” (NetLIFT), which, rather than performing causal
model selection or randomization, uses pairwise partial cor-
relations derived from gene expression data to restrict distal
association testing, thereby reducing the multiple-testing
burden and highlighting candidate regulatory genes. In this
framework, statistically significant local associations are first
identified, and then local eQTL variants are tested for distal
associations only for genes whose expression values show
evidence of direct effects. We show that NetLIFT identifies
individual SNP–gene distal associations with greater power
than traditional pairwise eQTL testing, scales well to large

data sets, and provides interpretability regarding the mech-
anism of association by highlighting potential trans-acting
factors. In simulation studies, NetLIFT better identified
distal eQTL, especially those with small numbers of target
genes, when compared with a traditional all-SNPs vs. all-
genes approach, a module-based approach (independent
components analysis, adapted from Rotival et al. 2011),
and a method designed to identify causal associations using
randomization of genotype data (Chen et al. 2007). Apply-
ing NetLIFT to a data set consisting of 112 yeast segregants
(Brem and Kruglyak 2005), we recapitulated previously
reported distal associations and putative regulators, while
discovering several additional eQTL with plausible biologi-
cal mechanisms of association. In mouse livers, we discov-
ered founder-of-origin effects for a subset of local eQTL that
drive differential expression of target genes in a subspecies-
of-origin specific manner, suggesting a possible role for these
loci in transcriptomic and phenotypic differences between
strains. Using data from human lymphoblast cell lines (Pickrell
et al. 2010), we identified .1000 distal associations not
previously reported. We note that individuals from each of
these three populations (yeast, mice, and humans) have
unique genetic histories, and our analysis suggests that this
influences the number and type of eQTL detected in each
study.

Materials and Methods

Description of the NetLIFT model

The analysis workflow for the NetLIFT model is outlined in
Figure 1 and was designed to parallel our understanding of
the mechanism of trans-regulatory effects. That is, if SNP si
affects the transcription of gene gj in trans, we expect that si
first directly affects the transcription level of an intermediate
gene gi and that the transcription rate of gi directly or in-
directly affects the transcription rate of gj. There are three
main steps to the NetLIFT algorithm.

Step 1: Identify local eQTL: Local association tests are
performed for all variants that lie within an a priori-defined
window of each gene (Figure 1A). Allele counts are regressed
on the gene’s expression values, using a univariate, additive
linear model. Since some genes contain many more var-
iants than others, we control the false positive rate in local
testing by retaining only associations that meet a Bonferroni-
corrected significance cutoff of 0.05. Significant associations
represent variants that may have a direct effect on the tran-
scription rate of nearby genes, likely by altering activity of
cis-regulatory elements.

Step 2: Estimate pairwise partial correlations for all
genes: Pairwise partial correlations are estimated for all
gene pairs (Figure 1B) to identify genes with expression
level dependencies. The distribution of connections for gene
networks has been shown to follow a power-law distribution

880 M. Weiser, S. Mukherjee, and T. S. Furey



(Jeong et al. 2000; Barabási and Oltvai 2004; Yook et al.
2004; Lorenz et al. 2011) with an overall small number of
edges. Therefore, we estimate the partial correlation matrix
G, using a method that enforces sparsity on the entries of G
via L1 regularization and has been shown to accurately iden-
tify network hubs (Peng et al. 2009; Allen et al. 2012).

Briefly, this method performs joint sparse regression on
all p variables (genes) simultaneously, by minimizing the
penalized loss function

L ¼ 1
2

0
@Xp

i¼1

������gi2
X
j 6¼i

rij

ffiffiffiffiffiffiffiffiffiffiffi
sjj

sii gj

r ������
21
Aþ l

X
1# i, j# p

��rij��;

where gi and gj are the expression vectors for genes i and j,
rij denotes the partial correlation between genes i and j, and
sii and sjj are the ith and jth diagonal entries of the inverse
covariance matrix. The L1 penalty l controls the sparsity of
the network and was optimized by minimizing the Bayesian
information criterion outlined in Peng et al. (2009).

For p genes, the resulting p 3 p matrix G consists of
entries Gi,j that represent the correlation between expression
vectors gi and gj, conditioned on the expression of all other
genes’ expression:

Gij¼ corr
�
gi; gj

��gk; k 6¼ i; j
�
:

G can be interpreted as an undirected network, where each
node represents a gene, and an edge is drawn between two
nodes if and only if the corresponding entry in the matrix G
is nonzero.

Step 3: Distal eQTL testing: Distal eQTL are called by
integrating the results from these two steps (Figure 1C). For
each variant si that shows significant association to a local
gene gi, we test si for association with distal genes gj that are
nearby gi in the partial correlation network defined by G.
Since the edges of G account only for direct relationships
between two genes, we exploit the network structure to
search for second-degree (downstream) regulatory effects
as well. Specifically, we require two conditions for si to be
tested for a distal effect on gj:

1. si must be strongly associated with expression of the pu-
tative TAF, gi.

2. Genes gi and gj must be separated in the partial cor-
relation network by no more than two edges; i.e., either
Gi,j 6¼ 0 or there exists a third gene gk such that Gi,k 6¼
0 and Gk,j 6¼ 0. Additionally, we incorporate a threshold
whereby two-degree genes are tested only if the associa-
tion between si and the intermediate gene gk meets
a user-defined significance level (we selected P , 0.2
for this cutoff in all analyses presented here). Although
longer-range interaction effects could be considered by
testing genes at increased distances within the network,
doing so would exponentially increase the number of
tests performed at each distance cutoff. We sought to
balance this trade-off by limiting the edge distance to
two.

