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One of the primary tasks in vaccine design and development of

immunotherapeutic drugs is to predict conformational B-cell epitopes

corresponding to primary antibody binding sites within the antigen tertiary

structure. To date, multiple approaches have been developed to address this

issue. However, for a wide range of antigens their accuracy is limited. In this

paper, we applied the transfer learning approach using pretrained deep

learning models to develop a model that predicts conformational B-cell

epitopes based on the primary antigen sequence and tertiary structure. A

pretrained protein language model, ESM-1v, and an inverse folding model,

ESM-IF1, were fine-tuned to quantitatively predict antibody-antigen interaction

features and distinguish between epitope and non-epitope residues. The

resulting model called SEMA demonstrated the best performance on an

independent test set with ROC AUC of 0.76 compared to peer-reviewed

tools. We show that SEMA can quantitatively rank the immunodominant

regions within the SARS-CoV-2 RBD domain. SEMA is available at https://

github.com/AIRI-Institute/SEMAi and the web-interface http://sema.airi.net.
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1 Introduction

Selection of B-cell antibodies specifically targeting the

external antigen proteins is a natural immune response

in vivo. Corresponding antibody binding sites are called

conformational B-cell epitopes, and their knowledge is

important for the effective design of peptide- and protein-

based vaccines and development of immunotherapeutic drugs

(1). To date, multiple methods have been developed using

machine learning and other approaches to predict

conformational B-cell epitopes within an antigen sequence.

For example, widely used tools include SEPPA3, BepiPred2.0,

PEPITO, Epitopa, DiscoTope, iBCE-EL and iLBE (2–8). These

tools are commonly based on conventional machine learning

methods, including linear regression, random forest, support

vector machines, or combinations thereof. Physico-chemical and

structural properties such as atomic coordinates, relative surface

accessibility, protrusion index are extracted to train the model or

to derive more complex features. Existing methods demonstrate

good performance, however, improving the accuracy of

prediction of conformational B-cell epitopes is still of great

importance. Improving the performance of conformational

epitope prediction tools is a challenging task, in particular due

to the limited amount of available experimental data,

uncertainties in defining epitope residues and extracting

reliable antigen features for model construction.

Deep learning approaches are increasingly often applied to

protein analysis and design tasks. One such approach is transfer

learning using latent space vector representations of amino acid

residues extracted from large pretrained protein language

models. These representations are able to implicitly encode

context-dependent structural, functional and physico-chemical

protein properties (9–11), which makes them attractive to

develop new models to capture the immunogenic properties of

amino acid residues.

The ESM-1v model is one of the largest transformer-based

protein language models trained in a self-supervised fashion (9).

Recently, the ESM-IF1 model, a sequence-to-sequence

transformer with invariant geometric input processing layers,

has been developed to predict the protein sequence based on its

tertiary fold (12). ESM-IF1 is based on GVP-GNN (13) and

generic autoregressive encoder-decoder Transformer

architectures (14). The ESM-IF1 model allows to solve a

variety of tasks, including inverse protein folding problem and

predicting the effect of mutations.

In this paper we demonstrate that prediction of B-cell

conformational epitopes can be significantly improved by

applying transfer learning approaches using both pretrained

ESM-1v and ESM-IF1 models. We fine-tuned ESM-1v and

ESM-IF1 models to predict residues comprising B-cell epitopes

by providing an interpretable score corresponding to the
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expected number of contacts of an amino acid residue with

the target antibody.

Taking into consideration uncertainties in the epitope

residue assignment we generated a benchmark that included

antigens with classified epitope residues based on two distance

cut-off values. The first distance defines the presence of a contact

between the antigen and antibody residues, while the second

distance indicates if the residue is too distant from the epitope

and should be ignored in metric calculations or model training.

This allows to evaluate the robustness of the model to selected

cut-off radii as well as exclude ambiguous labels from the

training set.

