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A machine learning‑based 
predictor for the identification 
of the recurrence of patients 
with gastric cancer after operation
Chengmao Zhou1,2,4,5*, Junhong Hu3,4,5, Ying Wang1,4, Mu‑Huo Ji1,4, Jianhua Tong1,4, 
Jian‑Jun Yang1,2,4* & Hongping Xia1,2,3,4*

To explore the predictive performance of machine learning on the recurrence of patients with gastric 
cancer after the operation. The available data is divided into two parts. In particular, the first part is 
used as a training set (such as 80% of the original data), and the second part is used as a test set (the 
remaining 20% of the data). And we use fivefold cross-validation. The weight of recurrence factors 
shows the top four factors are BMI, Operation time, WGT and age in order. In training group:among 
the 5 machine learning models, the accuracy of gbm was 0.891, followed by gbm algorithm was 
0.876; The AUC values of the five machine learning algorithms are from high to low as forest (0.962), 
gbm (0.922), GradientBoosting (0.898), DecisionTree (0.790) and Logistic (0.748). And the precision 
of the forest is the highest 0.957, followed by the GradientBoosting algorithm (0.878). At the same 
time, in the test group is as follows: the highest accuracy of Logistic was 0.801, followed by forest 
algorithm and gbm; the AUC values of the five algorithms are forest (0.795), GradientBoosting (0.774), 
DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. Among the five machine 
learning algorithms, the highest precision rate of Logistic is 1.000, followed by the gbm (0.487). 
Machine learning can predict the recurrence of gastric cancer patients after an operation. Besides, the 
first four factors affecting postoperative recurrence of gastric cancer were BMI, Operation time, WGT 
and age.

The global incidence of gastric cancer is the fourth in malignant tumors and the second in mortality. There are 
nearly 1 million cases of new gastric cancer worldwide each year, of which nearly 50.0% occur in China. The 
prognosis of early gastric cancer is good, but the clinical symptoms are atypical and the signs are not obvious. 
The postoperative recurrence rate (40.0–70.0%) remained high1. It has been reported that the average time to 
recurrence of gastric cancer was 20.5–28.0 months after operation2. However, when gastric cancer recurs after 
the operation, some chemotherapy and immunotherapy can be used in close cooperation to control cancer and 
reduce necrosis, to create conditions and strive for operation.

In recent years, big data and machine learning have led to innovative changes in many industries. With the 
development of precision medicine plan, the combination of health and medical big data and machine learn-
ing brings people the imagination space of the future big data health cause. The method of machine learning is 
especially suitable for prediction based on existing data. By capturing complex nonlinear relations in the data, 
the machine learning algorithm can improve the accuracy of prediction more than the conventional regression 
model. At present, machine learning can predict the survival of breast cancer patients at an early stage3. Using 
machine learning technique can predict the malignant degree of breast lesions4; Machine learning was used to 
better predict early biochemical recurrence5; Machine learning is a branch of artificial intelligence, which has 
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been used in tumor risk assessment, lesion detection, prognosis prediction and treatment response6; Deep learn-
ing can effectively solve medical problems that were previously thought unsolvable7.

In conclusion, postoperative recurrence of gastric cancer are key factors affecting the prognosis of gastric 
cancer, and it is very important to actively explore the adverse factors affecting postoperative recurrence of 
gastric cancer to detect and evaluate the recurrence or metastasis of postoperative gastric cancer. Therefore, we 
used a machine learning technique to predict the tumor recurrence of gastric cancer patients after operation.

Materials and method
Data source.  Data is available at BioStudies database, accession numbers: S-EPMC4344235. This study 
included 2012 patients.

Data from the retrospective studies included age, gender, pathological characteristics, treatment-related fac-
tors, and the follow-up period related to survival status.

Machine learning algorithm.  Logistic regression, a kind of generalized linear regression analysis model, 
is often used in such fields as automatic disease diagnosis and economic prediction.

The decision tree algorithm belongs to the category of supervisory learning.
In machine learning, a random forest is a kind of classification/regression which contains multiple decision 

trees (CART tree). The final classification result is decided by each decision tree vote/ average, that is, a few obey 
the principle of most. The stochastic forest in turn corresponds to the fusion of the model of several decision 
trees (CART trees).