If a locally affected gene contains many significantly
associated variants, only the variant with the strongest local
association is tested with distal genes. Furthermore, we

Figure 1 Schematic of the NetLIFT method. (Top) Genotypes for “m”

markers (s1, s2, . . . , sm) and “p” genes (g1, g2, . . . , gp) are assayed for the
same “n” individuals (a1, a2, . . . , an). Markers and genes that map to the
same locus are color coded. Local eQTL mapping is performed for markers
and nearby genes using an a priori-defined genomic distance for local
effects (A), yielding a local eQTL effect matrix (significant marker–gene
associations depicted in green). A sparse partial correlation matrix is
inferred from the expression data, representing a network of gene–gene
interactions (B). Finally, significantly associated local eQTL markers are
tested for distal eQTL effects on genes near the locally affected gene in
the interaction network (C).
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impose directionality in the ambiguous case where two
directly connected genes both have local eQTL, by recording
only the direction with the strongest distal association. We
note that since G is a symmetric matrix representing an un-
directed network of correlated genes, we make no assump-
tion regarding the direction of potential gene–gene effects
and therefore no assumption about how variant-to-gene
effects may propagate through the network. Instead, we
use the network structure only to select which variant–gene
pairs to test for associations. Although significant associa-
tions do not provide conclusive evidence of trans associa-
tions, we expect that many of the distal eQTL will be acting
in trans, potentially through the putative TAF identified by
our method.

We note that the correlation-based network structure
used to guide the distal association tests will likely lead to
correlations among test statistics. The Benjamini–Yekutieli
(BY) false discovery rate (FDR) correction holds rigorously
under general dependence of test statistics (Benjamini and
Yekutieli 2001); however, this correction is generally con-
sidered to be overly conservative. Instead, we use the stan-
dard Benjamini–Hochberg FDR (Benjamini and Hochberg
1995), which in simulation studies was shown to perform
comparably with the BY correction in the case of general de-
pendency and in particular for two-sided t statistics (Romano
et al. 2008).

Independent components analysis method

The independent components analysis (ICA) methodology
was adopted from Rotival et al. (2011) and applied to the
simulated data for comparison with NetLIFT. ICA identifies
a predefined number of hidden variables (“independent
components”) by factoring the gene expression data matrix,
X, into a product of two matrices: X � SA. Each column of
matrix S corresponds to an independent component or fac-
tor, and the ith element of a column is the “activation” level
of the ith gene in that factor. These factors are meant to
model some latent or underlying biological process. The
kth row of matrix A reflects the amount of activation of
the kth independent component across all individuals, and
Aij is activation on the jth individual for component i. Rows
of A serve as the response vector when testing SNPs in
a linear model. We used the fastICA function implemented
in the R programming language to factor the expression
data. This algorithm minimizes the statistical dependencies
between the columns of S, so that each column of S defines
groups of coexpressed genes. Since the method requires an
a priori-defined number of components to use in factoriza-
tion, we set this parameter to 14, the number of modules in
each simulated expression data set. To assign individual
genes to components, we used the fdrtool function, which
models a column’s scores as a mixture of null and alternative
distributions. Each entry of the column is assigned an FDR
corresponding to the likelihood of belonging to the null. For
each component (column of S), a corresponding component
set was defined for genes with FDR , 0.05.

Association tests were performed by regressing allele
counts on rows of A, which represent the activation of each
component across individuals. SNP-component associations
with Benjamini–Hochberg-corrected FDR , 0.05 were con-
sidered significant. For each association between a true local
eQTL and a component, we defined the number of true
positives to be the number of component-set genes that
were downstream of the locally affected driver gene. False
positives were defined as any other gene assigned to that
component set.

Trigger method

The Trigger method is described in Chen et al. (2007). This
method aims to infer causality of a genetic variant on ex-
pression of a gene by treating genetic variants as random-
ized variables and leveraging the causality equivalence
theorem to identify the direction of effect. Briefly, let si
be the genetic variant to be tested for association, and let
gi be a nearby gene. Trigger first tests for association be-
tween si and gi (graphically: si / gi), using a standard
likelihood-ratio test. This gives Pr(si / gi). If the probabil-
ity of a local association exceeds a defined threshold, the
variant is then considered for distal association testing. A
similar likelihood test is used for defining the probability of
linkage between si and gj, for all other genes gj, under the
condition that si / gi [denoted Pr(si / gj | si / gi)].
Finally, we test whether si and gj are independent, given
the expression of gi: Pr(si ’ gj | gi | si / gi and si / gj).
The causality equivalence theorem can be used to show
that

Pr
�
si/gi/gj

� ¼ Prðsi/giÞ3 Pr
�
si/gj

��si/gi
�

3 Pr
�
si’gj

��gijsi/gi   and  si/gj
�
;

so multiplying the probability estimates yields an estimate
for direct effect of si on gj. We use the R package “trigger” for
implementation of this algorithm.

Data simulation procedure

A total of 10 gene expression data sets were simulated, each
with 500 genes and 250 samples. For each set of 500 genes,
a network gene structure consisting of 14 disconnected gene
modules of varying numbers of genes was imposed. Sizes of
gene modules in each data set were as follows: 100 (32), 50
(32), and 10 (310), leaving 100 genes that were indepen-
dent of any module. Module topologies are depicted in Sup-
porting Information, Figure S1. For each module, the hub
gene’s expression values for 250 samples were simulated
first, by drawing from a standard normal distribution. Each
successive downstream gene’s expression was modeled as
a linear combination of the upstream gene plus random
error, using an effect size of 61 and a random error drawn
from a standard normal distribution, represented as

gds ¼ bgus þ e;
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where gds and gus represent expression of the downstream
and upstream genes, respectively, and e � N(0,1). Genes
directly downstream of either the hub gene or a highly con-
nected gene (defined as a gene with degree .20) were
chosen to have effect sizes of 1, while all other effect sizes
were assigned randomly as 21 or 1 with probabilities 0.3
and 0.7, respectively.