The best performing model across all benchmark tasks was

called SEMA (Spatial Epitope Modelling with Artificial

Intelligence). We evaluated SEMA against an independent

retrospective benchmark composed of antigen residues with

no prior information on antibody binding sites before the

2020 release date. SEMA was compared with BepiPred-2.0

(3), SEPPA3.0 (2), PEPITO (4), ElliPro (15) and DiscoTope-

2.0 (6) and outperformed these tools, demonstrating the highest

ROC AUC value of 0.76. The SEMA prediction score was shown

to correlate with the estimated immunogenicity of epitope

residues according to statistical analysis of the interaction

between SARS-CoV-2 RBD domain and target antibodies.

SEMA is available as an online-tool and could be used for

predicting B-cell conformational epitopes.
2 Method

2.1 Benchmark generation

We generated a non-redundant conformational epitope data

set based on the available data on antigen-antibody complexes in

the PDB database. The pipeline used to generate the

conformational epitope data set included the following steps:
(1) The ANARCI tool was used to screen sequences of

protein structures published in the PDB database that

comprise heavy and light chains of Fabs (16).

(2) Heavy/light Fab pairings were identified by calculating

the distances between subunit residues corresponding to

heavy and light chains, and only heavy and light chains

with direct contacts of non-CDR regions within the

distance of 4.5 Å were considered as the heavy/light

pair. CDR loops were defined using Chothia numbering

based on annotation by the ANARCI tool. Identified Fab

pairs were manually inspected to filter out artefacts.

(3) Protein subunits that were not annotated as an antibody

and had at least 5 residues interacting with antibody

residues within the radius of 4.5 Å with L1/L2/L3 or
frontiersin.org
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Fron
H1/H2/H3 CDR loops of antibodies were considered as

antigens.

(4) The contact number was calculated as the number of

interactions of antigen residue atoms with antibody

atoms within a sphere of radius R. For each antigen

residue, we considered two options for estimating the

contact number based on the selected radius R: in the

first case, we calculated the number of atoms of antibody

residues in contact with any atom of antigen residue i

within the distance radius R (cn_atom). In the second

case, we calculated the number of antibody residues in

contact with any atom of antigen residue i within the

distance radius R (cn_aa).

(5) The calculated contact numbers were mapped on the

complete amino acid sequence of the antigen. The

complete sequence was extracted from PDBSeqRes

records. All residues missing in the protein tertiary

structure but present in the sequence were labelled as

“unknown”. “Unknown” residues were excluded during

model training.

(6) To avoid redundancy, antigen sequences were clustered

according to the degree of sequence identity (> 95%)

using MMseqs2 software (17). MMseqs2 enables

sensitive protein sequence searching for the analysis of

massive data sets. Sequences from the same cluster were

aligned using MAFFT (18) and consensus epitope labels

were assigned to the center of the cluster. For each

residue in the reference sequence, the consensus contact

number value was assigned as the maximum contact

number observed among antigen-antibody complexes in

the data set within an identity cluster.

(7) Each antigen residue was assigned one of the following

three labels. The “epitope” label was assigned according

to the distance radius R1 within which at least one Fab

pair residue was observed. The following values of R1

were considered: 4.5, 6.0 and 8.0 Å. The “close” label was

assigned when the antigen residue was located outside

R1 but within the radius R2 (R2 > R1) of the closest

antibody residue. The following values of R2 were

considered: 12.0, 14.0 and 16.0 Å or infinite.

Remaining antigen residues were labeled “distant”.

Both “close” and “distant” residues were considered as

non-epitope residues.

