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A B S T R A C T   

We provide causal evidence that regulation induced product shocks significantly impact aggregate demand and 
firm performance in pharmaceutical markets. Event study results suggest an average loss between $569 million 
and $882 million. Affected products lose, on average, $186 million over their remaining effective patent life. This 
leaves a loss of between $383 million and $696 million attributable to declines in future innovation. Our findings 
complement research that shows drugs receiving expedited review are more likely to suffer from regulation 
induced product shocks. Thus, it appears we may be trading off quicker access to drugs today for less innovation 
tomorrow. Results remain robust to variation across types of relabeling, market sizes, and levels of competition.   

1. Introduction 

The role that downstream market demand plays on upstream inno
vation has long been recognized in the literature (e.g., Schumpeter, 
1942; Griliches and Schmookler, 1963; Schmookler, 1966; Nordhaus, 
1969). More recent work has linked R&D intensity and demand (Pakes 
and Schankerman, 1984), market entry and expected revenues (Scott 
Morton, 1999; Reiffen and Ward, 2005), market size and innovation 
(Acemoglu and Linn, 2004; Finkelstein, 2004; Dubois et al., 2015), 
public procurement and innovation (Edler and Georghiou, 2007) and 
societal demands and research priorities (Ciarli and Rafols, 2019). 
Another strand of literature has considered the interplay between 

various demand-side and supply-side factors and their impact on inno
vation (Peters et al., 2012; Kalcheva et al., 2018). 

The above stream is enriched by scholars focusing on shocks to de
mand and its resulting impact on innovation. Recent work by Manso 
et al. (2019) finds large positive demand shocks generate more R&D, 
however it tends to be more incremental than radical innovation. 
Several papers find evidence that the passage of Medicare Part D 
increased innovation of drugs targeting conditions prevalent among 
elderly patients (Blume-Kohout and Sood, 2013; Dranove et al., 2014). 
Using the same identification strategy, Hermosilla and Wu (2018) 
demonstrate the impact on external technology markets; downstream 
commercializers increased their rate of licensing from upstream 
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innovators. Finally, at a more macro-level, shocks to aggregate demand 
have been shown to impact investments in innovation capacities (Pau
nov, 2012; Armand and Mendi, 2018). 

Given this link between downstream market demand and upstream 
innovation, understanding how exogenous product shocks influence 
demand in the first place itself is critical for firms and policymakers. 
Herein, one important and understudied source of demand-side shocks is 
regulation. Regulation plays an important role in protecting consumers 
but regulation can also impede firms (Aghion et al., 2019) and markets. 
For example, regulation can restrict firms’ freedom of actions (Palmer 
et al., 1995) and slow the diffusion of new technologies (e.g., Joskow, 
1981). If these demand shocks are significant enough, we would expect 
them to negatively impact current firm performance and potentially 
dampen future innovation (Ball et al., 2018). 

Our study uses novel data to examine the impacts of safety-related 
regulatory product shocks in the pharmaceutical industry on aggre
gate demand and firm performance. The drug development process is 
long and expensive with a low probability of receiving Food and Drug 
Administration (FDA) approval (Wong et al., 2018).1 As part of the 
approval process drug candidates undergo clinical trials designed to test 
their safety and efficacy. In the post-approval period, the FDA maintains 
a surveillance program that continues to monitor drug safety. The FDA 
Adverse Events Reporting System (FAERS) database was designed to 
collect complaints and adverse events for approved drugs. Depending on 
the situation and severity of the data collected, the FDA will act and 
move to change the safety label associated with a drug (known as 
‘relabeling’). 

While prior studies have focused on various types of relabeling (e.g., 
Macher and Wade, 2016; Qureshi et al., 2011; Dorsey et al., 2010), most 
have limited their analyses to a single or small number of therapeutic 
markets (e.g., Olfson et al., 2008; Jacoby et al., 2005). These studies are 
important because we learn about the intricacies and nuances of specific 
markets but we are unable to draw conclusions about the overall impact 
of relabeling across markets. In contrast, using a dataset of all drugs sold 
across all therapeutic markets in the U.S. and U.K. we use a 
difference-in-differences (diff-in-diffs) specification to provide causal 
evidence relating the impacts of FDA drug relabeling on aggregate 
consumer demand and firm performance.2 We find that, on average, 
aggregate demand declines by 16.9% within two years of a relabeling 
event. Our data allows us to capture intra- and inter-market substitution 
patterns as well as competitive responses. Critically, after accounting for 
these factors we still find that aggregate demand declined by 4.7%, an 
estimate that represents consumers that prematurely leave the market. 

Next, we explore the variation across the severity of relabeling 
events. Not unexpectedly, we find an increasing aggregate demand 
response as relabeling severity increases, ranging from a decline of 
15.6% for the least severe to a decline of 36.3% for the most severe. After 
accounting for all plausible substitution patterns we find declines in 
aggregate demand ranging from 4.0% for the least severe to 8.3% for the 
most severe relabel. This pattern, however, is not homogenously 
distributed across all markets. When we focus on the variation in 
relabeling activity across individual markets, interesting patterns begin 
to emerge. In “low-intensity markets” or those with low levels of 
relabeling activity we find declines in drug aggregate demand are 
completely absorbed by intra-market substitution. In contrast, in “high- 
intensity markets” or those with high levels of relabeling activity, after 
accounting for plausible substitution patterns, aggregate demand 

declines by 5.0%. 
Our findings have implications for firms. First, our results suggest 

that current efforts by firms to counteract the impacts from these 
negative regulatory shocks, on average, appear to be failing. Impor
tantly, the magnitude of our results for relatively minor safety relabeling 
suggests that physicians may be proactively shifting consumers to other 
drugs (or competitors are successfully “pulling” consumers away). This 
implies that while detailing (i.e., direct advertising to physicians) may be 
effective at influencing initial physician prescription behavior (e.g., 
Datta and Dave, 2017), this influence appears to break down when 
confronted with negative safety information. Unfortunately, while we 
can detect the shift in behavior, we can only conjecture on the under
lying motivations driving physician behavior.3 

Given the prior literature, these effects may not be isolated to just 
downstream aggregate demand but may also extend upstream. In a 
recent paper, Krieger et al. (2018) explore how pharmaceutical firms 
react to negative shocks to existing products. They show that affected 
firms increase R&D expenditures but those expenditures are more likely 
to go towards the acquisition of new pipeline candidates versus inter
nally developed candidates.4 Importantly, they also show that compet
itors move resources away from affected therapeutic categories, 
reshuffling their own drug portfolios. Our findings and those of Krieger 
et al. (2018) are intimately linked; we provide evidence of the initial 
downstream aggregate demand impacts from negative regulatory shocks 
while they provide evidence of subsequent upstream innovation 
changes.5 

In an effort to estimate the economic losses from these regulatory 
shocks on firm performance, we conduct an event study. The advantage 
of the event study methodology in this instance is that it will capture not 
only the effects from the unanticipated loss in revenues from the affected 
product but also loss in value from declines in future innovation. Results 
across two different standard event windows translate into an average 
loss in the range of $569 million to $882 million. Back of the envelope 
calculations suggest that the unanticipated loss in revenues from 
affected products averages $186 million over their remaining effective 
patent life. This leaves an unanticipated loss of between $383 million 
and $696 million, on average, attributable to declines in future inno
vation. These results, along with Krieger et al. (2018), support the notion 
that downstream regulatory shocks have significant impacts on up
stream innovation. 

Finally, our findings contribute empirical evidence to the economics 
of regulation literature dating back to Brown et al. (1964), Nelson 
(1970) and Stigler (1971). The breadth and depth of our data allow for a 
unique analysis of aggregate demand that captures all plausible substi
tution patterns. Regulation is rarely without cost, as is the case here. 

1 Wong et al. (2018) place the probability of a drug candidate reaching FDA 
approval at 13.8%. 

2 For ease of exposition we use the term aggregate consumer demand inter
changeably with demand. To be precise we are referring to aggregate consumer 
demand. Our data is at the standard unit level and not at the individual pre
scription level. Standard units are determined by IMS Health and are intended 
to equate pills, tablets and liquids. 

3 Explanations range from physicians practicing “defensive medicine”, being 
concerned that less serious safety concerns will eventually unmask more serious 
concerns (“where there is smoke, there is fire”), lack of adequate information, 
or being induced by competitor firm detailing efforts (Macher and Wade, 2016). 
Current work by the authors involve a large-scale survey with a national as
sociation of physicians to understand what drives prescription changes in the 
face of negative safety-related information. Preliminary, qualitative evidence 
seems to suggest some combination of defensive medicine and marketing efforts 
by competitors - consist with those described in Macher and Wade (2016). 

4 The relationship between product or pipeline shocks and subsequent tech
nology acquisition in the pharmaceutical industry was previously considered in 
Higgins and Rodriguez (2006), Danzon et al. (2005) and Chan et al. (2007). The 
importance of Krieger et al. (2018), however, is they provide causal evidence of 
this relationship.  

5 The linkage of downstream product shocks and upstream innovation has 
been explored in other contexts. For example, Ball et al. (2018) examines the 
upstream innovation impacts as a result of downstream medical device recalls. 
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Importantly, this is a market that is under immense time constraints 
given the limited nature of patent protection. Regulators therefore face a 
tension between length of trials and getting new drugs to market.6 Into 
this mix the FDA has developed pathways for expedited development 
and review including priority review, breakthrough therapy, accelerated 
approval and fast track.7 Recent evidence suggests, however, that there 
has been an increase in safety label changes for drugs that have moved 
through some form of expedited pathway (Mostaghim et al., 2017; 
Moore and Furberg, 2014; Carpenter et al., 2008; Olson, 2008). These 
label changes are not trivial; Mostaghim et al. (2017) report a doubling 
of the most severe types of relabel for expedited drugs relative to 
non-expedited drugs. With impacts from safety label changes rippling 
both downstream and upstream, it suggests that regulators may have 
tipped the balance too far towards getting new drugs to market. More 
fundamentally, our results combined with those of Krieger et al. (2018) 
suggest that we may be trading off quicker access to new drugs today for 
less innovation tomorrow.8 

The remainder of the paper is organized as follows. In Section 2 we 
discuss the FDA drug relabeling process and in Section 3. we focus on 
adverse regulatory events. This is followed by our empirical strategy and 
data in Section 4. Results and robustness are reported in Sections 5 and 
6.0, respectively, before we conclude in Section 7. 