Next, for each gene, the total number of SNPs for that
gene was drawn from a gamma(4, 0.2) distribution and
rounded to the next highest integer. Minor allele frequen-
cies for each SNP were drawn from a uniform(0.05, 0.5)
distribution; from these, diploid genotype frequencies encoded
0, 1, and 2 were derived under the assumption of Hardy–
Weinberg equilibrium.

For each module, a single gene, not necessarily the hub
gene, was chosen to have a local eQTL effect. Since the
network topology is undirected, local eQTL effects on nonhub
driver genes may lead to spurious distal associations in
the analysis. To investigate the sensitivity and specificity of
the method under these potentially confounding circum-
stances, we assigned local eQTL effects to hub genes in
some modules and to genes downstream of the hub in
others. Furthermore, 30% of the 100 independent genes
were assigned at random to have local eQTL effects. If a gene
was not chosen to have an eQTL, genotypes were assigned
randomly to the 250 samples. For genes chosen to have an
eQTL, the direction of effect was chosen to be positive or
negative with probabilities 0.7 and 0.3, respectively. Geno-
type labels were assigned using a genetic algorithm that
sought to maximize the effect size under the condition that
the significance of association lie within a certain range
(here, between 5e-05 and 1e-08). In cases where the eQTL
was assigned to the hub gene, all genes in the module were
considered as distal targets; however, to model cases where
confounding associations may occur between the eQTL SNP
and genes “upstream” of the locally affected gene, we also
assigned eQTL effects to nonhub genes.

The retrospective allele assignment allowed the specifi-
cation of desired eQTL effect sizes and significance levels
without the need to explicitly consider the pairwise corre-
lations between genes when performing the genotype simu-
lation. This procedure was carried out for 10 simulated data
sets. Each data set consisted of gene expression networks for
the same module topologies, and each module’s expression
was characterized by an identical underlying genetic archi-
tecture. We defined true distal associations as those genes
downstream of the locally associated gene in the expression
topology. Working code and a representative simulated data
set are available for download at http://fureylab.web.unc.
edu/software/netlift/.

Yeast data

Gene expression and genotype data, described previously
(Brem and Kruglyak 2005), were obtained from R. Brem
(Buck Institute, Novato, CA). A total of 112 yeast segregants
were mated from parent strains BY4716 and RM11-1a and

grown in culture. Strains were genotyped at 2957 markers
and expression measurements were assayed for 6216 ORFs.
Genes with no available annotation information were re-
moved, leaving a total of 5647 genes for analysis.

Mouse liver data

Gene expression data were previously assayed on the
Affymetrix Mouse Gene 1.0 ST array and were obtained
from GEO (accession no. GSE22297) (Aylor et al. 2011).
Expression values were normalized using the “rma-sketch”
option in the Affymetrix Power Tools package. Probes con-
taining SNPs were masked in the normalization procedure.
Probe sets that were expressed at a level .6 on a log2 nor-
malized scale in at least 87.5% of mice were retained, leav-
ing a total of 9377 probe sets for further analysis. Genotypes
for 181,752 markers from the “A” test array for the Mouse
Diversity Array were obtained from D. Aylor (North Carolina
State University, Raleigh, NC).

Human lymphoblastoid cell line data

Gene expression data and HapMap phase 2 and 3 genotypes
were obtained from http://eqtl.uchicago.edu. Normaliza-
tion and processing were performed as described previously
(Pickrell et al. 2010). Additionally, the top 25% of tran-
scripts ranked by expression level were retained for further
analysis, based on median expression level of the prequan-
tile normalized data across all 69 individuals, leaving 9810
transcripts that were retained for analysis.

Results

Simulation analysis

To assess the sensitivity and specificity of NetLIFT for identi-
fying distal eQTL, we applied the method to 10 simulated data
sets consisting of paired expression and genotype data (see
Materials and Methods).

For comparison, we also tested three previously de-
scribed eQTL detection methods: ICA, Trigger, and an all-vs.-
all pairwise testing approach (AvA) (Figure S2). The ICA
method is primarily suited to identify eQTL that drive the
expression of large numbers of distal genes; however, we
note that the number of desired components must be de-
fined according to some empirical criteria, and no specific
intermediate gene is pinpointed as the trans-acting factor
responsible for large-scale variations. Therefore, this method
does not identify local eQTL.

We first compared the network structures inferred by
NetLIFT’s partial correlation analysis to the true simulated
regulatory architecture. We found that NetLIFT estimates
the gene–gene partial correlation structure with high sensi-
tivity, but note that as module connectivity increases, spec-
ificity decreases (Table S1, Figure S3). However, since the
network structure is used primarily to determine which
SNP–gene tests to perform, the main effect of false network
edges is a slight increase in testing burden. As a result, we
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were willing to tolerate a reduction in network accuracy as
long as the sensitivity remained high.

For detection of local eQTL effects, NetLIFT, Trigger, and
AvA all identified true positives with 100% success (FDR ,
0.05, Table S2). The local eQTL false positive rate for Net-
LIFT was identical to that for AvA under this FDR; setting
a stricter FDR cutoff of 0.001 resulted in only one false
positive for both methods. Additionally, we observed a large
number of false positive local eQTL for Trigger, likely due to
a lenient default thresholding criterion in the local eQTL
testing step. Since we are particularly interested in this
method’s ability to detect distal eQTL and since distal eQTL
identification is conditional on local linkages for this method,
we chose to retain the permissive threshold and focus pri-
marily on results for distal associations.