(8) To fairly compare the precision of SEMA with other

tools, we generated a retrospective data set. The data set

was split into training and test sets according to the

structure release date. The test set included structures

that were first released in the PDB database after January

1, 2020 with no available homologues with a degree of

sequence identity of >70% before this date. The

remaining antigens were divided into training and

validation sets in a ratio of 9:1.
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2.2 SEMA-1D and SEMA-3D
models construction

SEMA-1D and SEMA-3D regression models were developed

independently by adding a fully-connected linear layer on top of

the ESM-1v and ESM-IF1 pretrained models, respectively. The

last layers of the corresponding pretrained models provide

amino acid residue representations with embedding size of

1280 and 512. The added fully-connected layer of each model

takes an input from the last layer of the respective pretrained

model and returns a one-dimensional vector. Each element of

this vector is used to predict the log-scaled contact number value

of corresponding amino acid residue position.

We used the Adam optimizer and the masked mean squared

error loss defined as a mean squared error loss function ignoring

masked residues labeled as “distant” and “unknown” residues class.

SEMA-1D and SEMA-3D models were fine-tuned

independently. The SEMA-1D model was trained for two

epochs with a starting learning rate of 1e – 5 and linear

learning rate decay. The SEMA-3D model was trained for two

epochs with a starting learning rate of 1e – 4 and linear learning

rate decay.

The final models were obtained as an ensemble of five models

fine-tuned independently from the same pretrained checkpoint.

As a limitation, the original ESM-1v model was pretrained

with a maximum sequence length of 1022. Accordingly,

sequences longer than 1022 residues were trimmed from C-

terminus to the length of 1022.
2.3 Prediction using peer methods

Protein sequences of the tested antigens were submitted to

the BepiPred 2.0 server (https://services.healthtech.dtu.dk/

service.php?BepiPred-2.0), and the results were downloaded in

csv format (50 per run). Discotope has a stand-alone

implementation on Python and was run on our own server

(6). ElliPro has a stand-alone implementation on Java and was

run on our own server (15). Antigen structures were submitted

to the BePro server, also known as PEPITO (http://pepito.

proteomics.ics.uci.edu). The same PDB identifiers and chains

were selected for submission to the SEPPA3.0 prediction server

(http://lifecenter.sgst.cn/seppa/index.php) and score files were

retrieved and used for metrics evaluation. All tools were run with

default options.
2.4 Model performance metrics

Performance of the models was assessed using AUC,

Matthews correlation coefficient (MCC), positive predictive

value (PPV) and sensitivity metrics. To calculate MCC, PPV
frontiersin.org
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and sensitivity we converted prediction values to a binary values

applying a threshold. Threshold was set as an optimal cut-off

provided by ROC AUC analysis corresponding to the highest

true positive rate together with the lowest false positive rate.

Taking into account imbalance between epitope and non-

epitope classes in the data sets, PPV and sensitivity metrics

were calculated for each class, and then their unweighted mean

was found.
3 Results

3.1 Benchmark for predicting
epitope features

Crystallographic data on antigen-antibody structures are

commonly used to identify conformational B-cell epitopes. In

this paper, we screened the PDB database to select the antigen

epitope residues interacting with the antibody. For each antigen

residue, we calculated the contact number feature, which

indicates the number of contacts of the antigen residue with

antibody residues within the distance radius R1. The resulting
Frontiers in Immunology 04
benchmark generated using the pipeline (see Methods)

contained a total of 4,739 records, with 884 antigen sequences

clustered based on the degree of identity of 95%. The test set

included 101 antigen sequences.

Antigen residues were considered as epitope if the distance to

the interacting antibody was lower than specified cut-off value

(R1). R1 was selected in the range of 4.5, 6.0 and 8.0 Å. The cut-off

value of 4.5 Å reflects the presence of direct interaction with

antibody residues. Radius values of 6.0 Å and 8.0 Å additionally

include residues involved in long-range interaction. It is well

known that epitopes can be spatially distributed on the antigen

structure and for some cases such experimental information

might be missing. To take this into account, we split non-

epitope residues based on the distance from the interacting

antibody (R2) into “close” (R < R2) and “distant” (R > R2)

(Figure 1). We selected R2 equal to either 12.0, 14.0 or 16.0 Å

to analyze the effect of epitope boundary region information on

model accuracy.

