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A B S T R A C T

Dopaminergic degeneration is a pathologic hallmark of Parkinson's disease (PD), which can be assessed by
dopamine transporter imaging such as FP-CIT SPECT. Until now, imaging has been routinely interpreted by
human though it can show interobserver variability and result in inconsistent diagnosis. In this study, we de-
veloped a deep learning-based FP-CIT SPECT interpretation system to refine the imaging diagnosis of Parkinson's
disease. This system trained by SPECT images of PD patients and normal controls shows high classification
accuracy comparable with the experts' evaluation referring quantification results. Its high accuracy was vali-
dated in an independent cohort composed of patients with PD and nonparkinsonian tremor. In addition, we
showed that some patients clinically diagnosed as PD who have scans without evidence of dopaminergic deficit
(SWEDD), an atypical subgroup of PD, could be reclassified by our automated system. Our results suggested that
the deep learning-based model could accurately interpret FP-CIT SPECT and overcome variability of human
evaluation. It could help imaging diagnosis of patients with uncertain Parkinsonism and provide objective pa-
tient group classification, particularly for SWEDD, in further clinical studies.

1. Introduction

Dopamine transporter (DAT) imaging such as 123I-fluoropropyl-
carbomethoxyiodophenylnortropane (FP-CIT) single-photon emission
computed tomography (SPECT) is one of the established tools for the
diagnosis of Parkinson's disease (PD) (de la Fuente-Fernandez, 2012). In
the clinical setting, visual analysis of FP-CIT SPECT has been routinely
performed for determining whether a subject has dopaminergic de-
generation. Currently, visual analysis combined with striatal DAT
quantification is regarded as a standard practice in clinical studies
(Albert et al., 2016). However, visual analysis is suboptimal because it
causes interobserver variability (McKeith et al., 2007; Papathanasiou
et al., 2012; Tondeur et al., 2010).

The main indication of FP-CIT SPECT is differentiating mild or un-
certain Parkinsonism patients (Marshall and Grosset, 2003). However,
because of uncertainty in PD classification and DAT imaging inter-
pretation, atypical subgroup among PD patients has been consistently

identified. It is scans without evidence of dopaminergic deficit
(SWEDD). The term SWEDD refers to the absence of imaging abnorm-
ality in patients who are clinically diagnosed as PD. SWEDD patients are
approximately 10–15% of clinically diagnosed PD patients (Group,
2000; Marek et al., 2014; Parkinson Study, 2002). There is growing
evidence that the SWEDD is different from typical PD in terms of pa-
thophysiology and prognosis (Fahn et al., 2004; Schwingenschuh et al.,
2010). However, the determination of SWEDD is often inconsistent
because of visual interpretation of DAT imaging which has high sensi-
tivity (98%) but low specificity (67%) in early PD (de la Fuente-
Fernandez, 2012).

In this study, we aimed to develop an automated FP-CIT SPECT
interpretation system based on deep learning for the objective diag-
nosis. Recent development of deep learning is changing a variety of
scientific and industrial fields (LeCun et al., 2015). Deep convolutional
neural networks (CNN), a type of deep learning, have dramatically
improved the performance in image classification and detection
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(Krizhevsky et al., 2012; LeCun et al., 2015). Recently, deep learning
techniques have started to be applied to medical images for segmen-
tation, lesion-detection, and disease classification (Choi and Jin, 2016;
Ithapu et al., 2015; Moeskops et al., 2016; Pereira et al., 2016; Shen
et al., 2015; Wong and Bressler, 2016; Zhang et al., 2015). Our objec-
tive in terms of clinical application was to discriminate PD among pa-
tients with uncertain Parkinsonism. In this study, the system was de-
veloped using Parkinson's Progression Markers Initiative (PPMI)
database. It was further validated in an independent data acquired from
Seoul National University Hospital (SNUH) that consists of patients
with PD and nonparkinsonian tremor.

2. Materials and methods

2.1. Subjects

Data used in the preparation of this article were obtained from two
different cohorts, the PPMI database (www.ppmi-info.org/data) and
SNUH cohort. For up-to-date information of PPMI database on the
study, visit www.ppmi-info.org. The subjects of the PPMI cohort in this
study consisted of 431 patients with PD, 193 normal controls (NCs) and
77 patients with SWEDD. PD patients and NCs were divided into two
datasets, training/validation set and test set, to develop the CNN and
test its accuracy. Training/validation set consisted of 549 subjects (379
PD and 170 NCs). 75 subjects (52 PD and 23 NCs) were included in the
PPMI test set to evaluate the accuracy of our framework. Training and
test sets were randomly selected from the PPMI cohort. The two sets
were divided so that the ratio between PD and NC was the same. SNUH
cohort was applied as an independent test set from the training data.
SNUH cohort included 82 patients initially suspected of PD who un-
derwent FP-CIT SPECT from Mar 2014 to Sep 2016. FP-CIT SPECT scans
were acquired to determine treatment plan and obtain accurate diag-
nosis.

Informed consents to clinical testing and neuroimaging prior to
participation of the PPMI cohort were obtained, approved by the in-
stitutional review boards (IRB) of all participating institutions. The
retrospective study using SNUH cohort was approved by IRB of our
institute, and informed consent was waived due to the retrospective
design. All procedures performed in studies involving human partici-
pants were in accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki de-
claration and its later amendments or comparable ethical standards.

Baseline diagnosis in the PPMI was made by clinical evaluation
according to the UK PD Brain Bank criteria (Gibb and Lees, 1988).
Patients with PD have had their clinical diagnosis for 2 years or less,
and they were untreated status. In addition, according to the PPMI
diagnosis criteria, PD was diagnosed if a patient also had imaging
evidence for dopaminergic deficits interpreted by the PPMI imaging
core. Thus, the gold standard of our further analysis was the clinical
diagnosis and the results of visual imaging interpretation determined by
the imaging core consensus of PPMI. Patients with SWEDD were clini-
cally PD patients, but they had no evidence of dopaminergic deficit in
the imaging. Motor ratings were clinically assessed with the revised
Movement Disorder Society Unified Parkinson's Disease Rating Scale
(MDS-UPDRS) part 3 at baseline.