Intramodule distal eQTL were predicted using each
method simultaneously, considering all genes and SNPs
from all simulated modules. For each module, the true set of
distal effects was defined as all SNP–gene associations be-
tween the module eQTL and genes downstream of the lo-
cally affected gene. Thus, for modules where the eQTL acted
on the hub gene, all combinations of the local eQTL SNP
with nonhub genes were considered “true positives.” For
modules with eQTL acting on nonhub genes, the true pos-
itives were defined as the eQTL–gene pairs in which the
associated genes were downstream of the locally affected,
driver gene. False positives were defined as eQTL–gene
associations where the associated gene was not downstream
of the locally affected gene. Figure 2 details the performance
of each of the four methods.

In this case, NetLIFT identified true distal associations
at a higher rate for all module topologies (overall 77.9%
detection rate), at the cost of a slightly elevated false
positive rate. These false positives were mostly due to eQTL
SNPs being linked distally to genes that were in the same
module, but that were not downstream of the locally
affected gene. Since our network estimation step cannot
infer directionality of expression effects, these false associ-
ations reflect our inability to distinguish true functional
associations from those that are due to confounding gene
expression correlations present in the data. However, we
note that the estimation of direct gene–gene effects and the
subsequent testing procedure prevent many upstream genes
from being tested against the eQTL SNP, reducing the over-
all burden of these false associations. Moreover, in a rank-
based test performed on FDR values, true positives were
found to have higher significance values than the false pos-
itives (P= 4.92e-96), again suggesting that the false positive
count is strongly dependent on the FDR threshold chosen.

The AvA approach performed poorly, as most true associ-
ations were lost after correcting for multiple-hypothesis
testing. ICA performed well in large module settings, but
poorly for small modules, suggesting that this approach is
underpowered for detecting small coregulated gene mod-
ules under the influence of a common variant. Trigger
performed better than the AvA approach, although in

general identified ,12% of true distal associations. NetLIFT
was the only method to consistently identify distal effects in
all network topologies.

We next evaluated NetLIFT’s performance in detecting
“hotspot” eQTL loci, where a hotspot is defined as a locus
that is associated with more transcripts than are expected
by chance. To derive a family-wise error rate (FWER) for
each locus, we used the procedure described in Breitling
et al. (2008), which permutes genotypes among samples
but preserves the correlation structure present in the gene
expression data. Performing association testing with the
permuted genotype data sets yields a distribution of the
expected maximum number of linkages under the null
hypothesis of no eQTL associations. When restricting to
a FWER of 0.05, NetLIFT identified the eQTL for all hub-
based gene modules as hotspots in 10/10 simulated data
sets, while the AvA approach identified these eQTL as hot-
spots only 20–60% of the time and with many fewer link-
ages (Table S3).

To investigate whether a larger simulated data set
affected the sensitivity and/or specificity of our method, we
generated and analyzed an additional simulated data set
consisting of 2000 genes. We observed that the overall
fraction of true and false positives remained similar in this
analysis (data not shown). These simulation results indicate
that in addition to scaling well to large data sets, NetLIFT
may discover distal eQTL that are not readily identifiable
with existing detection methods.

Analysis of 112 yeast segregants

We applied NetLIFT to previously analyzed paired geno-
type/gene expression data for 112 haploid yeast segregants
(Brem and Kruglyak 2005). After filtering for genes with
available annotation, 5647 genes and 2956 variants were
retained for analysis. Variants within 10 kb of the gene’s
transcribed region were considered “local,” and all other
linkages were denoted as distal eQTL. At an FDR of 0.05,
we identified a total of 1124 (19.9%) and 1642 (29.1%)
genes with local and distal eQTL effects, respectively (Figure
S4). Local and distal effects were observed to have a similar
effect size and level of significance (Table S4). The large
effect sizes for distal eQTL are in line with previously
reported results and are likely attributable to the extreme
diversity between the two strains of yeast.

A Gene Ontology (GO) analysis using all 143 genes
identified as intermediate TAFs for at least 10 downstream
targets revealed enrichments for a wide range of functions,
with top hits reserved for metabolic function and transport
(Table 1). This corroborates previous findings where puta-
tive regulators located near hotspots were not found to be
enriched for transcription factors; instead, evidence suggests
that many trans regulators exert widespread transcriptional
effects by mediating levels of key metabolites or regulating
post-translational processes (Yvert et al. 2003; Litvin et al.
2009). A comprehensive list of all putative regulators is pro-
vided in Table S5.
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For most previously identified hotspots, NetLIFT correctly
identified biologically validated regulators (Table 2). Sev-
eral predicted novel regulators with .15 target genes were
also found, many involved in metabolic and biosynthetic
processes. In some cases, we provide regulatory evidence
for novel drivers not identified previously for detected hot-
spots; furthermore, our results suggest that there may be
numerous secondary drivers within previously identified
hotspot regions, indicating that local association signals aris-
ing from two or more distinct loci may influence a similar set
of distal target genes. One example is the hotspots on chro-
mosome 2 where target genes are enriched for ribosome
biogenesis and noncoding RNA (ncRNA) processing (Table
2). Previous results implicated AMN1 and MAK5 as trans-
acting factors for subsets of the target genes; however, pat-
terns of linkage to distinct regions within this locus suggest
that additional regulators lie on chromosome 2 (Brem et al.
2002). In addition to AMN1, NetLIFT implicated at least
seven new candidate regulators on chromosome 2—TBS1,
ARA1, YSW1, TOS1, UMP1, NPL4, and YBR197C—that were
strongly linked with local eQTL (P , 1.0e-05) and were
associated with highly overlapping sets of distally associated
genes (Figure S5). Notably, we failed to identify MAK5, as
this putative regulator was shown to contain a loss-of-func-
tion mutation that has no effect on transcription (Brem et al.
2002). By definition, distal effects arising from amino acid

substitutions affecting protein function of the trans-acting
factor will be undetectable using NetLIFT, as we specifi-
cally seek to identify distal effects that arise from local,
cis-regulatory effects.