In addition to conventional classification of epitope residues,

for each antigen residue we calculated the contact number

interaction feature. The contact number is a measure of the

number of contacts of an antigen residue with atoms of antibody
FIGURE 1

Epitope data set generation. For each residue, the contact number interaction feature was calculated, which corresponds to the log-scaled
number of contacts of antigen residues with antibody residues within the radius R1. Antigen residues within R1 and R2 distance of the antibody
were classified as non-epitope (brown color). Residues located further away than R2 were either considered as non-epitope (the “unmasked”
data set) or ignored in the model training and and calculation of the relevant metrics (the “masked” data set, highlighted in gray). The color
gradient from light cyan to dark cyan corresponds to the contact number value ranked from low to high, respectively. The color map is shown
in the top right-hand corner of the figure. Epitopes obtained from distinct antigen-antibody complexes from the PDB database were merged to
provide the final antigen epitopes data set.
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residues. Contact numbers may provide an additional

interpretive score reflecting how deeply the residue is buried in

the antigen/antibody interface. This might improve training

efficiency by providing additional spatial information to the

model. Finally, we combined information on different antibodies

for the same antigen into consensus mask. The summary of the

generated consensus mask is shown in Figure 1.

This data set was used to train and evaluate the models to

solve the following tasks: (1) the conventional task of binary

classification of antigen residues into epitope/non-epitope

residues (with both “close” and “distant” residues classed as

“non-epitope”); (2) prediction of epitope residues on the

“masked” data set, that includes only “epitope” residues and

residues localized “close” to epitope, excluding “distant” residues

from model training and metrics calculation; (3) quantitative

prediction of contact number features of antigen residues. We

suggest that evaluation of the model on the different data sets

generated using a wide range of R1 and R2 radii could allow to

evaluate the robustness of the model in terms of predicting

epitope residues independent of the ambiguities in the

epitope definition.
3.2 Fine-tuning the models and internal
validation of SEMA

The generated conformational epitope data set was used to

train SEMA-1D and SEMA-3D models based on pretrained

ESM-1v and ESM-IF1 models to predict the contact number

antigen-antibody interaction features together with binary

classification into epitope/non-epitope residues. ROC AUC
Frontiers in Immunology 05
metric was used to estimate model performance. We analyzed

the performance of the models for two groups of test sets: (1)

“unmasked” test sets, in which all antigen residues were

classified as epitope or non-epitope according to selected radii

R1 (4.5, 6.0 and 8.0 Å); (2) “masked” test sets, in which all

antigen residues located further than R2 (12.0, 14.0, 16.0 and

infinity Å) from the antibody were “masked” and ignored in

ROC AUC calculations.

We also evaluated sets of R1 and R2 radii values for training

set generation to select a model that performs best on both

“masked” and “unmasked” test sets regardless of the selected

radii. Additionally, we evaluated two approaches to calculating

the contact number: in the first case, we counted the number of

antibody atoms contacting antigen within the radius R1

(cn_atom), whereas in the second case, we calculated the

number of residues with at least one contact within the radius

R1, which resulted in a lower value (cn_aa).

For most radii variants, the models showed better

performance when trained to predict cn_atom rather than

cn_aa; this was further used for the selection of the final

models (Supplementary Figures S1, S2). For both ESM-IF1

and ESM-1v, the highest ROC AUC values (0.77 and 0.72,

respectively) were obtained for “unmasked” test sets with

R1=4.5 Å (Figure 2, Supplementary Figures S1, S2). However,

the same models exhibited worse performance for “masked” test

set. This might be due to the fact that classification of antigen

residues located close to epitope is a more challenging task.