The GBDT is also called MART. It is an iterative decision tree algorithm. The trees in GDBT are all regression 
trees. Only the accumulation of the results of regression trees is meaningful, and the addition of the results of 
classification is not meaningful.

The light GBM (light gradient boosting machine) is a framework to implement GBDT algorithm, which 
supports efficient parallel training.

Data processing.  Data were processed in R (3.5.3) language. P < 0.05 was taken as the difference with sta-
tistical significance; Multiple imputations were used for missing variables. The machine learning was analyzed 
by python (3.6.5). The total population was randomly divided into a training group and test group according to 
the ratio of 8:2. The available data is divided into two parts (sometimes called training-test segmentation). In 
particular, the first part is used as a training set (such as 80% of the original data), and the second part is used as 
a test set (the remaining 20% of the data). Then, a prediction model is established by using the training set. To get 
the best model, manual parameter adjustment and grid search are used. And we use fivefold cross validation8–10. 
Then the trained model is applied to the test set for prediction. Choose the best model according to its perfor-
mance on the test set11. And the data are normalized by us. The parameters of the machine learning model are 
shown in Supplementary Table 1.

Ethics approval.  Because this is only a secondary data analysis study using public databases, there is no 
need to apply for ethics25.

Results
Correlation analysis and feature analysis.  Comparison of basic indicators of patients in the two 
groups: there was no statistically significant difference in age and height between the two groups (P = 0.697 and 
P = 0.982). See Table 1.

The results of gbm algorithm showed that the first 4 factors were ranked in order: BMI, Operation time, WGT 
and age, respectively (Figs. 1 and 2).

Training set results.  In training group: among the 5 models, the accuracy of gbm was 0.891, followed by 
gbm algorithm was 0.876; The AUC values of the five algorithms are from high to low as forest (0.962), gbm 
(0.922), GradientBoosting (0.898), DecisionTree (0.790) and Logistic (0.748). The precision of forest is the high-
est 0.957, followed by the GradientBoosting algorithm (0.878).The recall rate for forest is up to 0.478, followed 
by the gbm (0.451) (Table 2 and Fig. 3).

Test set results.  In the test group: among the five algorithm models, the highest accuracy of Logistic was 
0.801, followed by forest algorithm and gbm; The AUC values of the five algorithms are forest (0.795), Gradient-
Boosting (0.774), DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. The highest precision 
rate of Logistic is 1.000, followed by the gbm (0.487).The highest recall rate was 0.309 for the DecisionTree, fol-
lowed by the gbm algorithm (0.235) (Table 3 and Fig. 4).

Discussion
Currently, the treatment of early gastric cancer mainly involves an open operation. According to the location of 
gastric cancer and the size of lesions, the proximal or distal subtotal resection or total gastrectomy is selected. 
Mortality is very high in patients with gastric cancer due to its high morbidity and recurrence rate. Therefore, 
it is very important to find out the factors affecting recurrence and metastasis to reduce the mortality of gastric 
cancer. After identifying the influencing factors, correct and effective prevention methods are adopted to treat 
the patients, so that the postoperative recurrence rate can be effectively reduced and the postoperative quality 
of life can be greatly improved. The first 4 important factors affecting postoperative recurrence of gastric cancer 
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were BMI, Operation time,WGT and age, respectively. And machine learning can predict the recurrence of 
gastric cancer after the operation.

The risk factors affecting the recurrence of gastric cancer are clinical, pathological and biomolecule. The 
later the clinical stage, the greater the probability of early recurrence, the shorter the survival time. Studies12 
have shown that elevated early gastric cancer, infiltration depth to the submucosa, and concomitant lymph node 
metastasis are independent factors affecting postoperative recurrence of early gastric cancer. It was also found 
that age and macroscopic appearance of the tumor was associated with postoperative recurrence of early gastric 
cancer, while gender, tumor location, tumor size and histological type were not associated with postoperative 
recurrence of early gastric cancer13. Moriguchi et al.14 found that regional lymph node metastasis was a risk factor 
for gastric cancer recurrence. The results of this study were also similar.

Kattan et al.14 demonstrated a poor prognosis in the upper third of tumors. Our study also showed a correla-
tion between tumor location and tumor recurrence.