Interpretation of FP-CIT SPECT from SNUH cohort was initially
determined by concurrence of image interpretation among 3 nuclear
medicine physicians. Images were visually assessed and classified into
two groups, patients with preserved and reduced DAT density. To reach
a consensus on the imaging interpretation, readers referred clinical
symptoms, and drug response according to the clinical follow-up.
Accordingly, subjects of the SNUH cohort were divided into two groups,
72 PD patients and 10 patients with nonparkinsonian tremor.

2.2. FP-CIT SPECT images

Because of different SPECT systems in different centers, PPMI used
standardized imaging acquisition protocol. SPECT was performed at the
screening visit. Prior to the injection of FP-CIT, subjects were pretreated
with iodine solution for thyroid protection. Images were acquired
within 4 ± 0.5 h after the radiotracer injection with a target dose of
111–185 MBq. SPECT data were acquired into a 128 × 128 matrix.

After the acquisition, the raw data were transferred to the PPMI
imaging core and reconstructed using a hybrid ordered subset ex-
pectation maximization algorithm (Hermes Medical Solutions,
Stockholm, Sweden). The subsequent processing was performed on
PMOD (PMOD Technologies, Zurich, Switzerland). Attenuation cor-
rection was applied to the reconstructed data by Chang's correction.
Spatial normalization into Montreal Neurological Institute (MNI) space
was performed in PMOD using a template image based on a European
multicenter database of healthy controls (Varrone et al., 2013). The
dimension of final preprocessed images was 91 × 100 × 91, and the
voxel size was 2 × 2 × 2 mm3. SPECT images of SNUH dataset were
acquired by a dedicated triple-head gamma camera (TRIONIX Triad
XLT 3, Trionix Research Laboratory, Inc., Twinsburg, OH, USA) with
Fan-Beam collimator. Subjects were intravenously injected 185 MBq of
FP-CIT 3 h before image acquisition. Images were acquired by protocols
of 40 step-and-shoot for 45 s per each step. Images were reconstructed
as follows: 1) 128 × 128 matrices, 2) filtered back projection, 3) But-
terworth filter with high cut frequency of 0.4 and roll off degree of 5.0,
4) Chang's method for attenuation correction. Spatial normalization
was performed in Statistical Parametric Mapping (SPM8, University
College of London, London, UK) using an in-house template with MNI
space. We checked whether normalized SPECT images using SPM8 was
aligned with those of PPMI cohort normalized by PMOD. The final
preprocessed images have same dimensions and voxel size with those of
PPMI cohort.

2.3. Regional DAT binding ratio

Automated quantification of DAT binding ratio (BR) was performed
for SPECT data as a conventional method for quantitative analysis. Each
spatially normalized SPECT image was used to calculate regional BR.
Mean counts of target regions were calculated. Target regions were
putamen/caudate and occipital cortex. Automated anatomical labeling
(AAL) template was used to segment the target regions of each SPECT
image and mean counts were calculated. BR was defined as BR =
(Cspecific − Cnonspecific) / Cnonspecific, where C represented mean counts of
the region. Note that the counts of occipital cortex were regarded as the
region of nonspecific binding.

2.4. Deep CNN architecture and training

We designed a deep CNN framework, PD Net, and the architecture is
summarized in Fig. 1A. Input data were SPECT images downloaded
from the PPMI database without further processing. Input values of
voxels were rescaled by the range from 0 to 255, and then mean scalar
value of each SPECT volume was subtracted. After this step, each 3D
volume (91 × 109 × 91) was used for input argument of PD Net.

Zero-padding along two dimensional axes (x- and z-axes) was ap-
plied to images have 109 × 109 × 109 matrix dimensions. The images
were passed by the 3-D convolutional layer which produced 16 feature
maps after the 7 × 7× 7 convolutional filters. As a stride size of four
voxels was applied, size of the feature maps was 26 × 26 × 26. After
the convolutional layer, Rectified Linear Unit (ReLU) activation layer
and max-pooling layer were followed. For max-pooling operation, pool
size of 3 × 3 × 3 and a stride size of two voxels were applied. 3-D
convolutional layers with filter size of 5 × 5 × 5 and 3 × 3× 3 were
followed. Number of filter banks of these two convolutional layers was
64 and 256, respectively. ReLU activation layers were respectively
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applied after these convolutional layers. Max-pooling layer was applied
after the second convolutional layer. Consequently, these multiple
layers produced 256 feature vectors. The 256 features were connected
to two output labels (fully-connected layer), Parkinson's disease and
NC. A softmax function, exponential activation function with normal-
ized operator, was applied to discriminate two labels after the output of
the fully-connected layer. The network was trained to minimize the
cross entropy loss between the predicted diagnosis and the true diag-
nosis of the patients.

This training was conducted by stochastic gradient descent algo-
rithm using MatConvNet deep learning library (Version 1.0-beta 20)
(Vedaldi and Lenc, 2015). 90.0% of imaging data of training/validation
set (494/549 subjects) were used for the training. Those 494 SPECT
scans were left-right flipped for imaging data augmentation. The re-
maining 10.0% data of training/validation set were used for the vali-
dation which helped monitor the performance of PD Net. Therefore, the
validation set was used to determine architecture and parameters in-
cluding training epoch, number of nodes, layers and learning rate. PD