The models trained on R1 = 8.0 Å and R2 = 16.0 Å achieved

a robust performance on all test sets regardless of the selected

radii. Finally, ROC AUC values obtained by the fine-tuned ESM-

1v model was 0.7 and 0.67 for “masked” and “unmasked” test
BA

FIGURE 2

Model performance metrics estimated for the “masked” and “unmasked” test and training sets. (A) ROC AUC values for SEMA-1D. (B) ROC AUC
values for SEMA-3D. The color gradient indicates the ROC AUC value from low (brown) to high (cyan).
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sets, respectively (Figure 2A). ROC AUC values for ESM-IF1

fine-tuned models were 0.75 and 0.73 for “masked” and

“unmasked” test set, correspondingly (Figure 2B).

The final fine-tuned models were called SEMA. SEMA

involves the use of sequence-based (SEMA-1D) and structure-

based (SEMA-3D) approaches to predict the conformational B-

cell epitopes and provide an interpretable score indicating the

log-scaled expected number of contacts with antibody

residues (Figure 3).

We found that calculating an ensemble of models obtained

with different initialization parameters led to a noticeable

improvement in the prediction of epitope residues. Thus, the

final model was obtained as an ensemble of five models

averaging their results. SEMA-1D achieved the best ROC AUC

of 0.76/0.71 on “unmasked” and “masked” test sets respectively,

whereas the SEMA-3D achieved best ROC AUC score of 0.76/

0.73 (Figure 4).
3.3 Comparison with peer methods

The list of peer methods included BepiPred-2.0 (3),

DiscoTope 2.0 (6), PEPITO (4), Epitopia (5) and SEPPA 3.0

(2). Model performance was evaluated against collected

benchmarks (see Methods). Benchmarks included antigens

with no prior information in the PDB database before January

1, 2020. These cases were not included in any training set, which

enabled a fair comparison of tools with each other.

We compared the performance metrics including AUC,

MCC, PPV and sensitivity for both “masked” and “unmasked”

test sets (Table 1, Figure 4). For the test set classification into

epitope and non-epitope residues, R1 was set equal to 4.5 Å,

which was also used in the training set for other tools. In the

masked test set, R2 was set to 16.0 Å.
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The results show that the sequence-based methods, as well as

SEPPA 3.0 and SEMA-3D perform better on conventional epitope

prediction task on the “unmasked” test set compared to the

“masked” test set. This indicates poorer performance in

classification of non-epitope residues located close to epitope

and predicting epitope borders. In contrast, PEPITO, ElliPro

and Discotope 2.0 tools demonstrate the highest ROC AUC

value on the “masked” test set (Figure 4). Compared to other

methods, both SEMA-1D and SEMA-3D models have the highest

performance metrics across all the benchmark tasks. The results of

predictions for other values of R1 and R2 exhibit a similar trend

and are shown in Supplementary table (see Supplementary Tables

S1, S2). As expected, in line with SEMA, all tools have lower AUC,

PPV and sensitivity values and higher MCC values for higher R1

radii values, while selecting finite R2 (R2 < Inf) radius does not

significantly affect the results.
3.4 Case study: Prediction of
immunodominant regions of the
SARS-CoV-2 RBD domain

The RBD domain of the S-protein of SARS-CoV-2 is one of

the most well structurally characterized antigens to date. We

conducted an analysis of the RBD domain instead of the full-

length S-protein to exclude the putative effects of glycosylation

that is currently not considered in the SEMA (19). To evaluate

the performance of SEMA, during model training we excluded

all sequences homologous to S-protein (with a degree of identity

of > 70%), in particular S-proteins of MERS and SARS-CoV.