Given the strong enrichment for ribosome function
among target genes linking to the chromosome 2 loci, we
hypothesized that causal variants would significantly affect
growth rates via widespread differential transcription orig-
inating from direct up/down local regulation of the candi-
date TAF. To investigate this, we used segregants’ gene
expression profiles to predict relative growth rate, using pre-
viously described methods (Airoldi et al. 2009). We then
tested each of the candidate regulators’ distal eQTL for as-
sociation with the growth rate phenotype. After correction
for multiple testing, we found that nearly all of the under-
lying variants attained significance at FDR , 0.05. We pro-
pose that differential expression of the putative regulators
influences growth rate by perturbing common, growth-related
pathways in trans.

We found numerous loci linking to small sets of target
genes that are functionally related, as might be expected from
the simulation results. TEC1, a transcription factor that targets
filamentation genes, was found to have a significantly associ-
ated local variant that was distally linked to 16 genes enriched
for pseudohyphal growth annotation (P= 1.03e-03). Addition-
ally, for 5 of these 16 genes (31.2%), the YEASTRACT database

Figure 2 Number of detected distal associations, by module topology and method. Topology of each network module is depicted at the top of each
section. Black nodes depict genes with an assigned local eQTL effect, and red nodes represent “true” distally associated genes. The total number of true
distal associations is given in parentheses. Each cell value reports the mean and standard deviation of true positives and false positives, over the 10
simulated data sets. Cells are colored according to fraction of true positives discovered. The rightmost column (bottom row) reports the number of false
positive distal associations where the locally regulated gene and the target gene belonged to disjoint modules.
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shows direct evidence of TEC1 DNA binding and transcrip-
tional regulation (Teixeira et al. 2014). Of the 25 genes that
mapped to the lead variant (defined as the variant with stron-
gest local effect on TEC1) in an all-vs.-all test, only 4 (16%)
showed direct evidence of TEC1 binding and regulation, sug-
gesting that NetLIFT is better able to identify biologically rel-
evant associations.

We identify several putative regulators that are metabolic
enzymes and whose target gene sets are enriched for
metabolic and biosynthesis annotations. For example, a locus
on chromosome 2 that acts as a local eQTL for LYS2 was
distally associated with 167 target genes enriched for the
GO term “lysine biosynthetic process via aminoadipic acid”
(P = 1.27e-07). LYS2 catalyzes the reduction of a-amino-
adipate to a-aminoadipate semialdehyde (aAASA), the fifth
step in the lysine biosynthesis pathway. Downstream of this
reaction, glutamate-forming saccharopine dehydrogenase,
which consists of the structural determinant LYS9 and the
regulatory product LYS14, converts aAASA to saccharopine.
LYS9 loss of function increases intracellular levels of aAASA,
which induces the regulatory activity of Lys14p and results
in the upregulation of several genes in the pathway, includ-
ing LYS1, LYS9, LYS2, LYS4, LYS20, and LYS21 (Becker et al.
1998). In a previous experiment, a mutant strain with loss of
function for both LYS2 and LYS9 was shown to have de-
creased intracellular aAASA and lower levels of transcrip-
tional activation of pathway genes, relative to the LYS9
single mutant (Ramos et al. 1988; Feller et al. 1999). We
hypothesize that strains harboring the genomic variant asso-
ciated with decreased transcription of LYS2will have a similar
reduction of intracellular aAASA concentration and thus a de-
creased potential for transcriptional activation of Lys14p. Of
the previously mentioned lysine biosynthesis genes that are
targeted by Lys14p, we find four linked distally to the putative

eQTL (LYS1, LYS9, LYS20, and LYS21). We note that the di-
rection of effect between the eQTL and the downstream
genes reflects what we expect under the proposed mechanism
(Figure S6). Within the set of transcriptional targets are four
additional genes whose promoters contain the Lys14p binding
motif, TCCRNYGGA, one of which, LYS12, is involved in ly-
sine biosynthesis and has a directional expression pattern
matching the other Lys14p targets (Figure S6).

Analysis of 156 partially inbred mouse lines

To test how well NetLIFT scales to larger data sets and for
organisms with more complex mechanisms of gene regula-
tion, we analyzed paired genotype and liver gene expres-
sion data from 156 partially inbred mice originating from
8 founder mice (A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ,
NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ), part of the
Collaborative Cross (CC) project (Churchill et al. 2004; Col-
laborative Cross Consortium 2012) (Figure 3). Founder
strains of the CC were chosen to provide a high level of
genetic diversity and represent three subspecies of origin:
Mus mus domesticus, M. m. castaneus, and M. m. musculus.
Wild-derived WSB/EiJ and classical inbred strains A/J,
C57BL/6J, 129S1/SvImJ, NOD/LtJ, and NZO/HlLtJ have
a genetic background composed mostly of the M. m. domes-
ticus subspecies, while the wild-derived CAST/EiJ and PWK/
PhJ founder strains are primarily representative of the
M. m. castaneus and M. m. musculus subspecies, respec-
tively (Churchill et al. 2004; Collaborative Cross Consortium
2012).