Fig. 1. Deep convolutional neural network framework (PD Net) for
interpretation of FP-CIT SPECT images. (A) A FP-CIT SPECT volume
with matrix size 91 × 109 × 91 is used for an input matrix of PD
Net. It consists of multiple 3-dimensional convolutional layers which
learn image features from training data. Each convolutional layer is
followed by ReLU activation function and max-pooling layers sub-
sample images. The final output of PD Net has two nodes, which
respectively correspond to Parkinson's disease and normal control.
(B) Parameters of convolutional layers of PD Net were learned by
training SPECT dataset to discriminate SPECT images of Parkinson's
disease from those of normal controls. The accuracy of the classifi-
cation was measured from two independent test datasets. Two expert
readers interpreted same image data blinded to diagnosis. The ac-
curacy of PD Net and the readers was compared. In addition, the
classification using PD Net was tested in Parkinson's disease patients
who have scans without evidence of dopaminergic deficit (SWEDD)
whether PD Net interpreted those images as normal scans. (C) PPMI
and SNUH cohorts were used for the PD Net training and validation.
PD and NC subjects of PPMI data were randomly divided into two
datasets, training/validation and test sets. SWEDD subjects of PPMI
data were used for another set for testing refined diagnosis by PD
Net. Another independent cohort, SNUH dataset was used for an-
other test set for differentiating PD from nonparkinsonian tremor.
For SWEDD cohorts, 2-year follow-up image and clinical diagnosis
was reassessed.
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Net was trained for 30 epochs. The momentum parameter was set to
0.9. The learning rate was initially 1 × 10−4 and logarithmically de-
creased to have 1 × 10−6 at the final epoch.

Study design.
The strategy for the image interpretation using PD Net is summar-

ized in Fig. 1B. PD Net was trained by 90.0% of data of training/vali-
dation set and the remaining 10.0% data were used for the validation
which helped find the best model of PD Net. Since model architectures
and parameters could be varied during experiments, validation dataset
was used for the model optimization. Validation data were randomly
selected among training/validation set so that they also have same ratio
of PD to NC. The performance was independently tested by two dif-
ferent test sets, PPMI and SNUH dataset. An overall workflow for
training and testing process of PD Net and information of two cohorts
for the study are summarized in Fig. 1C.

Two readers visually reviewed images of PPMI test set blinded to the
diagnosis and clinical information. Images were visually labeled with
‘normal’ and ‘abnormal’ DAT binding. The accuracy of PD Net was
compared with that of readers. Additionally, PD Net classification was
evaluated in SWEDD group to test whether PD Net classified SWEDD
patients as normal SPECT as the visual analysis did.

Accuracy test for PD Net and comparison with conventional analysis
Sensitivity, specificity, and accuracy of PD Net were calculated for

the PPMI test set and those of two readers were also obtained. As a
conventional approach reflecting the clinical setting, the accuracy of
the overall decision results of two readers referring DAT BR quantifi-
cation was also obtained. Two readers referred DAT BR of putamen and
caudate and made consensus image diagnosis for each image. The re-
sults of accuracy were statistically compared with McNemar's non-
parametric test. The degree of interobserver agreement between the
two readers was measured by calculating Cohen's kappa-values. The
output of PD Net provided scores for the probability of PD and NC.
Using the scores of PD Net, receiver operating characteristic (ROC)
analysis was performed. ROC curves of two readers were drawn. In
addition, a ROC curve of conventional quantification method, putam-
inal BR, was also drawn. The area-under-curves (AUCs) were compared
by a nonparametric test of DeLong for comparison of two correlated
ROC curves (DeLong et al., 1988). ROC analysis was additionally per-
formed in SNUH test set. ROC curves were drawn for the output score of
PD Net and putaminal BR.

2.5. Test for SWEDD group

As defined in the term of SWEDD, SWEDD patients had normal DAT
binding according to the visual interpretation consensus. SPECT images
of SWEDD were evaluated by PD Net to divide those patients into two
groups, ‘normal’ and ‘abnormal DAT’. Follow-up SPECT scans after
2 years for the SWEDD patients were evaluated. Among 77 subjects, 42
subjects underwent 2-year follow-up SPECT scans. In addition, clinical
follow-up diagnosis was reassessed. 56 subjects were available for 2-
year follow-up clinical diagnosis data. In order to compare these two
groups (PD Net normal/abnormal in SWEDD patients), BR at baseline as
well as at 2-year follow-up was compared using Mann-Whitney test.
Two-year follow-up visual interpretation results of the two groups were
statistically compared using chi-square test. In addition, follow-up
clinical diagnosis after 2 years for SWEDD patients was also assessed
according to the PD Net classification.

3. Results

3.1. Accuracy for the classification between PD and NC

Clinical characteristics of the subjects are summarized in Table 1.
Images of the PPMI test dataset were independently interpreted by two
nuclear imaging experts. The interobserver agreement measured by
kappa was 0.65 ± 0.11. Nine cases among 75 test data (12.0%) were

disagreed between the readers.
The sensitivity, specificity, and accuracy for differentiating PD from

NC were evaluated (Table 2). PD Net showed 94.2% sensitivity to detect
abnormal DAT which was not significantly different from the sensitivity
of the two readers (98.1 and 96.2%, respectively). Specificity of PD Net
was 100% and significantly higher than the two readers (73.9 and
56.5%; p = 0.030 and 0.002, respectively). Overall accuracy of PD Net
was also significantly higher than that of individual readers (96.0% vs.
90.7% and 84.0%; p= 0.008 and 0.001, respectively). The accuracy of
PD Net was comparable with the visual analysis referring quantitative
analysis. Visual analysis combined with conventional quantification
showed 96.2%, 82.6% and 92.0% for sensitivity, specificity and accu-
racy, respectively (Table 2). Specificity of PD Net was significantly
higher than visual analysis combined with conventional quantification.
The numbers of true positive, false positive, true negative and false
negative were summarized in Supplementary Table 1. PD Net showed
no false positive while visual analysis combined with conventional
quantification showed 4 false positives. ROC curves for PD Net and the
readers were drawn (Fig. 2). AUC value of PD Net was significantly
higher than the individual readers as well as conventional quantifica-
tion method, putaminal BR (0.988 ± 0.011, 0.860 ± 0.048,
0.763 ± 0.055 and 0.921 ± 0.034 for PD Net, reader 1, 2 and pu-
taminal BR, respectively; p = 0.006,< 0.001 and 0.024 for PD Net vs.
reader 1, vs. reader 2 and vs. putaminal BR, respectively).