2. FDA drug relabeling 

The pharmaceutical industry in the U.S. is highly regulated and drug 
candidates undergo rigorous clinical testing prior to being submitted to 
the FDA for approval. During this process possible risks and side effects 
of a drug candidate are identified. This information becomes part of the 
FDA approved label and drug insert that accompanies a newly approved 
drug. Unfortunately, some side effects do not become known until after a 
drug has been approved. To help with the reporting and collection of 
these adverse events the FDA founded MedWatch in 1993. Healthcare 
professionals or consumers (patients) can voluntarily report to Med
watch. In more recent times this data on adverse events has been made 
available via FAERS.9 

During the post-approval time period the FDA monitors adverse 
reporting along with results from post-approval studies and peer- 
reviewed literature. Negative safety-related information is scrutinized 
and the FDA can form an investigation team to determine if a safety label 
update is needed. If they believe a safety label change is warranted the 
manufacturer is notified and is required to report back to the FDA within 
a predetermined period. The agency works privately with a manufac
turer to determine which type of safety label change will be made.10 At 
the end of the process the FDA will publish this information online while 
allowing firms additional time to change actual printed material.11 Prior 
to 2016 product safety data was available via MedWatch but has since 
shifted to the FDA Drug Safety Label Change database. 

The main safety labeling changes that the FDA issues include: adverse 
reaction, precaution, warning, contraindication, and box warning.12 These 
classifications serve to inform physicians and consumers of possible 
health concerns that have been clinically identified, anticipated to 
occur, or associated with unapproved uses. A drug that has been rela
beled can undergo additional safety label changes in the future, if 
warranted. The box or “black box” warning is the most severe of type of 
label change and is intended to communicate potentially severe health 
risks resulting from taking a drug. 

While the FDA’s procedure and process for a drug safety relabel is 
well established, there is no guarantee that the updated information will 
be read by physicians or consumers. In a world of perfect-information 
we might assume that this new information will be read, however, the 
evidence seems to suggest otherwise. One form of communication that 
firms use to convey new safety information, the “Dear Doctor letter” 
(DDL) was found in 28% of cases to be deficient in their overall level of 
effectiveness (Mazor et al., 2005).13 Other studies have shown that 
fewer than one in ten physicians routinely read drug labels.14 Similarly, 
Hoy and Levenshus (2018) find that consumers routinely ignore safety 
related information. 

Macher and Wade (2016) shed an important light on the underlying 
mechanism of how physicians may be learning about safety label 
changes. In the case of black-box warnings, they find that affected firms 
themselves may increase physician detailing (i.e., direct-to-physician 
advertising) but they also find that competitor firms also increase de
tailing efforts. So while affected firms may try to actively deal with the 
problem, it does appear that competitors take advantage of the oppor
tunity and try to pull physicians to their products. While this study is 
limited to black-box warnings, there is no reason to believe that there 
wouldn’t some type of similar response across the spectrum of relabeling 
activity. 

There appears to be some hope in that new technology may be able to 
help with this information asymmetry. In a recent paper, Arrow et al. 
(2020) show that physicians with access to a drug reference database 
changed their prescribing behavior. While this study focused on the shift 
from branded to generic drugs, they suggest that physicians may be 
responding to non-clinical information such as whether a drug is 
covered by a consumer’s insurance plan or plan-specific drug pricing. 
The database in this study included FDA drug safety information and 
alerts but the information was not explicitly analyzed. However, given 
the fact that physicians were taking the time to interact with this type of 
technology does suggest that it may be an effective mechanism to deliver 
safety relabel information. A major concern with new technology is 
ensuring that it diffuses out to physicians, especially those practicing in 
non-academic or rural settings.15 

3. Adverse regulatory events 

We draw on several strands of literature starting with the economics 
of regulation. Early work in this area theorizes on the impact of regu
lation on consumer and firm behavior (e.g., Stigler, 1971; Peltzman, 
1976; Migue, 1977). Brown et al. (1964) argued that regulation could be 
viewed as an information transmission process. As consumers receive 

6 In response to COVID-19, there has been immense pressure to speed the 
trials of Remdesivir®: https://www.nytimes.com/2020/05/02/us/politics/va 
ccines-coronavirus-research.html  

7 https://www.fda.gov/forpatients/approvals/fast/default.htm. These are 
coupled with other initiatives such as the 21st Century Cures Act.  

8 We must include the caveat that while there may be less innovation 
tomorrow, we cannot say anything about the type or novelty of the lost inno
vation. In a Health Affairs blog post, Pranav Aurora and authors conjectured 
about possible innovation implications from priority review vouchers. https:// 
www.healthaffairs.org/do/10.1377/hblog20160615.055372/abs/  

9 http://www.nber.org/data/fda-adverse-event-reporting-system-faers-data. 
html.  
10 A firm may know that a relabel will impact demand and firm performance 

and as such they have the incentive to ‘drag their feet’. The extent this is 
possible or occurs is unknown but remains a possibility.  
11 https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryi 

nformation/guidances/ucm250783.pdf 

12 Guidance for industry is provided by: https://www.fda.gov/downloads/d 
rugs/guidances/ucm075096.pdf  
13 Attempts to improve the effectiveness of labels is on-going with draft 

guidance as recently as 9 July 2018 intended to assist applicants in writing drug 
labels: https://www.policymed.com/2018/07/fda-releases-draft-guidance 
-on-indications-and-usage-labeling-sections.html  
14 https://www.nytimes.com/2006/01/19/us/new-drug-label-rule-is-intende 

d-to-reduce-medical-errors.html  
15 Worryingly, in a recent study, electronic health records commonly used in 

hospitals nationwide failed to detect up to one in three potentially harmful drug 
interactions and other medication errors (Classen et al., 2020). 
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new information they are able to update and change their behavior. 
Subsequent work built on this idea to show how information influences 
consumer perception of product quality (Zeithaml, 1988) and how 
behavior changes with positive information (Nelson, 1970). In contrast, 
Hartley (1994) showed how negative product information led to 
decreased sales. More broadly, Oberholzer-Gee and Mitsunari (2006) 
examined how non-related negative events, in their case the release of 
pollution information, decreased property values. In our context, the 
process of relabeling in the pharmaceutical industry can be viewed as an 
information transmission process that subsequently impacts behavior. 

Our paper also draws on studies in healthcare where scholars have 
explored the implementation of regulatory procedures on public health 
(e.g., Gruenspecht and Lave, 2006). In the case of the pharmaceutical 
industry, Dranove (2011) stresses the importance of quality certification 
for efficient and optimal regulation. For drugs, this certification comes 
in the form of the FDA approval process. This process can be divided into 
pre- and post-approval stages. The pre-approval stage includes clinical 
testing and provides the first line of defense to ensure safety and efficacy 
of products. This creates a tension, however, for regulators between 
length of trials and getting new drugs to market. For example, adverse 
events have been increasing (Moore et al., 2007) and have been asso
ciated with declines in pre-approval times (Olson, 2003). This makes 
post-approval safety monitoring critically important. In recent times 
FAERS has served as an important source of data for updating safety 
labeling information (Wysowski and Swartz, 2005). 

Based on these prior studies, adverse safety related information 
should, on the margin, improve physician awareness about the potential 
safety of a drug and lead to changes in behavior. Presumably physicians 
(or consumers) may shift away from a drug given a safety concern. A 
number of studies focused on specific therapeutic markets support this 
association (e.g., Dranove and Olsen, 1994; Smalley et al., 2000; Cheah 
et al., 2007; Olfson and Marcus, 2008; Tekin and Markowitz, 2008; 
Bunniran et al., 2009; Dorsey et al., 2010; Kales et al., 2011; Dusetzina 
et al., 2012; Briesacher et al., 2013; Lu et al., 2014). Prior work also 
documents that this association could be differential; new drugs tend be 
impacted more than existing drugs (Wilkinson et al., 2004) and 
geographic variation could cause the usage of a warned drug to be 
different (Shah et al., 2010). 

What remains unknown from this batch of prior work is what 

constitutes a rational, medically appropriate response? One might 
expect physicians to switch some consumers to other drugs as the 
severity of relabeling events increase but are all of these changes 
medically appropriate or is there some other underlying motivation 
driving the switch? Are physicians being influenced by detailing as 
suggested by Macher and Wade (2016), anticipating future problems (i. 
e., “where there is smoke, there is fire”), practicing defensive medicine 
or responding to consumer concerns? Similarly, do consumers just 
seamlessly switch to different drugs or might they decide to stop treat
ment altogether and leave the market? 

Prospect theory (Tversky and Kahneman, 1992; Kahneman and 
Tverksy, 1979) provides a behavioral explanation as to why physicians 
may switch consumers to other drugs (Verma et al., 2014). While a 
safety relabel is serious it is not necessarily relevant for all consumers, in 
all situations. However, physicians may overestimate the probability of 
a negative event occurring an incorrectly switch a consumer to another 
drug. Prospect theory can also help explain why consumers may ulti
mately choose to leave the market. When confronted with new infor
mation about a drug from their physicians, consumers may also vastly 
overestimate the probability of a negative event. As a result, they may 
incorrectly attribute these same negative effects to substitute drugs that 
physicians prescribe. If consumers make this link they may incorrectly 
conclude that the benefit of a new drug does not outweigh the risk and 
exit the market. 

