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Abstract: Continuous chaos may collapse in the digital world. This study proposes a method of error
compensation for a two-dimensional digital system based on the generalized mean value theorem
of differentiation that can restore the fundamental performance of chaotic systems. Different from
other methods, the compensation sequence of our method comes from the chaotic system itself and
can be applied to higher-dimensional digital chaotic systems. The experimental results show that
the improved system is highly consistent with the real chaotic system, and it has excellent chaotic
characteristics such as high complexity, randomness, and ergodicity.
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1. Introduction

In nature and human society, a large number of interactions are non-linear. Chaos is
an inherent characteristic of nonlinear dynamic systems and a common phenomenon in
nonlinear systems. The chaos phenomenon is a deterministic and stochastic process that
appears in a nonlinear dynamic system. This process is neither periodic nor convergent,
and it has a sensitive dependence on the initial value. In daily life, behaviors such as popu-
lation movement, weather changes, and social behavior can all be called chaotic [1]. Chaos
promotes and relies on each other with other sciences. It is worth mentioning that, due to
the special characteristics of chaos, such as initial sensitivity, ergodicity, unpredictability,
and topological transitivity, a large number of security applications based on chaos have
appeared [2].

The existing chaotic cipher schemes are mainly based on the chaotic system imple-
mented on the digital precision equipment [3] and the digital chaotic system. However, in
the implementation of a digital chaotic system, due to the limitations of limited precision
equipment, the dynamic behavior of the digital chaotic system will degenerate, and the
excellent characteristics of the chaotic system will disappear, such as the short cycle orbit,
the low complexity, the strong correlation, and the uneven distribution, so that its output
carries the characteristics of the system. If the attacker obtains part of the orbit information
of the chaotic system and analyzes it according to the characteristics carried by the system,
the chaotic system may be attacked. Therefore, the anti-degenerate chaotic system plays
an important role in the field of cryptography and is of great significance to ensure the
security of chaotic security systems.

At present, there are six methods to improve the dynamic degradation of digital
chaotic systems. The first is to use high precision [4,5], which is the most direct method
to improve power degradation. However, the cost of this method is high, and the effect
achieved is not very good.The second is to cascade multiple chaotic systems. This method
was proposed by Zhou et al. [6–9]. The main idea is to cascade two separate digital chaotic
systems to increase the complexity of the digital chaotic system. This method is easy to
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implement and can make the output of the digital chaotic system not reflect any system
characteristics, but it will lead to poor distribution. The third type is coupling [10–19],
which couples the digital chaotic system and the continuous chaotic system one way or
two ways. This method cleverly makes use of the complementarity between the digital
chaotic system and the continuous chaotic system, but, compared with other methods, this
method is more expensive to implement, and the system is more complex. The fourth type
is switching [20], which means that when the digital chaotic system is about to appear
degraded, the digital chaotic system is switched to another digital chaotic system, so as
to avoid the short period of the system. The effect of this method largely depends on the
rules of switching. The fifth type is perturbation [21–30]. Perturbation refers to adding a
slight disturbance to the system. When the system is about to enter a cycle, the state can
be pulled away immediately to prevent it from entering a cycle. However, the effect de-
pends largely on the choice of the perturbation source. The sixth is the error-compensation
method [31]. The purpose of this method is to restore the original chaotic system as much
as possible, compensating the truncated part of the digital system. This method is less
expensive to implement, and the effect is more obvious. Therefore, this study adopted an
error-compensation method to improve the performance of the digital chaotic system.

Hu et al. [31] proposed a variable parameter compensation method (VPCM) based
on Lyapunov exponents. They used variable parameters and Lyapunov exponents to
improve the performance of logistic digital systems according to the differential median
theorem. Deng et al. [16] made further improvements on the basis of the former and
proposed a logistic digital system control method (VPCMDP) based on the differential
mean theorem and state feedback technology. Both of these two methods are based on
error compensation. The purpose of the former is to restore the digital logistic system to
the real chaotic logistic chaotic system, and the improvement of the latter further combines
the digital logistic system with cryptographic applications. However, the disadvantage of
these two methods is that they cannot be applied to high-dimensional systems. According
to [32], they extended the differential median theorem of one-dimensional functions to
multi-dimensional functions. Therefore, we proposed a method of error compensation for
a two-dimensional digital system (Henon map) based on the generalized mean value theo-
rem of differentiation to make it close to the real chaotic system. Additionally, we named
our method as the error-compensation method for high-dimensional systems (ECMHD).