3.2. PD Net for discriminating PD from nonparkinsonian tremor:
independent test set

To validate PD Net, the performance was tested in an independent
dataset acquired from SNUH. The PD Net was used to differentiate PD
from patients with nonparkinsonian tremor. Accuracy of PD Net in this
dataset was comparable with that in the PPMI dataset. Sensitivity,
specificity and accuracy of PD Net for discriminating PD were 98.6%,
100% and 98.8%, respectively. ROC analysis revealed a trend of higher
AUC value of PD Net than that of quantitative analysis using putaminal
BR (0.997 ± 0.003 for PD Net and 0.968 ± 0.017 for putaminal BR;
p = 0.081).

3.3. PD Net for SWEDD classification

All the scans of SWEDD patients were classified as ‘normal scan’
according to the consensus of PPMI visual interpretation. Among 77
patients, 6 patients (7.8%) revealed dopaminergic deficit when PD Net
analyzed the SPECT images. They showed significantly lower DAT
binding ratio (BR) of putamen and caudate nuclei than SWEDD patients
with normal DAT according to the PD Net analysis (Putaminal BR:
1.22 ± 0.24 vs. 2.03 ± 0.40; Caudate BR: 1.33 ± 0.27 vs.
1.86 ± 0.40; p= 0.0002 and 0.002, respectively) (Table 3, Fig. 3).
The follow-up assessment including FP-CIT SPECT was performed at
2 years after the baseline study. Follow-up SPECT scans were also
classified by the consensus of PPMI visual interpretation. 42 among 77
subjects underwent 2-year follow-up SPECT as well as baseline. The
follow-up visual interpretation was changed in 80.0% (4/5) subjects of
SWEDD patients who showed abnormal DAT in PD Net at baseline and
underwent follow-up SPECT scans. Those 4 subjects were clinically PD
according to the follow-up diagnosis and a subject who showed normal
SPECT in follow-up scan was a patient with Alzheimer's dementia. On
the other hand, 5.4% (2/37) subjects of SWEDD patients who showed
normal DAT in PD Net and underwent follow-up SPECT became posi-
tive in 2-year follow-up. So, the conversion of imaging diagnosis into
abnormal DAT in 2-year follow-up was significantly more in subjects
who showed abnormal DAT in baseline PD Net than those who showed
normal in PD Net (p = 0.0001, Table 3). According to the clinical
follow-up diagnosis, it was revealed that 76.5% (39/51) subjects of
SWEDD with normal PD Net had nonparkinsonian tremor including
essential tremor and psychogenic illness. Only 23.5% (12/51) of them
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were still clinically PD in follow-up exams. Among 12 clinical PD, 9
subjects had 2-year follow-up SPECT. 2 subjects were abnormal DAT in
2-year follow-up scan while seven subjects showed still normal DAT in
the follow-up (Table 3).

Additionally, DAT BR of putamen and caudate nuclei in 2-year
follow-up scans also showed significant difference between two groups
(Putaminal BR: 1.01 ± 0.21 vs. 1.77 ± 0.45; Caudate BR:
1.12 ± 0.15 vs. 1.64 ± 0.41; p = 0.001 and 0.002, respectively)
(Fig. 3). Representative cases of refined SWEDD diagnosis were pre-
sented in Fig. 4. Though two baseline SPECT images were classified as

normal according to the visual interpretation consensus, the PD Net
classified one as normal and the other as abnormal. The subject who
had abnormal DAT on PD Net analysis showed abnormal DAT at 2-year
follow-up even in visual analysis, while the other subject with normal
DAT on PD Net analysis stayed normal in the follow-up scan.

4. Discussion

We showed that the deep learning-based FP-CIT SPECT interpreta-
tion system could accurately and objectively determine dopaminergic

Table 1
Subjects' demographics and clinical data.

PPMI training/validation set
(n = 549)

PPMI test set
(n = 75)

PPMI SWEDD set SNUH test set
(n = 82)

Parkinson's disease
(n = 379)

Normal control
(n = 170)

Parkinson's disease
(n = 52)

Normal control
(n = 23)

SWEDD
(n = 77)

Parkinson's disease
(n = 72)

Normal control
(n = 10)

Age 61.5 ± 9.9 60.9 ± 11.5 63.0 ± 7.7 58.9 ± 9.2 60.1 ± 10.8 62.5 ± 11.4 64.9 ± 11.4
Sex (M/F) 245/134 112/58 33/19 16/7 47/30 38/34 4/6
Disease duration (months) 6.5 ± 6.5 6.8 ± 6.8 7.4 ± 8.0 N/A
MDS-UPDRS part III 22.1 ± 9.9 19.3 ± 8.8 14.8 ± 10.8 N/A
Hoehn and Yahr stage 1.6 ± 0.5 1.6 ± 0.5 1.5 ± 0.6 2.9 ± 0.8

Table 2
Accuracy of PD Net and visual interpretation for discriminating Parkinson's disease from normal control (PPMI cohort) and from nonparkinsonian tremor (SNUH cohort).

PPMI test set p-Value⁎ (for comparison with PD Net) SNUH test set

Rater 1 Rater 2 Visual + conventional quantification PD Net vs. Rater 1 vs. Rater 2 vs. visual + conventional quantification PD Net

Sensitivity 98.1% 96.2% 96.2% 94.2% n.s. n.s. n.s. 98.6%
Specificity 73.9% 56.5% 82.6% 100% 0.03 0.002 0.05 100%
Accuracy 90.7% 84.0% 92.0% 96.0% 0.008 0.001 n.s. (0.06) 98.8%

⁎ p-Value was uncorrected for multiple comparison.