There is experimental evidence that supports these negative re
sponses by consumers. For example, Bunniran et al. (2009) study trust 
and blame due to the withdrawal of pharmaceutical products as a result 
of safety related concerns. They found that consumers taking the with
drawn drug or those taking another drug within the same class were 
highly likely to blame pharmaceutical companies and the FDA. After an 
event trust in both institutions remained fairly low. These declines 
provide one plausible explanation as to why consumers may formulate 
and attribute the negative effects described by Tversky and Kahneman 
(1992) and Kahneman and Tverksy (1979) to an affected drug or a 
substitute. It also suggests that there are behavioral considerations at 
play that physicians (and regulators) need to consider when consumers 
get switched to a new drug due to safety-related concerns. 

Regulation can also have unintended consequence from spillovers. 
For example, toy recalls due to safety reasons tend to cause negative 

Fig. 1. Drug demand in U.S. and U.K. surrounding relabel events. The figure shows the sales quantity of drugs in the U.S. (treated) and U.K. (control) before and 
after relabeling. The relabeling event is set at t = 0 where time horizon is in quarters and labeled on the x-axis. Sales are shown over eight quarters before and after 
the quarter of relabeling. Drug sales (thousands) are in standardized units determined by IMS Health and natural logarithms are taken (y-axis). 
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industry-wide spillover effects for similar types of toys (Freedman et al., 
2012). In our setting, such spillovers would manifest in the drugs within 
the same market or related market as the affected drug that is relabeled 
due to a safety concern. Krieger et al. (2018) supports this notion and 
demonstrates that there are also innovation impacts to consider. They 
find a decline in the total number of drugs developed in an affected area, 
implying that these negative shocks may slow overall innovation in a 
given therapeutic category. 

These results are concerning given the increase in drugs receiving 
some type of expedited review by the FDA.16 On the one hand, it has 
been shown that drugs cleared via expedited review appear to offer 
greater quality-adjusted life years (QALYs) than those approved via 
conventional methods (Chambers et al., 2017). It appears that the 
expedited review process has helped the FDA prioritize drugs that offer 
greater health gains (0.182 versus 0.003 QALYs). On the other hand, 
these approvals have come at a cost. The evidence appears to suggest 
that the drugs receiving some type of expedited review are more likely to 
receive some type of serious safety label change (e.g., Mostaghim et al., 
2017; Moore and Furberg, 2014; Carpenter et al., 2008). 

4. Empirical strategy and data 

4.1. Empirical strategy 

We exploit FDA relabeling events to estimate a diff-in-diffs specifi
cation. As we discussed above, the relabeling process involves private 
interactions between the FDA and a firm and remains unknown to 
consumers and physicians prior to formal action. We use two groups of 
observations. The first group (treated) includes drugs sold in the U.S. 
Because FDA relabeling events only affects drugs sold in the U.S., our 
treated group is exposed to treatment in the post-relabel period but not 
in the pre-relabel period. The second group (control) is comprised of the 
same exact drugs as those in the treated group but sold in the U.K.17 As 
such, we estimate the following model: 

Yi,t = α + β1Relabeli,t + β2USi + β3
(
Relabeli,t x USi

)
+ γControlsi,t + μi

+ δt + εi,t

(1)  

where Yi,t is demand (i.e., drug sales). Relabeli,t is a dummy variable for 
the post-treatment period represented by drug relabeling events and 
captures aggregate factors that would cause changes in Yi,t even in the 
absence of the treatment. USi is a dummy variable and captures possible 
differences between the treatment and control groups. We include a 
variety of controls, discussed below, as well as drug-level (μi) fixed ef
fects to control for time-invariant heterogeneity between drugs and year 
fixed effects (δt) to control for common shocks impacting all drugs across 
time. This base specification is estimated at differing levels of aggrega
tion so μi will also represent therapeutic market fixed effects. The co
efficient of interest across all models is β3 and it represents the impact 
induced by drug relabeling events on U.S. drugs relative to U.K. drugs. 

Our identification strategy relies on the fact that the control group is 
not exposed to treatment in either period. Importantly, the FDA does not 
have regulatory jurisdiction over drugs sold in the U.K.18 This can be 
visually shown in Fig. 1 where the pre-trends do not appear to violate the 
parallel trend assumption. To test the parallel trend assumption more 
formally we take our pre-trend data and split it in half, defining the 
midpoint as an arbitrary treatment event and estimating our diff-in-diffs 
specification. If the parallel trend assumption is violated the coefficient 
β3will be statistically significant. The results for this placebo test are 
reported in Table A1. The coefficient of interest is not statistically sig
nificant across any model or level of analysis. Combined, the visual 
evidence along with these placebo test results suggest that the parallel 
trends assumption is not violated. 

Table 1 
Distribution of relabel activity between the U.S. and U.K. Our sample con
sists of drugs sold both in the U.S. and U.K. In order to create a clean control 
window we excluded drugs if they were relabeled in the U.K. within eight 
quarters of a U.S. relabel. This table shows the variation in relabeling types 
across the U.S. and U.K. for our sample. Within the imposed restrictions the 
average elapsed time between relabeling in the U.S. and U.K. is 12.95 quarters.  

Relabeling Type U.S. U.K. Average time (Quarters) 

Precaution 226 166 13.48 
Adverse Reaction 176 134 11.83 
Warning 161 115 12.06 
Box Warning 53 35 9.40 
Label Changes 251 180 12.95  

Table 2 
Descriptive statistics. Sales (quantity) are measured in millions of standardized 
units. IMS Health has converted financial variables for U.K. drugs to U.S. dollars. 
All financial variables have been converted to real 2009 U.S. dollars using a GDP 
deflator.  

Variable N Mean Median Std. 
Dev. 

Min Max 

U.S. 6519 0.54 1.00 0.50 0.00 1.00 
Sales (standard 

units) 
6519 21.20 0.88 45.81 0.00 577.85 

Promotion 6519 1.73 0.02 5.40 0.00 63.18 
Lagged promotion 

stock 
6519 6.84 0.68 15.46 0.00 135.17 

Price 6519 91.78 2.36 357.43 0.01 5352.50 
Relabel 6519 0.27 0.00 0.45 0.00 1.00 
Precaution 6519 0.22 0.00 0.42 0.00 1.00 
Adverse reaction 6519 0.16 0.00 0.37 0.00 1.00 
Warning 6519 0.11 0.00 0.31 0.00 1.00 
Box warning 6519 0.03 0.00 0.17 0.00 1.00 
Vintage 6519 23.53 24.00 11.53 1.00 56.00 
Number of brands 6519 7.98 6.00 6.31 0.00 32.00 
Number of generics 6519 13.70 5.00 23.70 0.00 149.00  

16 These issues were discussed in a recent JAMA Forum post: https://newsatj 
ama.jama.com/2018/05/23/jama-forum-the-risks-and-benefits-of-expedited- 
drug-reviews/  
17 There are two ways to approach a control group given our identification 

strategy. First, we could try to find a matched sample of other drugs in the U.S. 
that were not ‘treated’ or did not experience a relabeling event in the same time 
period. One problem with this approach is that ‘matches’ will always be done 
with some error as they would need end up having significantly different 
mechanisms of action because of our intra- and inter-market substitution 
specifications. The second approach, and the one we took here, is the equivalent 
of the ‘twin’ studies in psychology and genetics (e.g., Polderman et al., 2015). 
By using the same exact drug, with the same mechanism of action, we remove 
that potential error or bias from our study. Theoretically, the only bias from our 
approach would be if there were differences between how patients in the U.S. 
and U.K. metabolized a drug; but no evidence exists that suggests that this is the 
case. The variable US will pick up differences between the treated and control 
groups. 

18 The U.K. was chosen for reasons of common language and legal frame
works. La Porta et al (2008) has shown that a country’s laws are highly 
correlated with a broad range of its legal rules and regulations, as well as with 
economic outcomes. There also exists an extensive cross-cultural communica
tions literature that suggests these issues are important. For example, there are 
negative effects of language, such as distortion, blockages and filtration, that 
have long been recognized in the literature (e.g., Bargiela-Chiappini and Nick
erson, 2003). Additionally, language can have a ‘foreignness’ attached to it that 
can act as a barrier and includes coded terms that are common within and 
between groups (Hedlund, 1999; Nahapiet and Ghoshal, 1998). Ultimately, we 
are dealing with medical side-effects that are often reported in technical terms 
which will be common across the U.S. and U.K. By focusing on countries with a 
common language we are minimizing any bias that may be introduced from 
different terms, interpretations, or meanings of words. 
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4.2. Data 

Our sample consists of all drugs sold in both the U.S. and U.K. during 
2003 to 2009 as identified by IMS MIDAS™. Relabeling data for drugs 
sold in the U.S. was collected from the FDA MedWatch database and we 
restricted the data to those drugs that experienced a first-instance of a 
drug relabel.19 Relabeling data for drugs sold in the U.K. was gathered 
from Datapharm’s electronic Medicines Compendium that covers all 
drugs approved by the U.K. Medicines and Healthcare Products Regu
latory Agency (MHRA).20 In order to create a clean control group we 
further restricted our treated drugs to include only those that experi
enced a relabel in the U.S. but no relabel in the U.K. within eight 
quarters of the U.S. relabel. Table 1 provides the distribution of relabel 
activity in the U.S. and U.K. For those drugs that were subsequently 
relabeled in the U.K. the average time until relabel was 12.95 months 
after the relabel event in the U.S. This was shorter than 18.5 months 
documented by Pfistermeister et al. (2013) for a limited sample of 
psychiatric drugs.21 Importantly, we could find no evidence that drug 
relabeling in the U.S., on average, systematically impacted contempo
raneous physician prescription patterns in the U.K. (Fig. 1). This further 
validates our U.K. sample as a clean control for causal estimates in our 

study. 
Next, we gathered quarterly drug-level sales, detailing (i.e., direct to 

physician promotions), and price data from IMS MIDAS™. Sales or 
quantity data is standardized by IMS into a ‘standard unit’ that equates 
pills, tablets and liquids. The data for both the U.S. and U.K. includes 
both hospital and retail channels. IMS MIDAS™ includes all branded and 
generic drugs and covers every therapeutic category. Detailing or direct- 
to-physician promotion data is available for all approved drugs.22 

Financial variables from the U.K. have been converted by IMS to U.S. 
dollars and all financial variables have been converted to real 2009 
dollars using a GDP deflator.23 Descriptive statistics are presented in 
Table 2. 