SEMA-3D was evaluated on the three following tasks:

(1) correctly assigning epitope and non-epitope residues;

(2) correctly predicting the contact number features; (3)

predicting the immunodominant epitope residues. The
FIGURE 3

Scheme of SEMA. SEMA comprises fine-tuned ESM-1v (SEMA-1D) for the sequence-based and fine-tuned ESM-IF1 (SEMA-3D) for the structure-
based prediction of epitopes.
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FIGURE 4

ROC AUC metrics calculated using peer methods, SEMA-1D and SEMA-3D on two test sets: “masked” (R1 = 4.5 Å; R2 = 16.0 Å) and “unmasked”
(R1 = 4.5Å; R2 = infinite).
TABLE 1 Performance comparison of SEMA-1D and SEMA-3D with other peer methods on two test sets: “masked” ( R1 = 4.5 Å; R2 = 16.0 Å) and
“unmasked” (R1 = 4.5 Å; R2 = Infinite).

Test set Method AUC Threshold MCC PPV Sensetivity

SEPPA 3.0 0.627 0.048 0.176 0.772 0.436

ElliPro 0.676 0.582 0.218 0.754 0.645

PEPITO 0.680 0.110 0.218 0.756 0.559

“masked” DiscoTope 2.0 0.671 -10.954 0.206 0.748 0.626

BepiPred-2.0 0.629 0.485 0.167 0.747 0.548

SEMA-1D 0.714 0.491 0.258 0.774 0.639

SEMA-3D 0.733 1.210 0.269 0.778 0.646

SEPPA 3.0 0.632 0.048 0.133 0.890 0.392

ElliPro 0.652 0.582 0.128 0.883 0.621

PEPITO 0.670 0.070 0.144 0.884 0.506

“unmasked” DiscoTope 2.0 0.664 -13.130 0.132 0.890 0.500

BepiPred-2.0 0.655 0.485 0.133 0.888 0.560

SEMA-1D 0.756 0.491 0.217 0.900 0.689

SEMA-3D 0.759 1.029 0.202 0.905 0.593
Frontiers in Immunology
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Threshold is an optimal cut-off chosen by ROC AUC analysis corresponding to the highest true positive rate together with the lowest false positive rate. AUC – area under curve, MCC –

Matthews correlation coefficient, PPV – positive predictive value.
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immunodominant residues of the RBD were estimated

according to the ratio of RBD/antibody complexes in the PDB

database, in which the RBD residue was in direct contact with

antibody. We assume that the calculated ratio allow to estimate

the immunogenicity of RBD residues, with a high ratio

corresponding to immunodominant residues.

As shown in the Figure 5, SEMA-3D provides high

correlation coefficients for both contact number values and

estimated immunogenicity score. Additionally, we calculated

the ROC AUC metrics of the model to differentiate

immunodominant residues (high ratio) from other residues

(low ratio), based on the ratio threshold. This provides a more

reliable estimation of model performance, since most of the

solvent-exposed residues of the RBD domain are labeled as

epitope due to the presence of at least one structure where

corresponding residues interact with the antibody. As can be

seen from the score cut-off values, SEMA-3D achieves the

average ROC AUC score of 0.75 on this task.
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3.5 Web-interface