Recently, studies have demonstrated the survival benefit of adjuvant chemotherapy after radical resection 
of gastric cancer1. However, in this study, chemotherapy was not negatively associated with tumor recurrence. 
This negative result may be influenced by the reason and the regimen and indication of adjuvant chemotherapy 
at each institution.

Bickenbach et al.15 concluded that high BMI was a postoperative complication of gastric cancer but not of 
long-term survival. Dhar et al.16 reported that high BMI was not conducive to the removal of gastric lymph nodes 
in 787 patients with gastric cancer. The results of Tokunaga et al.17 showed that the survival rate of patients with 
gastric cancer with high BMI was higher than that of patients with low BMI. Kruhlikava et al.18 concluded that 
BMI did not affect survival in patients with esophagogastric cancer. Migita et al.19 showed that underweight 
is a simple and reliable predictor of poor long-term prognosis in patients with gastric cancer. Kulig et al.20 
reported that the median disease-related survival time of patients with high BMI was significantly longer than 
that of patients with low BMI. The results of this study showed that BMI was negatively correlated with tumor 
recurrence.

This study is addressed by the classification task. It should be to use accuracy (Ac), sensitivity (Sn), specific-
ity (Sp) Matthews coefficient correlation (MCC) and AUC​21–23. However, it appears that only 20% of the data 
correspond to the positive class. The imbalance (1:4) makes ROC, AUC-ROC, and especially accuracy, less 
useful in assessing the utility of a predictor. So we have adopted the AUC chart with the highest precision. And 
this imbalance in classification is normal in the application of machine learning-related medicine because the 
incidence and non-incidence of diseases are unbalanced.

Although machine learning has yielded good results in predicting the postoperative recurrence of gastric 
cancer, the present study has some limitations. Some patients were excluded due to lack of data, which may lead 
to selection bias. Besides, due to retrospective data, our study failed to refine the prediction of recurrence in 
some subgroups of the postoperative gastric cancer population, such as patients with gastric cancer combined 
with other malignant tumors and patients with gastric cancer with other special medical histories, which may 
cause some applicability of the study results. Further prospective studies on this aspect are needed in the future.

Table 1.   Baseline data.

RECURR​ No Yes P-value

N 1607 405

Age (year) 58.5 ± 11.5 58.5 ± 12.2 0.697

Weight (kg) 61.4 ± 10.2 60.0 ± 10.4 0.011

Height (cm) 162.2 ± 8.4 162.3 ± 8.4 0.982

BMI (kg/m2) 23.3 ± 3.2 22.8 ± 3.1 0.004

Operation time (min) 168.6 ± 52.0 183.3 ± 55.2  < 0.001

Tumor size (cm) 4.3 ± 2.8 6.7 ± 3.4  < 0.001

Sex 0.980

Male 1110 (69.1%) 280 (69.1%)

Female 497 (30.9%) 125 (30.9%)

Location  < 0.001

Upper 234 (14.6%) 65 (16.0%)

Middle 499 (31.1%) 108 (26.7%)

Lower 860 (53.5%) 204 (50.4%)

Whole 14 (0.9%) 28 (6.9%)

Extent of LN dissection 0.409

D2 131 (8.2%) 28 (6.9%)

D1 plus 1476 (91.8%) 377 (93.1%)

Chemotherapy  < 0.001

NO 950 (59.1%) 89 (22.0%)

YES 657 (40.9%) 316 (78.0%)
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Conclusion
To sum up, machine learning can predict the recurrence of patients with gastric cancer after an operation. 
Besides, the first four factors affecting postoperative recurrence of gastric cancer were BMI, Operation time, 
WGT and age.

Figure 1.   Correlation between variables.
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Figure 2.   Variable importance of features included in the machine learning algorithm for prediction of 
recurrence of patients with gastric cancer after operation. Note: gbm: LightGBM.

Table 2.   Forecast results for training group.

Accuracy Precision Recall AUC​

Logistic 0.799 0.500 0.003 0.748

DecisionTree 0.807 0.529 0.361 0.790

Forest 0.891 0.957 0.478 0.962

GradientBoosting 0.868 0.878 0.401 0.898

gbm 0.876 0.869 0.451 0.922

Figure 3.   Different machine learning algorithms predict the recurrence of patients with gastric cancer after the 
operation in the training group.
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Data availability
Data is available at BioStudies database, accession numbers: S-EPMC4344235.
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