The second section of this article introduces the two-dimensional chaotic system-
Henon mapping and expands the description of its dynamic degradation behavior when it
is implemented on digital devices; the third section proposes a new compensation method
ECMHD for the digital Henon system; the fourth section compares it with the digital
Henon system and the other three latest methods; and the last section is the conclusion of
this article.

2. Dynamical Degradation of the Digital Henon Map
2.1. Henon Map

A Henon map is a discrete-time dynamic system that can produce chaotic phenomena.
Its iterative expression is shown as follows:{

xi+1 = 1− axi
2 + yi

yi+1 = bxi
(1)

where xi ∈ [−1.5, 1.5], yi ∈ [−0.4, 0.4], a, and b are parameters. When a = 1.4 and b = 0.3,
it is Henon’s typical mapping. At this time, the mapping is chaotic. Under atypical
values, this mapping may be non-chaotic and may exhibit periodicity. Theoretically, the
two-dimensional Henon map has good ergodicity and random orbits in the phase space.
However, when the Henon map is implemented on a finite precision device, its performance
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will degrade and no longer show chaotic phenomena. It will degenerate into the following
digital system: {

x∗i+1 = 1− ax∗i
2 + by∗i

y∗i+1 = bx∗i
(2)

where x∗i = FL(xi); y∗i = FL(yi); f is a non-linear function; and FL(·) is a quantization
function, which is FL(x) = bx · 2pc · 2−p. It represents rounding down and returns the
integer that is less than or equal to the function parameter closest to it. We set a low
precision p = 8; the lower the precision, the lower the cost of system implementation, and
it can also prove the effectiveness of our method. We randomly chose the initial values
x0(1) = 0.9649 and y0(1) = 0.1576; the parameters were a = 1.4 and b = 0.3. Then, we
observed the digital Henon map with degraded dynamics.

2.2. Dynamical Degradation of Digital Henon Map

We analyzed the trajectory of the digital Henon system; the trajectory can be the
most intuitive to see the state of the system. Take the x-dimension as an example. It
can be seen from Figure 1a that the digital Henon system has a period-doubling phe-
nomenon after about 50 iterations. Then, we analyzed the state frequency distribution of
the system. It can be seen from Figure 1b that the system mainly focuses on the states of
several phase diagrams. This is because the state of the digital Henon system is limited to
Ωp = {xi = k × 2−p|k = 0, 1, 2, . . . , 2p−1}. Then, the phase diagram of the system, as
shown in Figure 1c, will not achieve ergodicity. At the same time, we analyzed the correla-
tion of the system: auto-correlation, also called sequence correlation, is the cross-correlation
of a signal with itself at different points in time, which is a good measure of randomness. It
can be seen from Figure 1d that the auto-correlation of the system was relatively strong.
Cross-correlation means the degree of correlation between two time series. Here, we made
small changes to the initial value, x0(2) = 0.9649 + 2−p, y0(2) = 0.1576 + 2−p, and we
obtained a new sequence. We tested the correlation between the newly obtained sequence
and the previous sequence, and the result is shown in Figure 1e, which shows that the two
sequences have a high correlation. Figure 1f shows the signal power spectrum, which did
not have ultra-wide band requirements.

In addition, we also used approximate entropy and information entropy to measure
the complexity of the digital Henon map. Approximate entropy is a nonlinear dynamic
parameter used to quantify the regularity and unpredictability of time series fluctuations.
It uses a non-negative number to represent the complexity of a time series and reflects the
possibility of new information in the time series. The more complex the time series, the
greater the approximate entropy. We measured the approximate entropy of the system
under different initial values when p = 8. As shown in Figure 2a, the approximate entropy
of the digital Henon system was stable at 0.2–0.3, which shows that the complexity of the
system was relatively low. Figure 2b shows the approximate entropy under the same initial
value and different precision. It can be seen that when the precision is low, the approximate
entropy of the digital system is positively correlated with the precision of the digital Henon
system. When the precision reaches 24, it basically stabilizes at 0.7. Information entropy
is a parameter that measures the uncertainty or unpredictability of a time series. When
p = 8, the ideal value of information entropy is 8. As shown in Figure 2c, the information
entropy under different initial values is stable at about 5, indicating that the system has
strong regularity.
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Figure 1. The dynamical properties of the digital Henon map. (a) The x-dimensional trajectory.
(b) The x-dimensional distribution. (c) Phase diagram. (d) Auto-correlation. (e) Cross-correlation.
(f) Signal power spectrum.
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Figure 2. Entropy analysis of the digital Henon map. (a) Approximate entropy with different initial
value. (b) Approximate entropy under different precision. (c) Information entropy with different
initial value.