Fig. 2. Receiver operating characteristic (ROC) curves for PD Net, human readers and conventional quantification. ROC curves are drawn for PD Net, the readers and putaminal binding
ratio (BR) using PPMI test set data (Red line: PD Net, Blue line: reader 1, Green line: reader 2, Orange line: putaminal BR). Color shading shows the ROC curves of 95% CI. Area under
curves were 0.988 ± 0.011, 0.860 ± 0.048, 0.763 ± 0.055 and 0.921 ± 0.034 for PD Net (A), reader 1 (B), reader 2 (C) and putaminal BR (D), respectively. ROC curves were also
drawn for SNUH test set (E, F). Area under curves were 0.997 ± 0.003 and 0.968 ± 0.017 for PD Net and putaminal BR, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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degeneration and refine diagnosis. The accuracy of PD Net was com-
parable with experts' reading referring conventional quantitative ana-
lysis which has been regarded as a clinical standard. Our approach was
validated in the independent SNUH SPECT dataset for discriminating
PD from nonparkinsonian tremor patients. In addition, some of SWEDD
patients, a heterogeneous group that could be inconsistently classified
according to the clinical studies, had dopaminergic degeneration in PD
Net analysis. It was revealed that those patients eventually had dopa-
minergic degeneration in follow-up study, which implied they could be
initially misclassified as SWEDD. As complicated image feature selec-
tion was not required and provided objective classification of SPECT
images, PD Net was practical to use in the clinical setting.

The main advantage of PD Net is in its objectiveness and high ac-
curacy. It could overcome interobserver variability of visual inter-
pretation which has been routinely performed in FP-CIT SPECT analysis
(McKeith et al., 2007; Papathanasiou et al., 2012; Tondeur et al., 2010).
In our study, Cohen's kappa of two independent readers was
0.65 ± 0.11, and the interpretation of 12.0% cases of the test dataset
was disagreed. Such interobserver variability in image interpretation
could affect treatment plan as well as clinical diagnosis. Moreover,
overall accuracy of PD Net for discriminating PD was significantly
higher than that of conventional quantification method, putaminal BR,
as well as visual interpretation. Accuracy of PD Net was comparable
with a clinical standard of image diagnosis made by multiple experts'
reading referring quantification results (Albert et al., 2016). Moreover,
specificity of PD Net was significantly higher than this conventional
analysis method. Because of its high accuracy and objective results, PD
Net could have clinical impacts on the diagnosis of PD.

In the clinical setting, FP-CIT SPECT is mainly performed to dis-
criminate neurodegenerative Parkinsonism from nonparkinsonian
tremor. On the other hand, PD Net was trained to discriminate between
PD patients and controls. It is not regarded as a common clinical in-
dication for FP-CIT SPECT because initial diagnosis of PD was made by
clinical examination (Marshall and Grosset, 2003). In our study, using
SNUH dataset, we showed that PD Net could differentiate PD from
nonparkinsonian tremor with high accuracy. It suggested a feasibility of
application of PD Net to differentiating neurodegenerative Parkin-
sonism from clinically ambiguous patients. Nevertheless, this test da-
taset was retrospectively collected and hardly reflected the performance
for patients with mild or uncertain Parkinsonism. Therefore, further
prospective study of the application of PD Net to validating clinical
usefulness for patients with uncertain Parkinsonism will be needed.

In addition, our approach could be used to refine diagnostic sub-
groups in clinical trials by objective identification of SWEDD partici-
pants. According to the result, PD Net identified abnormal DAT in 6
(7.8%) SWEDD patients and most of them (80.0%) eventually showed

abnormal DAT in longitudinal follow-up visual interpretation.
However, only two subjects among SWEDD patients who were also
baseline normal DAT in PD Net analysis were changed to abnormal DAT
in the follow-up interpretation . SWEDD patients are different from
PD as previous studies showed poor responsiveness to levodopa, first-
line drug for the management of PD (Fahn et al., 2004). Of note, DAT of
SWEDD patients is mostly remained normal in long-term follow-up
(Marek et al., 2005; Marek et al., 2014). SWEDD patients who had
normal DAT in PD Net analysis mostly remained normal DAT after
2 years (94.6%). It suggested SWEDD patients who showed abnormal
DAT in PD Net might be resulted from misclassification. Furthermore,
DAT BR of SWEDD patients who showed abnormal DAT in PD Net was
significantly lower than that of SWEDD patients who showed normal
DAT. Our results also imply that some patients with PD could be mis-
classified as SWEDD in several clinical trials as the imaging diagnosis
has been made by visual interpretation. A recent retrospective study
also showed that a large proportion of SWEDD population was due to
SPECT misinterpretation (Nicastro et al., 2016). Moreover, a systematic
review related to SWEDD revealed that SWEDD patients were hetero-
geneous and mostly due to a clinical misdiagnosis of PD (Erro et al.,
2016). Our results corresponded to this review as most (76.5%) SWEDD
patients with normal PD Net result had nonparkinsonian tremor in long
term follow-up. This misclassification issue might influence the result of
therapeutic interventions in clinical trials. An important advance in the
application of PD Net to clinical studies could be an objective identi-
fication of dopaminergic degeneration, which results in refining sub-
group classification of PD patients, particularly for SWEDD group.

According to the PD Net analysis, three PD subjects of PPMI data
were misclassified as normal. Among them, two subjects were also
misclassified by experts' reading referring conventional quantitative
analysis. They were relatively early PD (UPDRS part 3 score was 8 and
17). For another misclassified subject, the output score of PD Net was
0.42. This value was the highest in NCs. It suggests that decision criteria
using a different threshold value for the PD Net output score could
improve the diagnosis for clinical settings. Thus, we also used ROC
analysis, which revealed that AUC of PD Net was higher than conven-
tional methods.

PD Net is superior to other automated methods in terms of ease of
application and performance. Recently, other machine learning
methods using quantitative parameters of FP-CIT SPECT combined with
or without clinical factors showed good accuracy (90–96%) for the
diagnosis of PD (Huertas-Fernandez et al., 2015; Illan et al., 2012;
Prashanth et al., 2014). Though these methods also showed high ac-
curacy, there are limitations in generalization and clinical im-
plementation. They used imaging features such as striatal BR rather
than images themselves. The feature selection procedures are not

Table 3
Reclassification of SWEDD patients according to the results of PD Net.