We filtered for probe sets expressed above background
levels and retained 9377 genes for analysis. PCA analysis
revealed no batch effects in the data (Figure S7). Genotypes
for the same mice were available for 171,761 markers. In
a previous analysis, a total of 6182 eQTL were discovered

Table 1 GO annotation enrichment for candidate regulators in yeast

P-value Term

2.00E-06 Asparagine catabolic process
5.89E-06 Cellular response to nitrogen starvation
5.89E-06 Cellular response to nitrogen levels
4.66E-05 Asparagine metabolic process
4.90E-05 Glutamine family amino acid catabolic process
0.000172 Aspartate family amino acid catabolic process
0.001328 Cellular response to nutrient levels
0.001784 Response to nutrient levels
0.001784 Cellular response to extracellular stimulus
0.001784 Cellular response to external stimulus
0.002359 Response to external stimulus
0.002359 Response to extracellular stimulus
0.003704 Cellular amino acid catabolic process
0.003936 Developmental process involved in reproduction
0.004111 Cellular response to starvation
0.005043 Response to starvation
0.005191 Amino acid transmembrane transport
0.005905 Carbon catabolite regulation of transcription from RNA polymerase II promoter
0.005931 Copper ion transport
0.007164 Viral reproduction

GO analysis was performed for genes with $10 distal associations; the top 20 enrichment terms are reported in the right column.
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for 5733 genes at a 5% genome-wide threshold; 75% of
eQTL were within 10 cM of the affected gene (Aylor et al.
2011).

For eQTL testing, we defined local effects as those where
variants were within 1 Mb of the affected gene, based on the
marker-to-gene distances for linkages reported previously for
these data (Aylor et al. 2011). We detected a total of 5744
genes (61%) with a local eQTL and 3322 (35%) with at least
one distal eQTL (FDR , 0.05). Of the genes with a distal
eQTL, 1102 (12%) were linked to one SNP, 574 (6%) were
linked to two SNPs, 400 (4%) were linked to three SNPs, and
1246 (13%) were linked to four or more SNPs.

We next investigated patterns of large-scale effects on the
regulatory architecture that are attributable to founder and/
or subspecies of origin. For the 293 genes with a local eQTL
that was linked to at least 5 genes on different chromo-
somes, genes inherited from a PWK genetic background
showed more extreme expression variation than genes
inherited from the other founder strains (Figure S8). Mice
from the CC have been shown to be phenotypically diverse
for various immune-related phenotypes (Ferris et al. 2013;
Phillippi et al. 2013), body weight (Philip et al. 2011), and
behavior (Philip et al. 2011), with variance for some traits
exceeding that observed in the founder strains (Philip et al.
2011). One plausible reason for this is that epistatic inter-
actions between alleles inherited from distinct subspecies
(castaneus, domesticus, and musculus) may severely mis-
regulate gene expression and homeostasis. To investigate
whether allele inheritance from different subspecies of ori-
gin led to more extreme expression for particular combina-
tions of locally acting eQTL alleles and target genes, we
mapped both eQTL SNPs and target genes to their subspe-
cies of origin. Since alleles inherited from PWK mice
appeared to be driving extreme expression variation in lo-
cally affected genes, we reduced the locally affected set of
genes to a subset of 61 genes for which the M. m. musculus-
derived PWK allele explained at least half of the overall
genetic effect on expression (Figure 4, top). We observed
that for these SNPs, expression of distally linked genes
showed differential variation based on the combinatorial
genetic backgrounds of the locally associated variant and
the target gene (Figure 4, bottom).

These transcriptomic differences may in turn affect
phenotype. Body weight for wild-derived founder strains
(CAST/EiJ, PWK/PhJ, and WSB/EiJ) used in the Collabo-
rative Cross is lower than in classical laboratory strains
(Aylor et al. 2011). A GO analysis performed for the 142
distal genes linking to the PWK-driven eQTL revealed anno-
tation for various terms related to metabolism and lipid pro-
cesses (Table 3). This enrichment suggests a possible role
for the candidate trans-acting factors in regulating weight,
via a broad but subtle effect on gene expression.

Analysis of 69 human individuals

RNA-seq data from lymphoblastoid cell lines and HapMap
genotype data for 69 Nigerian individuals were recentlyTa
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interrogated for eQTL (Pickrell et al. 2010). For NetLIFT
analysis, expression data were corrected for GC content
and batch and were normalized as described previously.
We selected 9810 Ensembl transcripts in the top quartile
based on median expression level for further analysis. Ge-
notype data for the same individuals, consisting of 9.5 mil-
lion SNPs, were obtained from HapMap phases 2 and 3,
release 27.

Using a local regulatory window of 200 kb, similar to the
original analysis (Pickrell et al. 2010), we identified 2483
transcripts (25.3%) with a local eQTL effect (FDR , 0.10).
Of the 929 transcripts previously identified as having local
associations at the same FDR, we replicated 538. The remain-
der not found consisted of transcripts that we removed from
the data set due to low median expression level, with the
exception of 3 transcripts that were not identified in our
analysis. In addition, we identified 1945 novel local associa-
tions, likely attributable to greater power resulting from test-
ing only the most highly expressed quartile of transcripts.