Note that drugs are approved for use within 4-digit anatomical 
therapeutic chemical (ATC) markets. The ATC classification is 
controlled by the World Health Organization and was designed to 
categorize drugs into different groups according to the organ or systems 
that they treat.24 There are four different levels of classification ranging 
from the most aggregate (1-digit ATC) to most disaggregate (4-digit 
ATC). For example, the 1-digit ATC market N comprises drugs for the 
nervous system. Within ATC N there are seven 2-digit ATC markets that 

Fig. 2. Mapping of ATC. This figure 
maps an example of the ATC therapeu
tic category N from the 1-digit (ATC 1) 
to 4-digit (ATC 4) level. Therapeutic 
category N represents the nervous sys
tem. This category has seven different 2- 
digit ATC categories. Focusing on the 2- 
digit category, N03 – Antiepileptics, it 
contains only one 3-digit ATC category, 
N03A Antiepileptics, which itself con
tains eight 4-digit ATC categories. The 
4-digit ATC category, N03AC Oxazoli
dine derivatives, includes three different 
drugs: (1) paramethadione, (2) trime
thadione, and (3) ethadione. As an 
example, assume that trimethadione 
undergoes a drug relabel. Our primary 
specification analyzes the direct effect 
on trimethadione. Intra-market substi
tution considers the extent to which the 
other drugs within N03AC absorb sales 
from trimethadione. Inter-market sub
stitution considers sales across all 4- 
digit ATC categories, N03AA – N03AX, 
within the same 3-digit ATC category, 
N03A. Drugs within the same 4-digit 
ATC category can be viewed as near 
perfect substitutes while drugs within 
the same 3-digit ATC category can be 
viewed as less perfect, but still medi
cally viable, substitutes. Drugs across 
different 2-digit ATC therapeutic cate
gories are not related for purposes of 
treatment.   

19 It is possible to have multiple different types of relabeling activity at the 
same time. This is not a concern for our baseline models. However, when we 
examine the variation across types of relabeling activity we include those ob
servations in each type of relabeling activity. We focus on four types of relab
eling events: precaution, adverse reaction, warning and box warning. There was 
only one first-instance of a contraindication that met our sample criteria. It was 
excluded from the final sample; our results do not change with this exclusion.  
20 https://www.medicines.org.uk/emc/  
21 In Table A2 we extend the time frame for our baseline model from eight 

quarters to 12 and 16 quarters; our results remain robust to these longer time 
frames. 

22 Detailing is legal in the U.K. during our sample period. The Blue Guide: 
Advertising and Promotion of Medicines in the UK (3rd Edition, Sept 2014) pub
lished by MHRA outlines the regulations and processes for promoting branded 
drugs in the U.K. Ultimately, the Association of the British Pharmaceutical In
dustry (ABPI) sets the Code of Practice (contained in The Blue Guide) for drug 
promotion in the U.K.  
23 It is critical to note that the price data within IMS MIDAS™ is a wholesale 

price. It does not include adjustments as a result of back-end rebate payments or 
any other discounts that may be offered to insurance or prescription benefit 
companies.  
24 For a more detailed discussion: https://www.whocc.no/atc_ddd_method 

ology/purpose_of_the_atc_ddd_system/ 
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contain 19 3-digit ATC markets. Each of these 3-digit ATC markets, in 
turn, contains 4-digit ATC markets. An advantage of our data is that it is 
available at the 4-digit ATC market level and can be aggregated as 
needed allowing us to capture intra- and inter-market substitution pat
terns. An example of the ATC structure across its multiple levels is 
mapped in Fig. 2. 

4.2.1. Dependent variable 
Our baseline dependent variable is drug sales (quantity) in standard 

units as determined by IMS. Sales are aggregated across varying dosages 
to the drug level since a relabeling event will impact the drug similarly 
across dosage types. We define Sales as the natural logarithm of quar
terly drug sales plus one. In addition to the baseline drug level, we will 
consider two additional aggregate models. First, we consider sales of all 
drugs within a drug’s 4-digit ATC market. These drugs can be reasonably 
viewed as close substitutes. For example, both anti-viral drugs InviraseⓇ 

and NorvirⓇ are contained in the 4-digit ATC market J5AE (protease 
inhibitors). Importantly, this aggregation allows us to capture intra- 
market substitution by physicians. 

Second, we move up one more level of aggregation to the 3-digit ATC 
market. At this level of analysis we capture all drugs within multiple 4- 
digit ATC markets but contained within the same 3-digit ATC market.25 

For example, the two 4-digit ATC markets J5AE (protease inhibitors) 
and J5AF (nucleotide reverse transcriptase inhibitors) are contained 
within the 3-digit ATC market J5A (direct acting antivirals). As a second 
example, the two 4-digit ATC markts N3AF (carboxamide derivatives) 
and N3AG (fatty acid derivatives) are contained within the 3-digit ATC 
market N3A (anti-epileptics). This level of aggregation allows us to 
capture inter-market substitution by physicians.26 

4.2.2. Independent variables and controls 
As indicated above, our sample includes drugs that were sold both in 

the U.S. and U.K. We define U.S. as a dummy variable that equals one if 
the drug was sold in the U.S., zero otherwise. In order to implement our 
diff-in-diffs strategy, we define a dummy variable (Relabel) that equals 
one for all observations after a drug’s first relabeling event, zero 
otherwise. Relabel encompasses four types of events: precaution, adverse 
reaction, warning and box warning. 

Prior work has demonstrated the importance of detailing on physi
cian prescription behavior (e.g., Datta and Dave, 2017; Manchanda and 
Honka, 2005) and reducing price elasticity (Windmeijer et al., 2005; 
Rizzo, 1999). However, contemporaneous detailing is a function of 
current sales, which can create a reverse causal relationship. To resolve 
this issue we use lagged promotion stock as studies have shown that 
promotions have a carry-over effect (e.g., Zhao et al., 2013). Impor
tantly, prior promotion expenditures should not be impacted by 
contemporaneous sales. As such we define Lagged promotion stock as the 
discounted sum of the prior three quarters detailing expenditures. We 

follow the literature (Leone, 1995) and use a 70% discount rate, how
ever our baseline results are not sensitive to inclusion or variation in the 
discount rate.27 

Focusing on black-box warnings in the Type-2 diabetes market 
Macher and Wade (2016) found that affected firms took strategic actions 
with respect to promotions to mitigate losses from the relabeling event. 
Lagged promotion stock in the drug-level models will capture these ef
fects. They also found that competitors take advantage of these adverse 
events by increasing promotion activity in order to try to steal market 
share. Lagged promotion stock in the aggregated models at the 4-digit and 
3-digit ATC market-level will control for these competitive dynamics. 
These latter two models will also capture and control for any affected 
firm promotion response. 

Next, we control for several drug and market characteristics that may 
influence sales or demand. First, we define Vintage as a measure of 
elapsed time, in quarters, from introduction to the time of relabel. Drugs 
that have been on the market longer have time to build up brand loy
alties with consumers and physicians even though they may become 
‘outdated’ as newer treatments come to market. Finally, we include 
count variables for the Number of brands and Number of generics. The 
former controls for the intra-market substitution possibilities. The latter 
controls for cross-molecular substitution or the insurance company’s 
ability to attempt to influence physicians to switch patients to a generic 
of another branded drug within the same therapeutic market (Bran
stetter et al., 2016, 2014; Castanheira et al., 2019). 

4.2.3. Endogeneity of price 
As indicated above, for those drugs that have multiple dosages sold 

by the same firm we aggregate the data together to the drug-level. We 
define Price by dividing drug-level revenues by the quantity of drugs 

Table 3 
Effects of relabeling on demand. Dependent variable is the natural logarithm 
of sales, ln(Sales). The unit of analysis in Model 1 is the drug level, Model 2 is the 
4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market (ATC3) 
level. Price is instrumented in all models with relevant tests reported in the table. 
Controls include Vintage, Number of brands, and Number of generics. The models 
are log-linear, as such the marginal effects are calculated using the equation 
exp(β− 1) where β is the respective coefficient on our variable of interest, (Rela
bel*U.S.). Marginal effects for our variable of interest are reported in the lower 
panel. Standard errors are clustered at the 2-digit ATC market level. Constants 
are included in all specifications but omitted from the table. * p < 0.10, ** p <
0.05, *** p < 0.01.   

Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level ATC4 market ATC3 market 
Relabel 0.108*** 0.058** 0.023  

(0.032) (0.024) (0.020) 
U.S. 0.712*** 1.796*** 1.375***  

(0.034) (0.040) (0.036) 
Relabel * U.S. − 0.185*** − 0.052* − 0.048**  

(0.025) (0.028) (0.023) 
ln(Price) − 0.610*** − 1.158*** − 0.544***  

(0.053) (0.049) (0.049) 
ln(Lagged promotion stock) 0.742*** 0.186*** 0.151***  

(0.015) (0.009) (0.007) 
Controls Y Y Y 
Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 
N 6519 5946 4946 
Adjusted R2 0.531 0.765 0.820 
First stage F-statistic 37.12 64.79 26.56 
Hansen J-statistic 2.12 0.15 2.621 
Hansen J p-value 0.145 0.698 0.105 
Marginal effects:    
Relabel * U.S. ¡0.169 ¡0.051 ¡0.047  