SWEDD patients Baseline SPECT (n = 77) 2-years follow-up SPECT (n = 42) Clinical follow-up diagnosis
(n = 56)

n Putamen BR Caudate BR PPMI visual consensus
(abnormal:normal)

Putamen BR Caudate BR

PPMI visual consensus normal/PD
Net abnormal

6 1.22 ± 0.24 1.33 ± 0.27 4:1 (80.0%)a 1.01 ± 0.21 1.12 ± 0.15 4: PD
1: Alzheimer's dementia

PPMI visual consensus normal/PD
Net normal

71 2.03 ± 0.40 1.86 ± 0.40 2:35 (5.4%)b 1.77 ± 0.45 1.64 ± 0.41 12: PDc

10: Essential tremor
10: No neurologic disease
6: Psychogenic illness
13: Other types of nonparkinsonian
tremor

p-Value 0.0002 0.002 0.0001 0.001 0.002

a No follow-up imaging and clinical diagnosis data for a subject.
b No follow-up imaging data for 34 subjects and no follow-up clinical diagnosis data for 20 subjects.
c Among 12 subjects, two showed abnormal follow-up SPECT and 7 subjects showed normal follow-up scan, still clinically SWEDD. The others did not undergo 2-years follow-up

SPECT.
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standardized as quantification of striatal BR could be affected by image
processing steps such as normalization and selection of nonspecific
regions (Brahim et al., 2015; Tossici-Bolt et al., 2006). PD Net directly
analyzed all input voxels and automatically found patterns of them,
which resulted in high accuracy without striatal BR calculation.
Moreover, generalized application of PD Net was validated by an in-
dependent cohort of SNUH.

In spite of high accuracy of PD Net, it was tested by discriminating
PD patients from NCs. In the clinical setting, FP-CIT SPECT scans were
acquired for patients with atypical Parkinsonism and SWEDD as well as
PD. Thus, the accuracy of PD Net did not reflect the patient char-
acteristics in the clinic and could be overestimated. In addition, PD Net
training relied on the gold standard diagnosis of PPMI cohort, which
was the clinical diagnosis combined with the visual imaging inter-
pretation instead of pure clinical diagnosis independent from the image
interpretation. Nonetheless, the strength of PD Net is less interobserver
variability which could provide consistent interpretation results.

Because of this strength, it can be used in clinical trials which require
objective biomarkers. As another limitation in the study design, PD Net
ignored patients' characteristics such as age. Because DAT is influenced
by aging (Pirker et al., 2000), PD Net could not differentiate age-related
degeneration from PD-related degeneration. In the future, modified
designs of deep neural network which considers clinical variables could
improve diagnostic performance in the clinical setting. The in-
dependent test set, SNUH test set, includes relatively small number of
patients with nonparkinsonian tremor. Furthermore, the gold standard
diagnosis for SNUH test set was made by visual interpretation results
considering clinical information. Therefore, PD Net should be validated
in a larger prospective cohort that includes patients with several
movement disorders and uncertain Parkinsonism with clinically follow-
up diagnosis.

Fig. 3. Binding ratio (BR) of SWEDD patients according to
the PD Net classification. Baseline putaminal (A) and cau-
date (B) BR of SWEDD patients who showed decreased
dopamine transporter (DAT) in PD Net analysis were sig-
nificantly lower than those of SWEDD patients who showed
normal DAT in PD Net (Putaminal BR: 1.22 ± 0.24 vs.
2.03 ± 0.40; Caudate BR: 1.33 ± 0.27 vs. 1.86 ± 0.40;
p = 0.0002 and 0.002, respectively). BR was calculated in
2-years follow-up scans (C, D). Follow-up putaminal (C)
and caudate (D) BR were also significantly lower in SWEDD
patients with baseline abnormal PD Net than SWEDD pa-
tients with baseline normal PD Net (Putaminal BR:
1.01 ± 0.21 vs. 1.77 ± 0.45; Caudate BR: 1.12 ± 0.15
vs. 1.64 ± 0.41; p= 0.001 and 0.002, respectively).
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5. Conclusion

We designed a deep CNN model, PD Net, for FP-CIT SPECT inter-
pretation. Its accuracy for discriminating PD from NCs was comparable
to that of the clinical standard, experts' visual interpretation combined
with quantification. Our approach was also validated for discriminating
PD from nonparkinsonian tremor using independent SPECT data. As an
automated system, it could overcome interobserver variability which
might result in misclassification of subject groups. Accordingly, a pro-
mising application of PD Net will be an objective diagnosis for patients
with clinically uncertain Parkinsonism who showed ambiguous FP-CIT
SPECT results. Furthermore, it will apply to reclassification of SWEDD
group. In the future, the application will be extended to imaging in-
terpretation in various diseases and development of imaging bio-
markers.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.09.010.

Acknowledgments

Data used in the preparation of this article were obtained from the
Parkinson's Progression Markers Initiative database (www.ppmi-info.
org/data). For up-to-date information on the study, visit www.ppmi-
info.org. PPMI – a public-private partnership (http://www.ppmi-info.
org/) – is funded by the Michael J. Fox Foundation for Parkinson's
Research and funding partners, including Abbvie, Avid
Radiopharmaceuticals, Biogen Idec, Bristol-Myers Squibb, Covance, Eli
Lilly & Co, F Hoff man-La Roche, GE Healthcare, Genentech,

GlaxoSmithKline, Lundbeck, Merck, MesoScale, Piramal, Pfizer, and
UCB. This research was supported by a grant of the Korea Health
Technology R & D Project through the Korea Health Industry
Development Institute (KHIDI), funded by the Ministry of
Health &Welfare, Republic of Korea (HI14C0466), and funded by the
Ministry of Health &Welfare, Republic of Korea (HI14C3344), and
funded by the Ministry of Health &Welfare, Republic of Korea
(HI14C1277), and the Technology Innovation Program (10052749),
and supported by the National Research Foundation of Korea (NRF)
Grant funded by the Korean Government (MSIP)
(2017M3C7A1048079). This study was also supported by the Korea
Institute of Planning & Evaluation for Technology in Food, Agriculture,
Forestry, and Fisheries, Republic of Korea (311011-05-3-SB020) by the
Korea Healthcare Technology R &D Project funded by Ministry of
Health &Welfare, Republic of Korea (HI11C21100200) and by the
Technology Innovation Program (10050154, Business Model
Development for Personalized Medicine Based on Integrated Genome
and Clinical Information) funded by the Ministry of Trade,
Industry & Energy (MI, Korea) and by the Bio &Medical Technology
Development Program of the NRF funded by the Korean government,
MSIP (2015M3C7A1028926) and by the National Research Foundation
of Korea Grant Funded by the Ministry of Science and ICT (NRF-
2017M3C7A1047392).