NetLIFT identified 1274 transcripts (13.0%) with at
least one distal eQTL (FDR , 0.10, Figure S9). None were
reported in the previous analysis (Pickrell et al. 2010). A
traditional all SNPs-vs.-all genes testing approach on this
filtered set of genes and variants yielded only five signif-
icant distal associations at this FDR, indicating that our
method is better powered for detecting these associations.
A GO analysis for the 64 candidate regulators that were

linked to at least 3 transcripts (FDR , 0.1) again sug-
gested enrichment for metabolic and biosynthetic pro-
cesses (Table 4).

Discussion

Genome-wide association studies (GWAS) have so far
identified thousands of quantitative trait loci associated
with hundreds of complex traits (Hindorff et al. 2009). How-
ever, the success of GWAS has been tempered by a lack of
understanding of the mechanism of association for many
variants. eQTL studies have shown excellent promise in
highlighting potential biological mechanisms of SNP–
phenotype associations and prioritizing particular variants
for follow-up studies (Mehta et al. 2012). Furthermore, the
correlation between significance levels of SNP–phenotype
associations and eQTL associations may help to identify tis-
sue types that play a key role in disease etiology (Kang et al.
2012). Recently, gene–gene interaction evidence has been
incorporated in the GWAS setting to identify epistatic effects
on phenotype (Ma et al. 2013), suggesting that correlation-
based testing may increase power to detect associated var-
iants. We described here a novel method, NetLIFT, that
addresses the problems of computational burden and power
in traditional eQTL testing, by reducing the search space and
using conditional dependencies between genes’ expression
to prioritize variant-gene testing. The reduced multiple-

Figure 3 Distal eQTL associations in pre-
Collaborative Cross mice. The x-axis gives the ge-
nomic coordinates of marker SNPs; the y-axis
represents gene position. Each dot repre-
sents a significant marker–gene association
at FDR , 0.05, for markers that were at
least 1 Mb from the associated gene.
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testing correction penalty under our algorithm allows de-
tection of weaker eQTL effects that are missed by currently
available methods. Furthermore, our results provide imme-
diate interpretability of the mechanism of association, by
highlighting potential regulatory genes that mediate discov-
ered distal effects. We note that in the current implemen-
tation of our code, runtime and memory usage increase
nonlinearly as the number of genes increases and the major
bottleneck in runtime is the estimation of the partial corre-
lation matrix. Therefore, when the number of genes exceeds
10,000, users may wish to filter gene expression data sets by
most highly expressed or most variable genes.

Importantly, we showed through simulations that Net-
LIFT can identify instances where distal eQTL affect only

a small number of genes, not just the large hub genes found
by other methods. Additionally, candidate regulators that
are putatively affected in cis by the causal variant can be
identified, highlighting potential mechanisms of association.
We note that since our method seeks to identify distal effects
that arise via alterations in the expression level of trans-
acting factors located nearby the eQTL, we are unable to
detect associations mediated by a loss-of-function coding
variant in the trans-acting factor.

We demonstrated the ability of NetLIFT to identify distal
eQTL in three very different data sets. In yeast segregants, we
replicated numerous distal eQTL reported previously, as well as
the biologically validated regulators for many of the associa-
tions. Additionally, we identified several novel biologically

Figure 4 Expression variability for PWK-driven trans-acting factors and target genes, in pre-Collaborative Cross mice. (Top) Distribution of absolute
expression deviation from median, for putative trans-acting factors with a PWK-driven local eQTL, grouped by founder strain genetic background at the
eQTL locus. Only putative trans-acting factors that were linked to at least five target genes on a different chromosome were considered. (Bottom)
Expression distribution for target genes of PWK-driven eQTL loci, stratified by subspecies-of-origin allele (castaneus/domesticus/musculus) at both the
local and distal loci. Each boxplot represents the expression deviation for all target genes, for each possible combination of local/distal alleles.
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plausible distal associations. In inbred lines from genetically
diverse founder mice, we detected an interesting pattern of
eQTL effects driven by PWK-derived alleles, which may provide
clues as molecular underpinnings of downstream phenotypes
such as reduced mouse size in the wild-type derived PWKmice.
Finally, in a set of 69 human individuals, NetLIFT was able to
find .1200 gene transcripts with significant distal eQTL due
to its increased power, whereas previously only 5 had been
identified.

Intuitively, one might think that the best candidates for
asserting regulatory influence on distal genes would be
transcription factors that directly participate in control-
ling gene transcription rates. In accordance with previous
results, however, we found no enrichment for transcription
factor annotation among genes implicated by our method as
trans-acting factors; instead, we find that many of these
genes play a role in metabolic and biosynthesis pathways.
This suggests that more commonly, the regulation of key
genes in these pathways plays a role in feedforward or feed-
back processes that then affect transcription rates of down-
stream target genes within the same pathway. These indirect
effects are more subtle than the direct effects associated
with local eQTL, but they can have significant effects on
phenotypes, such as growth rates (seen in yeast) and size
(seen in mice).