25 These markets can be explored at: https://www.whocc.no/atc_ddd_index/? 
code=J05A.  
26 As a robustness check, and as a method to verify we have captured all 

reasonable substitution patterns, on average, we aggregate markets up one 
more level to the 2-digit ATC market. At this level of aggregation we capture all 
3-digit ATC markets contained within a 2-digit ATC market. Each of those 3- 
digit ATC markets will include 4-digit ATC markets. For example, let’s 
consider the 2-digit ATC market J04 (antimycobaterials). It contains two 3-digit 
ATC markets, J04A (drugs for treatment of tuberculosis) and J04B (drugs for 
treatment of lepra). The 3-digit ATC market J04A contains six 4-digit ATC 
markets: J04AA (aminosalicylic acid and derivatives), J04AB (antibiotics), 
J04AC (hydrazides), J04AD (thiocarbamide derivatives), J04AK (other drugs 
for the treatment of tuberculosis), and J04AM (combinations of drugs for the 
treatment of tuberculosis). The 3-digit ATC market J04B contains one 4-digit 
ATC market, J04BA (drugs for the treatment of lepra). Like our 3-digit ATC 
market level of analysis this 2-digit ATC market level of analysis can also be 
viewed as capturing inter-market substitution. 27 Following Leone (1995) we vary the discount rate between 50 and 70%. 
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sold. It is important to note that we are capturing wholesale price and 
this does not include any unmeasured discounting (rebates) by phar
maceutical companies, which is not currently commercially available. 
This price variable, however, will be highly correlated with ultimate 
consumer price and as such will be endogenous.28 To address this 
concern we follow the literature (e.g., Nevo, 2001) and use the mean and 
median price of other drugs in closely related markets as instruments for 
the drug’s price. Specifically, we use the mean and median price of other 
drugs within the same 2-digit ATC market. For example, if our affected 
drug is a MAO-inhibitor (4-digit ATC market C02KC) we take the mean 
and median price of drugs in the broader 2-digit ATC market, C02 
(anti-hypertensives). Drugs within the same 2-digit ATC should, on 
average, be correlated due to similar marginal costs but uncorrelated 
with the affected drug’s unobserved product characteristics. The in
struments pass the usual tests and are reported in the bottom panel of 
each table. 

5. Empirical findings 

5.1. Impact of drug relabeling on demand 

In Table 3 we present empirical results from Eq. (1). Model 1 presents 
estimates at the drug level, Model 2 presents estimates at the 4-digit ATC 
market level and Model 3 presents estimates at the 3-digit ATC market 
level. Model 1 can be viewed as testing the casual impact of drug 
relabeling on aggregate drug demand while Model 2 captures intra- 
market drug substitution. In other words, Model 2 helps us understand 
if physicians switch consumers to another drug in the same 4-digit ATC 
market. An example of such a substitution would be a switch from the 
anti-viral InviraseⓇ to NorvirⓇ. Finally, Model 3 captures inter-market 
drug substitution. In this case, physicians switch patients to another 
drug in a different 4-digit ATC market but within the same 3-digit ATC 
market. In the prior example, both InviraseⓇ and NorvirⓇ are in the 4- 
digit ATC market J5AE (protease inhibitors). In the current example, a 
physician would be switching a patient from either of those two drugs to 
RetrovirⓇ, which is in the 4-digit ATC market J5AF (nucleotide reverse 
transcriptase inhibitors). All three drugs are treatments for HIV and both 
4-digit ATC markets, J5AE and J5AF, are contained within the 3-digit 
ATC market J5A (direct acting antivirals). 

The dependent variable across all three models is Sales and includes 
our full set of controls. In Model 1 we include drug and time fixed effects 
while in Models 2 and 3 we include market and time fixed effects. Price is 
instrumented in all models and passes the usual test statistics, which are 
reported at the bottom of the table. Standard errors are clustered at the 
2-digit ATC market level.29 The coefficient of interest is the interaction 
term (Relabel * U.S.); it is negative and statistically significant across all 
models. In Model 1 we find a 16.9% decline in aggregate drug sales 

caused by the first instance of a drug relabel.30 When we aggregate 
within 4-digit ATC markets in Model 2 we find a 5.1% decline in 
aggregate sales. Importantly, this model accounts for demand of the 
affected drug that was absorbed by other drugs within that same 4-digit 
ATC market. In other words, physicians engaged in intra-market sub
stitution and switched patients to another drug within the same thera
peutic market. From the previous example, this would be a switch from 
InviraseⓇ to NorvirⓇ within the 4-digit ATC market J5AE.31 

This is not the only substitution that can take place. It is possible that 
physicians can engage in inter-market substitution and switch con
sumers to another drug in a different 4-digit ATC market but still within 
the same 3-digit ATC market. Again, in the above example, this would be 
a switch from InviraseⓇ (4-digit ATC market J5AE) to RetrovirⓇ (4-digit 
ATC market J5AF) which are both in 3-digit ATC market J5A. In Model 3 
we find a 4.7% decline in sales for drugs within a 3-digit ATC market 
that experienced a relabel. Critically, the result in Model 3 implies that 

Table 4 
Effects of relabeling on demand: Low-intensity markets. Dependent variable 
is the natural logarithm of sales, ln(Sales). Low-intensity markets are defined as 
those 4-digit ATC markets where there was only one relabeling event over our 
sample period. The unit of analysis in Model 1 is the drug level, Model 2 is the 4- 
digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market (ATC3) 
level. Price is instrumented in all models with relevant tests reported in the table. 
Controls include Vintage, Number of brands, and Number of generics. The models 
are log-linear, as such the marginal effects are calculated using the equation 
exp(β− 1) where β is the respective coefficient on our variable of interest, (Rela
bel*U.S.). Marginal effects for our variable of interest are reported in the lower 
panel. Standard errors are clustered at the 2-digit ATC market level. Constants 
are included in all specifications but omitted from the table. * p < 0.10, ** p <
0.05, *** p < 0.01.   

Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level ATC4 market ATC3 market 
Relabel 0.096* − 0.008 − 0.071  

− 0.052 − 0.094 − 0.089 
U.S. 0.350*** 1.640*** 0.842***  

− 0.056 − 0.094 − 0.085 
Relabel * U.S. − 0.114*** − 0.012 − 0.015  

− 0.04 − 0.07 − 0.064 
ln(Price) − 0.522*** − 1.073*** − 0.445***  

− 0.055 − 0.046 − 0.072 
ln(Lagged promotion stock) 0.691*** 0.153*** 0.166***  

− 0.034 − 0.021 − 0.019 
Controls Y Y Y 
Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 
N 1576 1576 749 
Adjusted R2 0.655 0.561 0.638 
First stage F-statistic 79.67 150.21 16.34 
Hansen J-statistic 1.235 0.477 0.092 
Hansen J p-value 0.267 0.490 0.761 
Marginal effects:    
Relabel * U.S. ¡0.108    

28 A significant body of prior research on the pharmaceutical industry uses 
earlier versions of the IMS Health data that we employ here. Like us, these prior 
researchers do not directly observe retail sales or prices.  
29 There are 126 2-digit ATC markets. 

30 In unreported regressions we exclude ln(Price) and ln(Lagged promotion 
stock), results remain consistent. In a second set of unreported regressions we 
include competitor promotions in Model 1 (Table 3). Again, results remain 
consistent.  
31 In Tables A2 and A3 we test alternative treatment periods. First, in Table A2 

we consider time periods of three (Model 2) and four years (Model 3) before 
and after a drug relabeling. Our base model (Model 1, Table 3) is included as 
Model 1 for comparative purposes. Second, in Table A3 we widen the treatment 
window around the actual drug relabel. As a reminder, our baseline model 
excludes the quarter when a relabeling event occurred. In Model 1 and Model 2 
we increase that exclusion to one and two quarters, respectively, before the 
quarter of relabel. This increase in exclusion will help if information leaks prior 
to announcement. All of the robustness results are consistent with our main 
findings in Table 3. 

M.J. Higgins et al.                                                                                                                                                                                                                              



Research Policy 50 (2021) 104126

9

after controlling for affected firm and competitor actions and capturing 
intra- and inter-market substitution patterns aggregate demand still 
declined by 4.7%. 

It is important to recall the process that is involved with these types 
of substitutions. Only a physician can switch a consumer to another 
drug. While we can detect ex post that a substitution has occurred, we do 
not know what precipitated the move.32 There are several possibilities. 
First, consumers could become informed of the relabel and push a 
physician to switch them. Second, physicians could independently learn 
about the relabel and decide to proactively switch a consumer either for 
medically related reasons or for defensive medicine concerns. Third, 
physicians could learn about the relabel through detailing, either by the 
affected company or by a competitor and then decide to switch a con
sumer to another drug. These explanations are not mutually exclusive 
and there is recent evidence to support the role of detailing (Macher and 
Wade, 2016).33 

Given that our data is at the standard unit level we do not know 
exactly how many consumers this represents because prescription pat
terns will differ across drugs and consumers. We can, however, calculate 
a conservative, lower bound if we assume that the loss was for chronic 
conditions that require daily uptake. Under this assumption, we can 
multiply the decline in aggregate demand from Model 3 by average sales 
over the two-year sample period prior to the relabeling event. This 
translates into an estimated decline of 7.97 million standard units or 

slightly over 265,000 30-day prescriptions. If all of these prescriptions 
were for chronic conditions then this translates into a loss of approxi
mately 11,000 consumers.34 Again, this is likely to be a conservative, 
lower bound estimate because not every prescription is for a chronic 
condition requiring a daily dose. As the number of prescriptions for 
acute conditions increase so would the resulting loss. 

5.2. Heterogeneous impacts across relabeling intensity 

Relabeling intensity varies across therapeutic markets (see 
Table A4). In Tables 4 and 5 we explore how these differential intensities 
impact aggregate demand. We divide our data into two sub-samples and 
define ‘low-intensity markets’ and ‘high-intensity markets’.35 In Table 4, 
low-intensity markets are defined as those 4-digit ATC markets where 
there was only one relabeling event over our sample period. In contrast, 
in Table 5, we define high-intensity markets as those 4-digit ATC mar
kets where more than one relabeling event occurred over the sample 
period. In Table 4, Model 1 the coefficient on the interaction term 
(Relabel * U.S.) is negative and statistically significant at the one percent 
level. We find a decline of 10.8% in aggregate demand for drugs in these 
low-intensity markets. Interestingly, however, in Model 2 and Model 3 
the interaction is not statistically significant. This suggests that intra- 
market substitution absorbed the decline in aggregate drug demand. 