Conflict of interest

None.

Fig. 4. Refining SWEDD classification using PD Net analysis.
Representative two cases show different image diagnosis analyzed
by PD Net. Two subjects had normal DAT according to the visual
interpretation consensus, while PD Net revealed that a subject
(above) had reduced DAT in the striatum. The 2-years follow-up
SPECT of the subject was abnormal according to the visual inter-
pretation consensus. However, a SWEDD subject (below) who also
showed normal DAT in PD Net persistently has normal DAT in the
follow-up scan.

H. Choi et al. NeuroImage: Clinical 16 (2017) 586–594

593

http://dx.doi.org/10.1016/j.nicl.2017.09.010
http://dx.doi.org/10.1016/j.nicl.2017.09.010
http://www.ppmi-info.org/data
http://www.ppmi-info.org/data
http://www.ppmi-info.org
http://www.ppmi-info.org
http://www.ppmi-info.org/
http://www.ppmi-info.org/


Author contributions

D.S.L. and S.H.P. designed the study. H.C. and S.H. analyzed the
data and designed the framework. H.J.I. contributed to image proces-
sing. S.H.P. performed clinical study for SNUH cohort. H.C., S.H. and
D.S.L. wrote this manuscript mainly and all other authors also wrote
down their own part of this manuscript according to their own spe-
cialties.

References

Albert, N.L., Unterrainer, M., Diemling, M., Xiong, G., Bartenstein, P., Koch, W., Varrone,
A., Dickson, J.C., Tossici-Bolt, L., Sera, T., Asenbaum, S., Booij, J., Kapucu, L.O.,
Kluge, A., Ziebell, M., Darcourt, J., Nobili, F., Pagani, M., Sabri, O., Hesse, S., Borght,
T.V., Van Laere, K., Tatsch, K., la Fougere, C., 2016. Implementation of the European
multicentre database of healthy controls for [(123)I]FP-CIT SPECT increases diag-
nostic accuracy in patients with clinically uncertain parkinsonian syndromes. Eur. J.
Nucl. Med. Mol. Imaging 43, 1315–1322.

Brahim, A., Ramirez, J., Gorriz, J.M., Khedher, L., Salas-Gonzalez, D., 2015. Comparison
between different intensity normalization methods in 123I-Ioflupane imaging for the
automatic detection of parkinsonism. PLoS One 10, e0130274.

Choi, H., Jin, K.H., 2016. Fast and robust segmentation of the striatum using deep con-
volutional neural networks. J. Neurosci. Methods 274, 146–153.

DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L., 1988. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric ap-
proach. Biometrics 44, 837–845.

Erro, R., Schneider, S.A., Stamelou, M., Quinn, N.P., Bhatia, K.P., 2016. What do patients
with scans without evidence of dopaminergic deficit (SWEDD) have? New evidence
and continuing controversies. J. Neurol. Neurosurg. Psychiatry 87, 319–323.

Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W.,
Tanner, C., Marek, K., Parkinson Study, G, 2004. Levodopa and the progression of
Parkinson's disease. N. Engl. J. Med. 351, 2498–2508.

de la Fuente-Fernandez, R., 2012. Role of DaTSCAN and clinical diagnosis in Parkinson
disease. Neurology 78, 696–701.

Gibb, W.R., Lees, A.J., 1988. The relevance of the Lewy body to the pathogenesis of
idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752.

Group, P.S., 2000. A randomized controlled trial comparing pramipexole with levodopa
in early Parkinson's disease: design and methods of the CALM-PD Study. Parkinson
Study Group. Clin. Neuropharmacol. 23, 34–44.

Huertas-Fernandez, I., Garcia-Gomez, F.J., Garcia-Solis, D., Benitez-Rivero, S., Marin-
Oyaga, V.A., Jesus, S., Caceres-Redondo, M.T., Lojo, J.A., Martin-Rodriguez, J.F.,
Carrillo, F., Mir, P., 2015. Machine learning models for the differential diagnosis of
vascular parkinsonism and Parkinson's disease using [(123)I]FP-CIT SPECT. Eur. J.
Nucl. Med. Mol. Imaging 42, 112–119.

Illan, I.A., Gorrz, J.M., Ramirez, J., Segovia, F., Jimenez-Hoyuela, J.M., Ortega Lozano,
S.J., 2012. Automatic assistance to Parkinson's disease diagnosis in DaTSCAN SPECT
imaging. Med. Phys. 39, 5971–5980.

Ithapu, V.K., Singh, V., Okonkwo, O.C., Chappell, R.J., Dowling, N.M., Johnson, S.C.,
Alzheimer's Disease Neuroimaging, I., 2015. Imaging-based enrichment criteria using
deep learning algorithms for efficient clinical trials in mild cognitive impairment.
Alzheimers Dement. 11, 1489–1499.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. Adv. Neural Inf. Proces. Syst. 1097–1105.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
Marek, K., Jennings, D., Seibyl, J., 2005. Long-term follow-up of patients with scans

without evidence of dopaminergic deficit (SWEDD) in the ELLDOPA study. Neurology
(A274-A274).

Marek, K., Seibyl, J., Eberly, S., Oakes, D., Shoulson, I., Lang, A.E., Hyson, C., Jennings,
D., Parkinson Study Group, P.I, 2014. Longitudinal follow-up of SWEDD subjects in
the PRECEPT Study. Neurology 82, 1791–1797.