Our results also highlight an often unaddressed topic in
complex trait mapping, namely, that eQTL discovery and
interpretability of mapping results are significantly influ-
enced by the genetic and genomic diversity within the
sample population. The two yeast strains from which the
analyzed segregants were derived were extremely diverse,

with an estimated sequence divergence of 0.5–1%. This, and
overall genome complexity, likely contributed to many distal
effects being found to be as strong as local effects, enabling
their easier detection. Genetic incompatibilities between
progenitors can result in atypical patterns of linkage disequi-
librium, which present challenges in identifying causal vs.
linked markers. In an inbred mouse model, we were able to
identify numerous distal linkages where expression varia-
tion in the distally affected genes appears to be driven by
differences in the genetic background at the local and distal
loci. However, the resolution of the eQTL mapping is ulti-
mately restricted by the randomization of the genome that is
mediated by recombination events. On the other hand, hu-
man studies typically involve genetically diverse individuals,
whose genomes are randomized to a greater extent. Thus
a model organism may allow for accurate eQTL mapping
at the expense of precision, whereas in human populations
we expect to identify eQTL with precision, but reduced
accuracy.
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Figure S1   Simulated gene module topologies. Each module’s expression effects were simulated by first generating the hub gene’s 

expression; each successive downstream gene’s expression values were simulated using the upstream gene’s expression as a 

baseline (dependencies indicated by arrows). For each module, a single local eQTL effect was simulated for a SNP assigned to either 

the hub gene (black), or to a gene downstream of the hub (red), but not both.  
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Figure S2   Illustration of eQTL detection methods. SNP is depicted as a red node; genes depicted in green. All vs All (A) performs a 

standard regression significance test for all pairs of SNPs and genes. Trigger (B) seeks to identify distal associations that are mediated 

by a locally associated variant-gene pair (local associations depicted with blue arrows). Genes downstream of the inferred direction of 

gene-gene effects (represented by green arrows) should be associated with the variant (true distal associations = solid black arrows), 

while genes upstream of gene effects will not show association (dashed black arrows).  Independent Components Analysis (C) first 

factors expression data into Independent Components, then performs association tests between allele frequency and the activation 

levels of components across samples. NetLIFT (D) first performs local linkage tests for a SNP and nearby genes (blue arrows). For 

significant linkages (solid blue arrow), distal eQTL tests are performed for all genes in the network which are one- or two- edges 

removed from the locally affected gene (black arrows).  
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Figure S3   Partial correlation structure from network detection step, for representative 100 gene, 50 gene, and 10 gene modules. True 

positive correlations depicted with green edges, false negatives correlations in red, false positives in gray.  
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Figure S4   Local and distal eQTL linkages in yeast. X axis shows the genomic coordinates of marker variants; Y axis represents gene 

position. Each dot represents a significant marker-gene association at FDR < 0.05. 
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Figure S5   Pairwise overlap of target gene sets enriched for ribosomal annotation. Cell [i,j] shows the target gene overlap for between 

proposed regulators i, j.  
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Figure S6   eQTL effects for LYS2 local regulatory variant and downstream genes. The allele associated with lower LYS2 expression 

(“0”) is associated with lower expression of known Lys14p targets LYS2, LYS1, LYS9, LYS20, and LYS21. The same allele also 

associates with higher expression of three non-LYS genes containing Lys14p binding motifs (DYS1, TOP2, DAD2), and the Lys14p 

motif-containing LYS12. 
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Figure S7   PCA analysis for pre-CC mice. Top two principal components for gene expression data in 156 pre-CC mice. 
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Figure S8   Expression variability by founder strain, for locally-regulated genes with at least 5 distal targets. Gene expression values 

were binned according to the genetic background of the locally-affected gene. Violin plot shows the level of variation compared to the 

overall sample expression medians, for each of the eight founder strains.  
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Figure S9   Local and distal eQTL linkages in human lymphoblastoid cell lines. X axis shows the genomic coordinates of SNPs; Y axis 

represents gene position. Each dot represents a significant marker-gene association at FDR < 0.1. 
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Table S1   Sensitivity and specificity of partial correlation detection, by module. Column 1 shows the mean and standard 

deviation for the fraction of true edges detected, for ten simulated data sets. Column 2 estimates the intra-module false-edge detection 

rate. For each module, the ratio of false positive edges detected to the total number of possible false edges is reported.  

 

Module 
Topology 

Mean(FracTP)± 
sd(FracTP) 

Mean(FracFP)± 
sd(FracFP) 

 

 
0.94±0.018 

 
0.092±0.0047 

 

 
0.79±0.015 

 
0.16± 0.010 

 
1±0 0.13± 0.025 

 
1±0 0.14±0.022 

 
1±0 0.17±0.036 

 
1±0 0.22± 0.075 
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Table S2   Detected local eQTL effects, by method. FDR cutoff was set to 0.05. Counts are pooled for all 10 simulated data sets. 

Method True Positive False Negative False Positive 
NetLIFT 442 (100%) 0 20 
AllvsAll 442 (100%) 0 20 
Trigger 442 (100%) 0 1653 
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Table S3   Hotspot detection rate for gene modules with eQTL at hub gene, in ten simulated data sets.  A null distribution of 

maximum linkage counts were derived from the permuted data sets, with upper 95th quantile for each method listed in column 3. The 

mean number of identified associations for each module across all ten (non-permuted) data sets is listed in column 4. 

 

Method Module Num Associations 
Needed to Attain 

FWER 0.05 

Mean Number of 
Associations 
Across Ten 
Simulations  

Hotspot 
Detected 

NetLIFT 

 

3 66.4 10/10 (100%) 

AllvsAll 
1 1.6 4/10 (40%) 

NetLIFT 

 

3 39.3 10/10 (100%) 

AllvsAll 
1 0.9 6/10 (60%) 

NetLIFT 

 

3 9.0 10/10 (100%) 

AllvsAll 1 0.2 2/10 (20%) 
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Table S4   Distribution of eQTL effects for local, distal eQTL, in 112 haploid yeast segregants using NetLIFT method (FDR < 

0.05). 

 

 Number 
(%) 

FDR Distribution R2 Distribution Effect Size Distribution 
(β) 

Local 1124 
(19.9%) 

Distal 1642 
(29.1%) 
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Table S5   trans associations with growth associations  
 
Available for download as an Excel file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167791/-/DC1 