Table 5 
Effects of relabeling on demand: High-intensity markets. Dependent vari
able is the natural logarithm of sales, ln(Sales). High-intensity markets are 
defined as those 4-digit ATC markets where there was more than one relabeling 
event over our sample period. The unit of analysis in Model 1 is the drug level, 
Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC 
market (ATC3) level. Price is instrumented in all models with relevant tests re
ported in the table. Controls include Vintage, Number of brands, and Number of 
generics. The models are log-linear, as such the marginal effects are calculated 
using the equation exp(β− 1) where β is the respective coefficient on our variable 
of interest, (Relabel*U.S.). Marginal effects for our variable of interest are re
ported in the lower panel. Standard errors are clustered at the 2-digit ATC 
market level. Constants are included in all specifications but omitted from the 
table. * p < 0.10, ** p < 0.05, *** p < 0.01.   

Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level ATC4 market ATC3 market 
Relabel 0.118*** 0.072*** 0.026  

− 0.037 − 0.022 − 0.02 
U.S. 0.904*** 1.874*** 1.539***  

− 0.038 − 0.034 − 0.043 
Relabel * U.S. − 0.210*** − 0.062** − 0.051**  

− 0.03 − 0.028 − 0.023 
ln(Price) − 0.846*** − 1.137*** − 0.539***  

− 0.099 − 0.081 − 0.076 
ln(Lagged promotion stock) 0.706*** 0.180*** 0.129***  

− 0.019 − 0.008 − 0.006 
Controls Y Y Y 
Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 
N 4943 4370 4197 
Adjusted R2 0.526 0.833 0.852 
First stage F-statistic 17.61 48.22 33.22 
Hansen J-statistic 1.501 0.218 0.778 
Hansen J p-value 0.221 0.640 0.378 
Marginal effects:    
Relabel * U.S. ¡0.189 ¡0.060 ¡0.050  

Table 6 
Heterogeneous impacts across levels of relabeling severity. Dependent 
variable is the natural logarithm of sales, ln(Sales). Data is split into three sub- 
samples representing precaution (Model 1), adverse reaction (Model 2) and 
warning/box warning (Model 3). The categorization is based on the first time a 
drug is relabeled and allows us to isolate out the effects of any potential prior 
relabeling activity. The unit of analysis across all models is the drug level. Price is 
instrumented in all models with relevant tests reported in the table. Controls 
include Vintage, Number of brands, and Number of generics. The models are log- 
linear, as such the marginal effects are calculated using the equation exp(β− 1) 

where β is the respective coefficient on our variable of interest, (Relabel*U.S.). 
Marginal effects for our variable of interest are reported in the lower panel. 
Standard errors are clustered at the 2-digit ATC market level. Constants are 
included in all specifications but omitted from the table. * p < 0.10, ** p < 0.05, 
*** p < 0.01.   

Model 1 Model 2 Model 3 

DV = ln(Sales) Precaution Adverse reaction Warning/Box 
Relabel 0.111*** 0.143*** 0.176***  

(0.030) (0.040) (0.050) 
U.S. 0.838*** 0.749*** 0.607***  

(0.039) (0.041) (0.051) 
Relabel * U.S. − 0.170*** − 0.227*** − 0.451***  

(0.027) (0.036) (0.059) 
ln(Price) − 0.759*** − 0.528*** − 0.709***  

(0.069) (0.039) (0.070) 
ln(Lagged promotion stock) 0.725*** 0.790*** 0.756***  

(0.017) (0.022) (0.026) 
Controls Y Y Y 
Drug fixed effect Y Y Y 
Market fixed effect N N N 
Time fixed effect Y Y Y 
N 5183 3166 2236 
Adjusted R2 0.517 0.579 0.430 
First stage F-statistic 29.39 65.76 37.76 
Hansen J-statistic 0.81 5.821 1.451 
Hansen J p-value 0.368 0.055 0.228 
Marginal effects:    
Relabel * U.S. ¡0.156 ¡0.203 ¡0.363  

32 This would require data on why physicians switched or changed a 
prescription.  
33 While detailing may help explain why physicians may switch consumers we 

are only able to conjecture why consumers choose to prematurely leave the 
market. The study of this consumer behavior is critical but beyond the scope of 
this paper. 

34 Average quarterly sales (21.2 million) x 4.7% = 0.99 million standard units 
x 8 quarters = 7.97 million standard units. Next, 7.97 million divided by 30 =
265,707 30-day prescriptions. Finally, 265,707 divided by 24 months = 11,071 
chronic patients.  
35 At the 4-digit ATC market-level there are 61 markets categorized as low- 

intensity and 76 as high-intensity. 

M.J. Higgins et al.                                                                                                                                                                                                                              



Research Policy 50 (2021) 104126

10

In other words, in these markets physicians were successfully able to 
switch consumers to another drug within that same 4-digit ATC market. 
To the extent that consumer or physician concerns are warranted due to 
a relabeling event, this is the expected outcome. 

In high-intensity markets, on the other hand, results are more com
plex. Across all models in Table 5 the interaction term is negative and 
statistically significant. In Model 1 aggregate drug demand declined by 
18.9% while in Model 2 aggregate demand declined by 6.0% for drugs 
within a drug’s 4-digit ATC market. As before, Model 2 represents intra- 
market substitution or consumers being switched to other drugs within 
the same 4-digit ATC market. Shifting to the 3-digit ATC market that 
incorporates inter-market substitution patterns, Model 3, aggregate 
demand declined by 5.0%. 

In Tables A5 and A6 we redefine low-intensity and high-intensity 
markets as those markets in the bottom and top quartile of relabeling 
activity.36 Results remain robust with those reported in Tables 4 and 5. 
In low-intensity markets, Table A5, Model 1 aggregate demand declined 
by 10.3%. The interaction was not significant in Model 2 or Model 3 
again suggesting that intra-market substitution absorbed the entire 
decline. For the high-intensity markets, Table A6, Model 1 aggregate 
drug demand declined by 20.1%. In Model 2, which incorporates intra- 
market substitution patterns, aggregate demand declined by 13.0%. 
Finally, in Model 3 that incorporates inter-market substitution, aggre
gate demand declined by 8.3%; markets with repeated negative shocks 
appear to reinforce consumers’ behavioral responses. 

5.3. Heterogeneous impacts across levels of relabeling severity 

As discussed in Section 2 the severity of drug relabeling spans from 
precaution (least serious) through box warnings (most serious). Table 6 
explores whether the aggregate demand response we document varies 
across this continuum of severity. We split the data into three sub- 
samples representing precaution (Model 1), adverse reaction (Model 
2) and warning/box warning (Model 3). The categorization continues to 
be based on the first time a drug is relabeled and allows us to isolate out 
the effects of any potential prior relabeling activity. Drugs that have 
multiple types of relabeling are counted individually in each category.37 

Across all models the interaction remains negative and statistically 
significant. As expected, we see an increasingly negative aggregate de
mand response as severity increases; aggregate demand declines by 
15.6%, 20.3% and 36.3% in Models 1, 2 and 3, respectively. 

The increasing decline in aggregate demand as severity increases 
should not be surprising; physicians appear to be switching consumers to 
other drugs as new potential risks reveal themselves. Notwithstanding 
this general decline, the magnitude of results in Model 1 are unexpected. 
This appears to be a rather strong aggregate demand response given the 
limited severity of the relabeling event. Unfortunately, we don’t know 
what caused physicians to react in such a significant way. That said, if 
the response is medically warranted or if physicians believe there may 
be future problems with a relabeled drug, then we should see intra- 

Table 7 
Effects of precaution/adverse reaction relabeling on demand. Dependent 
variable is the natural logarithm of sales, ln(Sales). Sample includes the com
bination of precaution and adverse reaction. The unit of analysis in Model 1 is 
the drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 
3-digit ATC (ATC3) level. Price is instrumented in all models with relevant tests 
reported in the table. Controls include Vintage, Number of brands, and Number of 
generics. The models are log-linear, as such the marginal effects are calculated 
using the equation exp(β− 1) where β is the respective coefficient on our variable 
of interest, (Relabel*U.S.). Marginal effects for our variable of interest are re
ported in the lower panel. Standard errors are clustered at the 2-digit ATC 
market level. Constants are included in all specifications but omitted from the 
table. * p < 0.10, ** p < 0.05, *** p < 0.01.   

Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level ATC4 market ATC3 market 
Relabel 0.068** 0.067*** 0.021  

(0.032) (0.024) (0.021) 
U.S. 0.659*** 1.779*** 1.440***  

(0.039) (0.042) (0.033) 
Relabel * U.S. − 0.159*** − 0.052* − 0.041*  

(0.035) (0.028) (0.023) 
ln(Price) − 0.569*** − 1.175*** − 0.700***  

(0.053) (0.045) (0.027) 
ln(Lagged promotion stock) 0.808*** 0.186*** 0.151***  

(0.018) (0.009) (0.007) 
Controls Y Y Y 
Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 
N 6310 5722 4955 
Adjusted R2 0.407 0.768 0.812 
First stage F-statistic 49.62 70.28 42.90 
Hansen J-statistic 0.065 0.090 2.254 
Hansen J p-value 0.799 0.765 0.133 
Marginal effects:    
Relabel * U.S. ¡0.147 ¡0.051 ¡0.040  

Table 8 
Effects of warning/box warning relabeling on demand. Dependent variable 
is the natural logarithm of sales, ln(Sales). Sample includes the combination of 
warning and box warning. The unit of analysis in Model 1 is the drug level, 
Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC 
market (ATC3) level. Price is instrumented in all models with relevant tests re
ported in the table. Controls include Vintage, Number of brands, and Number of 
generics. The models are log-linear, as such the marginal effects are calculated 
using the equation exp(β− 1) where β is the respective coefficient on our variable 
of interest, (Relabel*U.S.). Marginal effects for our variable of interest are re
ported in the lower panel. Standard errors are clustered at the 2-digit ATC 
market level. Constants are included in all specifications but omitted from the 
table. * p < 0.10, ** p < 0.05, *** p < 0.01.   

Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level ATC4 market ATC3 market 
Relabel 0.176*** 0.020 0.005  

(0.050) (0.034) (0.029) 
U.S. 0.607*** 1.821*** 1.545***  

(0.051) (0.048) (0.042) 
Relabel * U.S. − 0.451*** − 0.105** − 0.087**  

(0.059) (0.044) (0.036) 
ln(Price) − 0.709*** − 0.997*** − 0.533***  

(0.070) (0.059) (0.028) 
ln(Lagged promotion stock) 0.756*** 0.174*** 0.117***  

(0.026) (0.012) (0.012) 
Controls Y Y Y 
Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 
N 2236 2189 1991 
Adjusted R2 0.430 0.834 0.812 
First stage F-statistic 37.76 96.64 753.48 
Hansen J-statistic 1.451 0.824 1.653 
Hansen J p-value 0.228 0.364 0.199 
Marginal effects:    
Relabel * U.S. ¡0.363 ¡0.100 ¡0.083  

36 At the 4-digit ATC market-level there are 35 markets in the bottom quartile 
and 36 markets in the top quartile. 

37 For example, if a relabeling event included both a precaution and an 
adverse reaction it would be included both as a precaution and adverse reaction 
individually. 
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market substitution absorb this decline.38 

We examine this in Table 7 where we split the sample and combine 
the two least severe relabeling events (i.e., precaution and adverse re
action) together. Again, across the models we find a negative and sta
tistically significant coefficient on our interaction of interest. At the drug 
level, Model 1, aggregate demand declined by 14.7% while at the 4-digit 
ATC market level, which incorporates intra-market substitution, 
aggregate demand declined by 5.1%. At the 3-digit ATC market level, 
Model 3, which accounts for inter-market substitution aggregate de
mand still declines by 4.0%. 

In Table 6 Model 3, aggregate demand declined by 36.3% for drugs 
that received either a warning or box warning. This response should not 
be surprising given the severity of the relabeling event. In Table 8, we 
combine warnings and box warnings and examine their intra- and inter- 
market substitution patterns. Across all three models in Table 8 our 
coefficient on the interaction term is negative and statistically signifi
cant. At the 4-digit ATC market level that incorporates intra-market 
substitution patterns (Model 2), aggregate demand declined by 10.0%. 
At the 3-digit ATC market level that accounts for inter-market substi
tution patterns (Model 3), aggregate demand declined by 8.3%. As the 
severity of the relabeling event increases (Table 7, Model 3 versus 
Table 8, Model 3) the aggregate demand response increases as well.39 

Importantly, given the substitution patterns captured within Model 3, 
consistent with prospect theory, consumers appear to be viewing po
tential substitutes in the same negative manner as the affected drug. 

Finally, we combine the intensity levels of relabeling activity from 
the prior section and examine how it impacts the heterogeneity of 
relabeling severity that we considered in this section. In Tables A9 and 
A10 we replicate Tables 7 and 8 for low-intensity markets. Results are 
consistent with our prior findings (Table 4 and Table A5). In Tables A9 
and A10 we see declines in aggregate demand (Model 1) of 6.6 and 
45.0%, respectively. Results in Models 2 and 3 are not statistically sig
nificant, suggesting that the entire decline in aggregate drug demand 
was absorbed by intra-market substitution. 

In Tables A11 and A12 we replicate Tables 7 and 8 for high-intensity 
markets. Again, results are consistent with our prior findings for high- 
intensity markets (Table 5 and Table A6). For relabeling events that 
involved precaution or adverse warnings in high intensity markets, 
aggregate demand declined by 17.3% (Table A11, Model 1). At the 4- 
digit ATC market (Model 2) that incorporates intra-market substitu
tion patterns, aggregate demand declined by 5.9%. Finally, at the 3-digit 
ATC market level (Model 3) that incorporates inter-market substitution 
patterns, aggregate demand declined by 4.8%. The most significant 
declines are in high-intensity markets with warnings or box warnings 
(Table A12). Aggregate demand declined by 34.3% at the drug level 
(Model 1), 10.4% at the 4-digit ATC market level (Model 2), and 15.8% 
at the 3-digit ATC market level (Model 3). Unlike low-intensity markets 
where intra-market substitution absorbed the decline in aggregate drug 
demand, in high-intensity markets we see significant declines in 
aggregate demand. 

5.4. Impact on firm performance 

Prior research has demonstrated that positive demand shocks 
generate more R&D (Blume-Kohout and Sood, 2013; Dranove et al., 
2014; Manso et al., 2019). To the extent that a negative shock decreases 
market size, we would expect to see a decline in R&D (Acemoglu and 
Linn, 2004); which is consistent with Krieger et al. (2018). In an effort to 
estimate the economic losses from these regulatory shocks on firm 
performance we conduct an event study. The advantage of the event 
study methodology in this instance is that it will capture the loss in 
future discounted cash flows from two sources: (1) the unexpected losses 
in revenues from the relabeled drug over its remaining lifecycle; and, (2) 
the unexpected losses from declines in future innovation. 

We follow McWilliams and Siegel (1997) to compute cumulative 
abnormal returns (CAR). First, we estimate the market model using OLS 
over a period of 250 days prior to the event. The estimation equation is 
the following: 

Rit = αit + βit ∗ Rmt + ϵit (2)  

where Rit is the return for firm i at time t and Rmt is the market return. 
The estimated OLS parameters represent the stock’s “normal” return 
with respect to the market in a period prior to the event. The abnormal 
return (AR) is defined as the return during a time span that includes the 
relabeling event minus the estimated return accounting only for the 
market effect. In other words, the abnormal return is the forecast error 
between the “actual” and the “normal” rate of returns. Empirically it is 
estimated as: 

ARit = ϵit = Rit − (αit + βit ∗Rmt) (3) 

After estimating the abnormal returns for each firm i at time t, CAR is 
computed as the cumulative value of the standardized abnormal returns 
or: 

CARi =

(
1

k0.5

)

∗
∑k

t=1

ARit

SDit
(4)  

where ARit is defined by Eq. (3), SDit is the abnormal return standard 
deviation and k represents the event window. We consider two different 
standard event windows (− 1,+1) and (− 3, +1). The event date is 
defined as t = 0 and it represents the date of the public announcement of 
the relabeling event. Thus, the first event window considers the day of 
the event plus one day on other side of the event. The second event 
window considers the day of the event plus one day after and three days 
prior to the event. Finally, we multiply CARs by firm market capitali
zation data obtained from COMPUSTAT. The monetized value of CAR 
represents the unexpected change in the stream of future discounted 
cash flows from the two sources identified above. 

We find CARs of − 0.49% and − 0.76%, significant at the 1% level, 
across the two event windows, (− 1, +1) and (− 3, +1), respectively. 
Multiplying these CARs by firm market capitalization data translate into 
average losses of between $569 million and $882 million. A back of the 
envelope calculation allows us to parse the losses into their two sources. 
From Model 1, Table 3 we know that drug demand falls, on average, by 
16.9%. Multiplying this by average quarterly sales (21.2 million SU x 
16.9%) and dividing by three equals monthly losses of 1.2 million SU. 
Next, we multiply this loss in demand by median price ($2.36) and by 
the average effective remaining patent life (66 months) for a total loss of 
$186 million.40 The remaining difference of between $383 million and 

38 The average probability that a drug that has received a precaution receives 
another relabel is 72.2%. As such, physicians may be pre-emptively switching 
patients to another drug. However, in this case we should see the entirety of 
aggregate demand decline of a drug absorbed by intra-market substitution.  
39 In Tables A7a, 7b, 8a and 8b we consider alternative time periods. First, in 

Tables A7a and 7b we consider three and four years before and after a relab
eling event (as opposed to two years in our baseline model). Second, our 
baseline model excludes the quarter in which a relabeling event occurred. In 
Tables A8a and 8b we exclude one and two quarters prior to the relabeling 
event (along with the quarter of the event). In both tables and across all models 
our results remain robust to our baseline findings. 

40 Grabowski and Vernon (2000) report an average effective patent life for 
branded drugs of 11.5 years. The mean/median of Vintage is 24 quarters or 6 
years resulting in an average remaining effective patent life of 5.5 years or 66 
months. 
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$696 million can be attributed to the unexpected losses from declines in 
future innovation.41 Importantly, this result combined with Krieger 
et al. (2018), provides evidence that the impact on upstream innovation 
from downstream regulatory shocks are significant. 

6. Robustness 

6.1. Variation across market concentration and market size 

It may be possible that variation in market size or the level of 
competition within markets may differentially influence physician pre
scribing behavior or consumer behavior. For example, business or gen
eral news stories may enhance physician or consumer awareness about a 
drug. We examine these issues in Table A13. In Models 1 and 2 we 
separate markets into the bottom and top quartiles of sales while in 
Models 3 and 4 we create a Herfindahl-Hirschman Index (HHI) and 
separate markets into the bottom and top quartiles, respectively. Across 
all models we find a negative and significant coefficient on our inter
action term. Aggregate demand declined by 9.5% and 19.8% in the 
bottom and top sales quartiles (Models 1 and 2), respectively. However, 
when we consider the bottom and top quartiles of HHI, the difference 
becomes negligible. In Models 3 and 4, aggregate demand declined by 
22.8% and 21.3%, respectively. Thus, we see some variation in response 
across market sizes but not across levels of competition. 

6.2. Heterogeneity across therapeutic markets 

A benefit of the breadth of our data is that we capture all therapeutic 
markets; the impacts we find are average effects across these markets. 
Lost in our analysis, however, is the potential heterogeneity that may 
exist between markets. Thus, we examine two therapeutic markets that, 
according to our discussions with physicians and prior research, exhibit 
significantly different adherence rates and treatment periods. The first 
market we consider is ATC N (nervous system), which is comprised of 
seven 2-digit ATC therapeutic markets: anesthetics (N01), analgesics 
(N02), antiepileptics (N03), anti-Parkinson (N04), psycholeptics (N05), 
psychoanaleptics (N06) and other nervous system drugs (N07). 