We developed a web-interface (http://sema.airi.net) for

convenient usage of SEMA. A user can either submit a protein

sequence to run SEMA-1D (fine-tuned ESM-1v model) or a

protein structure in the PDB format to run SEMA-3D (fine-

tuned ESM-IF1 model). The output includes predicted epitope

scores for each residue in the protein sequence. To visualize the

results, the output sequence in the web-interface is colored based

on the predicted contact number, with colors ranging from brown

(non-epitope) to cyan (epitope) (Figure 6). In case of SEMA-3D,

output includes 3D structure of protein colored using the same

color scheme as in SEMA-1D (Figure 6). A user can download the

results in JSON and CSV format. We also provide the code of the

model implemented as the Jupyter Notebook on GitHub available

via link https://github.com/AIRI-Institute/SEMAi. We encourage

using this implementation for comprehensive analysis including

multiple protein sequences.
B C D

A

FIGURE 5

Prediction of RBD immunodominant epitopes with SEMA. (A) RBD domain of SARS-CoV-2 (PDB ID: 7KS9, chain B) colored according to the
SEMA predicted score (left), immunogenicity score (center) and contact number values (right). Residues colored from brown (low value) to cyan
(high value). Immunogenicity was estimated as the ratio of RBD/antibody complexes in the PDB database in which RBD residue was in contact
with antibody within 8.0 (Å) (B) Correlation between the SEMA score and the log-scaled antigen contact number feature. Pearson correlation
coefficient is shown. (C) Correlation between the SEMA score and the immunogenicity score. Pearson correlation coefficient is shown. (D) ROC
AUC values calculated for different epitope/non-epitope residue classification based on the immunogenicity score threshold. ROC AUC values
and threshold values for classification are denoted.
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4 Discussion

Computational prediction of conformational epitopes is of

great importance for vaccine design and therapeutics

development. Conformational epitope residues are

conventionally defined by a distance cut-off radius between

antigen and antibody residues in the interacting complex. A

residue is classified as non-epitope if it does not interact with the

antigen. However, an arbitrary choice of a distance cut-off radius

might lead to ambiguity in labeling epitope residues.

Additionally in case of limited availability of data on the

analyzed antigen, negative labels might be assigned incorrectly.

In particular, for the S-protein of SARS-CoV-2, crystallographic

analysis initially discovered epitopes on the RBD domain (20),

but later immunodominant epitopes within the NTD domain

and other regions of the S-protein were also identified (21).

To take this problems into account, we generated a

benchmark that included antigens with classified epitope

residues based on two distance cut-off values. The first

distance, R1, defined the positive epitope label class, while the
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second distance, R2, defined if the residue was too remote from

the epitope and was ignored in metric calculations. Finite R2

radii made it possible to evaluate the model’s ability to predict

the boundaries of epitopes. Additionally, for each antigen

residue we calculated the contact number feature

corresponding to the number of atoms of the antibody located

within the radius R1 of antigen residue. This feature was

introduced for model training to provide additional spatial

information on interaction between the antibody and antigen.

Moreover, this feature alone was demonstrated to be a good

predictor of epitope residues for a wide range of R1 values.

Transfer learning has been proven to be an efficient

approach in the case of a limited set of examples (22). In this

paper, we show that a fine-tuned protein language model (ESM-

1v) and an inverse folding model (ESM-IF1) perform well when

predicting conformational epitopes. More specifically, the model

was fine-tuned on a non-redundant set of only 783 antigen

records with epitope residues assigned according to available

antigen/antibody structures in the PDB database and selected R1

and R2 radii values.
FIGURE 6

Example of SEMA-3D graphical output (PDB ID: 6TXZ, chain D). Residues are colored from brown (non-epitope) to cyan (epitope).
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To fine-tune the model, we screened various training sets

generated using a wide range of R1 and R2 radii values and

selected the model that performed best across all benchmark

tasks. The final model was called SEMA; it comprises SEMA-1D

(fine-tuned ESM-1v) and SEMA-3D (fine-tuned ESM-IF1)

mode l s f o r s equence -ba s ed and s t ruc tu r e -ba s ed

conformational B-cell epitopes prediction, respectively. SEMA

was trained on the masked data set with R1 = 8.0 Å and R2 =

16.0 Å.

The high performance of SEMA can be explained by

ability of protein language models to capture multiple

structural and functional protein properties necessary to

predict the epitope residues. In this work SEMA model

was trained to automatically derive the immunogenic

properties of antigen residues from representations of fine-

tuned protein language models. In particular, we show that

SEMA can be applied to predict immunogenicity of the RBD

domain residues.

In this study, we developed B-cell conformational epitope

prediction tools SEMA-1D and SEMA-3D based on the

pretrained ESM-1v protein language model and ESM-IF1

inverse folding model. SEMA-1D/3D provides an interpretable

score correlated with immunogenic properties of the antigen.

This model demonstrated robust performance and can be

applied for a wide range of antigen analysis tasks.
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