Marshall, V., Grosset, D., 2003. Role of dopamine transporter imaging in routine clinical
practice. Mov. Disord. 18, 1415–1423.

McKeith, I., O'Brien, J., Walker, Z., Tatsch, K., Booij, J., Darcourt, J., Padovani, A.,
Giubbini, R., Bonuccelli, U., Volterrani, D., Holmes, C., Kemp, P., Tabet, N., Meyer, I.,
Reininger, C., Group, D.L.B.S., 2007. Sensitivity and specificity of dopamine trans-
porter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III,
multicentre study. Lancet Neurol. 6, 305–313.

Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J., Isgum, I.,
2016. Automatic segmentation of MR brain images with a convolutional neural
network. IEEE Trans. Med. Imaging.

Nicastro, N., Garibotto, V., Badoud, S., Burkhard, P.R., 2016. Scan without evidence of
dopaminergic deficit: a 10-year retrospective study. Parkinsonism Relat. Disord. 31,
53–58.

Papathanasiou, N., Rondogianni, P., Chroni, P., Themistocleous, M., Boviatsis, E., Pedeli,
X., Sakas, D., Datseris, I., 2012. Interobserver variability, and visual and quantitative
parameters of (123)I-FP-CIT SPECT (DaTSCAN) studies. Ann. Nucl. Med. 26,
234–240.

Parkinson Study, G, 2002. Dopamine transporter brain imaging to assess the effects of
pramipexole vs levodopa on Parkinson disease progression. JAMA 287, 1653–1661.

Pereira, S., Pinto, A., Alves, V., Silva, C.A., 2016. Brain tumor segmentation using con-
volutional neural networks in MRI images. IEEE Trans. Med. Imaging.

Pirker, W., Asenbaum, S., Hauk, M., Kandlhofer, S., Tauscher, J., Willeit, M., Neumeister,
A., Praschak-Rieder, N., Angelberger, P., Brucke, T., 2000. Imaging serotonin and
dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of
normal aging. J. Nucl. Med. 41, 36–44.

Prashanth, R., Roy, S.D., Mandal, P.K., Ghosh, S., 2014. Automatic classification and
prediction models for early Parkinson's disease diagnosis from SPECT imaging. Expert
Syst. Appl. 41, 3333–3342.

Schwingenschuh, P., Ruge, D., Edwards, M.J., Terranova, C., Katschnig, P., Carrillo, F.,
Silveira-Moriyama, L., Schneider, S.A., Kagi, G., Palomar, F.J., Talelli, P., Dickson, J.,
Lees, A.J., Quinn, N., Mir, P., Rothwell, J.C., Bhatia, K.P., 2010. Distinguishing
SWEDDs patients with asymmetric resting tremor from Parkinson's disease: a clinical
and electrophysiological study. Mov. Disord. 25, 560–569.

Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J., 2015. Multi-scale convolutional neural
networks for lung nodule classification. Inf. Process. Med. Imaging 24, 588–599.

Tondeur, M.C., Hambye, A.S., Dethy, S., Ham, H.R., 2010. Interobserver reproducibility
of the interpretation of I-123 FP-CIT single-photon emission computed tomography.
Nucl. Med. Commun. 31, 717–725.

Tossici-Bolt, L., Hoffmann, S.M., Kemp, P.M., Mehta, R.L., Fleming, J.S., 2006.
Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for
measurement of the specific binding ratio. Eur. J. Nucl. Med. Mol. Imaging 33,
1491–1499.

Varrone, A., Dickson, J.C., Tossici-Bolt, L., Sera, T., Asenbaum, S., Booij, J., Kapucu, O.L.,
Kluge, A., Knudsen, G.M., Koulibaly, P.M., Nobili, F., Pagani, M., Sabri, O., Vander
Borght, T., Van Laere, K., Tatsch, K., 2013. European multicentre database of healthy
controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences
and evaluation of different methods of analysis. Eur. J. Nucl. Med. Mol. Imaging 40,
213–227.

Vedaldi, A., Lenc, K., 2015. MatConvNet: convolutional neural networks for matlab. In:
Proceedings of the 23rd Annual ACM Conference on Multimedia Conference. ACM,
pp. 689–692.

Wong, T.Y., Bressler, N.M., 2016. Artificial intelligence with deep learning technology
looks into diabetic retinopathy screening. JAMA 316, 2366–2367.

Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., 2015. Deep convolutional
neural networks for multi-modality isointense infant brain image segmentation.
NeuroImage 108, 214–224.

H. Choi et al. NeuroImage: Clinical 16 (2017) 586–594

594

http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0010
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0010
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0010
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0015
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0015
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0020
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0020
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0020
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0025
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0025
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0025
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0030
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0030
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0030
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0035
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0035
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0040
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0040
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0045
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0045
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0045
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0050
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0050
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0050
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0050
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0050
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0055
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0055
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0055
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0060
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0060
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0060
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0060
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0065
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0065
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0070
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0075
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0075
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0075
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0080
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0080
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0080
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0085
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0085
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0090
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0090
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0090
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0090
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0090
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0095
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0095
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0095
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0100
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0100
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0100
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0105
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0105
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0105
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0105
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0110
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0110
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0115
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0115
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0120
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0120
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0120
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0120
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0125
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0125
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0125
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0130
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0130
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0130
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0130
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0130
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0135
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0135
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0140
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0140
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0140
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0145
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0145
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0145
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0145
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0150
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0150
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0150
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0150
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0150
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0150
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0155
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0155
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0155
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0160
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0160
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0165
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0165
http://refhub.elsevier.com/S2213-1582(17)30224-3/rf0165

	Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging
	Introduction
	Materials and methods
	Subjects
	FP-CIT SPECT images
	Regional DAT binding ratio
	Deep CNN architecture and training
	Test for SWEDD group

	Results
	Accuracy for the classification between PD and NC
	PD Net for discriminating PD from nonparkinsonian tremor: independent test set
	PD Net for SWEDD classification

	Discussion
	Conclusion
	Acknowledgments
	Conflict of interest
	Author contributions
	References