Within these 2-digit ATC markets we have additional 3-digit and 4- 
digit ATC markets. For example, within N06 resides anti-depressants 
(N06A) and anti-dementia (N06D) drugs. In general, ATC N exhibits 
lower levels of non-adherence and longer treatment periods than our 
second therapeutic market. One study places the non-adherence rates of 
antiepileptic drugs at 26% (Faught et al., 2008). In Table A14 we find a 
decline in aggregate drug demand of 21.4% (Model 1), however, the 
coefficient of interest is not significant in Model 2 or Model 3. These 
markets experience greater declines in aggregate demand, in%age 
terms, than we saw for the overall sample, however, the entire decline is 
absorbed by intra-market substitution. That is, physicians successfully 
switch consumers to other drugs within the same 4-digit ATC market. 

The second market that we consider is ATC J (anti-infectives), which 
is comprised of six 2-digit ATC markets: anti-bacterials (J01), anti- 
mycotics (J02), anti-mycobaterials (J04), anti-virals (J05), immune 
sera and immunoglobulins (J06), and vaccines (J07). The 2-digit ATC 
market J01 includes 10 different 3-digit ATC markets comprising 
various classes of anti-bacterials; for example, tetracyclines (J01A) and 
beta-lactam anti-bacterials/penicillins (J01C). In general, these ATC 

markets exhibit greater rates of non-adherence and shorter treatment 
periods than ATC N. Two recent studies (Fernandes et al., 2014; Tong 
et al., 2018) place the non-adherence rates for antimicrobial therapies at 
greater than 57%. In Table A15 we find a decline in aggregate demand of 
24.2% (Model 1). In these markets, however, we also see declines of 
13.8% and 13.5% in the 4-digit (Model 2) and 3-digit (Model 3) ATC 
markets, respectively. 

While we only explore two markets we see rather significant het
erogeneity in physician substitution patterns and consumer response. 
These two markets were intentionally chosen because they differed in 
non-adherence rates and average treatment lengths. Unfortunately, we 
lack the data to say for certainty what specific attribute of these markets 
caused the physician and consumer responses that we observed. What 
we can say, however, is that there appears to be significant heteroge
neity across markets and this has implications for firm and competitor 
responses as well as for regulators. Further work exploring the why 
behind these movements is clearly warranted. 

7. Discussion and conclusions 

Regulatory interventions rarely occur without consequences, many a 
times unintended. Understanding how they impact markets are impor
tant for both firms and policymakers, especially in markets that are R&D 
intensive, like pharmaceuticals. While we are not the first to analyze the 
impacts of drug relabeling in the U.S, we are the first to do so in such a 
comprehensive and causal manner. Given the breadth of our data we are 
able to incorporate all plausible intra- and inter-market substitution 
patterns along with affected firm and competitor actions. This allows us 
to estimate not only the causal impact of a relabeling event on a drug but 
also quantify the overall effects on aggregate demand. In our baseline 
regressions (Table 3, Model 1) we find a decline in aggregate drug de
mand of 16.9%. Our back of the envelope calculation suggests that this 
decline translates into an average loss of $186 million over the drug’s 
remaining effective patent life. 

This is not the only loss that the affected firm suffers. In addition to 
losses in current and future sales from the affected drug, there can be 
unexpected losses from declines in future innovation (Krieger et al., 
2018). In order to calculate the economic losses from these combined 
effects we utilize an event study. Results across two standard event 
windows translate into average losses of between $569 million and $882 
million. Backing out the $186 million from the average loss to the 
affected product suggests that the market is anticipating unexpected 
losses attributable to declines in future innovation in the range of $383 
million to $696 million. Combined with Krieger et al. (2018) our results 
suggest that these regulatory shocks are causing significant enough 
damage to downstream aggregate demand such that upstream innova
tion is being impacted. 

When we take a step back and consider intra-market substitution 
patterns, or the shifting of consumers to another drug within the same 4- 
digit ATC market, we find an aggregate demand decline of 5.1% 
(Table 3, Model 2). In a different setting, Macher and Wade (2016) find 
that competitors take advantage of drugs when they are hit with 
black-box warnings. Our findings are broadly consistent with Macher 
and Wade (2016) as this specification controls for both the promotion 
activity by the affected firm as well as competitor firms. However, the 
extent to which competitor firms ‘pull’ consumers via promotion activity 
or they are ‘pushed’ by physicians due to behavioral explanations, is 
undetermined. 

If we take yet another step back and consider both intra- and inter- 
market substitution patterns, or the shift of consumers to another drug 
in a different 4-digit ATC market but within the same 3-digit ATC 
market, we still find a decline in aggregate demand of 4.7% (Table 3, 
Model 3). This result suggests that not all consumers are absorbed by 
competitors after accounting for all plausible substitution patterns; some 
consumers prematurely leave the market. Thus, across our baseline re
sults these regulatory shocks have implications for affected firms, intra- 

41 More broadly, this can be viewed as a loss to the firm. Given the underlying 
assumptions of an event study, these losses are abnormal or unexpected. The 
first source of loss are the future sales of the relabeled drug, which we attempt 
to approximate. Given the findings in Krieger et al. (2018) the next obvious 
source of unexpected loss would be to future innovation. It remains plausible 
that our results are also detecting other types of loss which remain unknown. 
For example, declining sales of the affected drug may cause inefficiencies in 
other downstream cospecialized assets thereby raising costs to the firm. 
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market competitors, inter-market competitors and welfare, which we 
discuss below. Importantly, all of these results should be viewed as lower 
bounds. Given evidence that not all consumers and physicians may be 
fully informed of these regulatory shocks it is probable that the effects 
we document may not be capturing the full aggregate demand shock and 
impacts on firm performance. 

Complementing our baseline results, we find increasing impacts 
across all levels of relabeling severity (Table 6). Consistent with prior 
literature (e.g., Dorsey et al., 2010) we find the greatest impact for the 
most severe type of relabel. Less intuitive, however, is why we see such a 
significant demand response for the least severe relabel (i.e., precau
tion). Conditional on receiving a precaution, there is a significant 
probability that a drug will be relabeled again in the future. So it is 
plausible that physicians are preemptively switching consumers to other 
drugs. After accounting for intra- and inter-market substitution (Table 7) 
we find a 4.0% decline in aggregate demand. While we conjectured in 
the paper as to physician and consumers motivations, understanding 
their respective why is left for future work. 

We exploit other variation in our data. For example, we break mar
kets into “low-intensity” and “high-intensity” markets based on the level 
of relabeling activity within a particular 4-digit ATC market. In the case 
of low-intensity markets (Tables 4 and A5) and low-intensity markets 
across types of relabeling (Tables A9 and A10), we find that the entire 
decline in aggregate demand was absorbed by intra-market substitution. 
That is consumers were all successfully switched to other drugs within 
the same 4-digit ATC market. In contrast, in the case of high-intensity 
markets (Table 5 and Table A6) and high-intensity markets across 
types of relabeling (Tables A10 and A11) we find persistent declines in 
aggregate demand. This split is an important caveat to the extant liter
ature, especially the work focused on box warnings (e.g., Dorsey et al., 
2010; Olfson et al., 2008; Jacoby et al., 2005) because it suggests the 
impacts are more nuanced. 

A significant body of work has focused on elasticity and brand loyalty 
within the pharmaceutical industry (e.g., Bala et al., 2017). These issues 
are critical, for example, for pricing strategies and how firms respond to 
competitors and structure end of life strategies of branded products. The 
culmination of our baseline findings suggest that firms should also be 
concerned with the magnitude of consumer (and physician) response to 
adverse news from relabeling events. While some of these shifts may be 
medically warranted, others may be due to competitor behavior 
(Macher and Wade, 2016), physicians responding defensively, con
sumers acting irrationally or some combination of these. Given that we 
control for firm detailing/promotion activities our findings suggest that 
affected firms are not able to stem the decline in demand. All of this 
suggests that how physicians (and consumers) receive information may 
have important implications. 

More broadly, our results have implications for policymakers. There 
are a number of FDA programs that offer expedited development and 
review for new drugs. These programs all attempt to bring new, novel 
drugs to market more quickly. Evidence exists that these programs have 
been successful (Chambers et al., 2017). However, drugs approved 
through these expedited pathways are also more likely to suffer from 
serious safety label changes (Mostaghim et al., 2017; Moore and Fur
berg, 2014; Carpenter et al., 2008). As we have documented throughout 
this analysis, those changes have significant impacts on firm perfor
mance, including downstream aggregate demand as well as upstream 
innovation. These impacts add another layer of complication for regu
lators to consider in balancing safety with speed. Importantly, these 
results combined with our results and of those of Krieger et al. (2018) all 
point in the direction that we may be trading quicker access to new, 
novel drugs today for less innovation tomorrow. 

This trade-off suggests our results have plausible welfare implica
tions. By its nature, regulation should be welfare enhancing but there is 
evidence that this may not always be the case (e.g., Kessel, 1967; Sloan 
and Steinwald, 1980; Bartel and Thomas, 1985, 1987; Peltzman, 1987; 
Ter-Martirosyan and Kwoka, 2010). If consumers that leave the market 

should be treated, then this shift to the non-treated population could be 
a detriment to welfare. Moreover, if consumers remain treated but are 
switched to drugs that are less effective, this will again be a detriment to 
welfare. On the other hand, it is widely believed that some drugs are 
overprescribed (Lembke et al., 2018; Sacarny et al., 2016; Forgacs and 
Loganayagam, 2008; Price et al., 1986). If it is these consumers that exit 
the market then the impact on welfare may be dampened. Combined 
with this dynamic is the impact on welfare from lost future innovation. 
Balanced against these potential losses are the gains from the true pur
pose of relabeling – potentially preventing consumers from being 
harmed. As we can observe in the recent past, the world is already 
witnessing a demonstration of these tradeoffs in rapid approval of 
COVID-19 drugs and vaccines. Further work is warranted. 
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