3. A Novel Method for a Digital Henon Map
3.1. Method Description

From Equations (1) and (2), it was concluded that there were errors between xi and
x∗i and yi and y∗i . We used ∆xi and ∆yi to represent them, respectively. The relationship
between them can be expressed by Equations (3) and (4)

xi = x∗i + ∆xi (3)

yi = y∗i + ∆yi (4)

According to the one-dimensional differential mean value theorem:

f (x + ∆x) = f (x) + f ′(x + θ∆x) · ∆x 0 < θ < 1 (5)

We get Equation (6)

f (xi) = f (x∗i + ∆xi) = f (x∗i ) + f ′(x∗i + θ∆xi)∆xi 0 < θ < 1 (6)

Let ε = x∗i + θ(xi − x∗i ). Since the Henon map is a high-dimensional map, according
to some one-dimensional theorems provided by the [32], it can be extended to high-
dimensional space examples. We list its Jacobian matrix:[

f (xi)
f (yi)

]
=

[
f (x∗i )
f (y∗i )

]
+

 ∂x
∂ f (x)

∂y
∂ f (x)

∂x
∂ f (y)

∂y
∂ f (y)

 · [ xi − x∗i
yi − y∗i

]
=

[
f (x∗i )
f (y∗i )

]
+

[
−2aε 1

b 0

]
·
[

xi − x∗i
yi − y∗i

]
(7)
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We obtained the new compensated Henon map as Equation (8) and the architecture
of ECMHD for the digital Henon map is shown in Figure 3:

xi+1 = f (x∗i )− 2aε(xi − x∗i ) + yi − y∗i
yi+1 = f (y∗i ) + b(xi − x∗i )
ε = x∗i + θ(xi − x∗i ) 0 < θ < 1

(8)

Digital Henon system

Quantization floor(·)

Error Comprnsation Henon chaotic system

Mean-value theorem

x0

xi+1

Compensation

xi
*

Output

Figure 3. Architecture of ECMHD for the digital Henon map.

3.2. Performance Analysis

As in the second section, we set x0(1) = 0.9649 and y0(1) = 0.1576, and the parameters
were a = 1.4 and b = 0.3. Theta can take any value between 0 and 1. We arbitrarily set
theta = 0.5 for the performance analysis.

Figure 4a shows the trajectory of the system after error compensation. It can be seen
from the figure that whenever the system is about to enter the cycle, a slight perturbation
causes the system to jump out and the cycle is prolonged. It can also be seen from the
distribution in Figure 4b that the improved system has achieved ergodicity, and the chaotic
state has a wide range, similar to the distribution diagram of the real chaotic system.We
can also observe from Figure 4c that the phase diagram of the chaotic system is composed
of multiple horizontal parabolas, which is highly consistent with the phase diagram of
the real chaotic system. From Figure 4d,e, we can see that the correlation of the improved
chaotic system has been greatly improved. As shown in Figure 4d, the auto-correlation
is similar to an impulse function, and the cross-correlation is Almost 0, indicating that
the improved system has strong randomness and weak correlation. Due to the enhanced
chaotic performance of the improved system, its signal power spectrum also presents a
wide-screen band mode, as shown in Figure 4f.
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Figure 4. The dynamical properties of the digita Henon map after error compensation. (a) The
x-dimensional trajectory. (b) The x-dimensional distribution. (c) Phase diagram. (d) Auto-correlation.
(e) Cross-correlation. (f) Signal power spectrum.

From the above analysis, the Henon system after error compensation was well im-
proved in terms of randomness, periodicity, and ergodicity.

4. Dynamical Performance Comparison
4.1. Performance Comparison of the Systems before and after Error Compensation

In this section, we compare the improved system with the digital Henon system. We
set the precision to p = 8; the initial value to x0(1) = 0.9649 and y0(1) = 0.1576; and the
parameters to a = 1.4 and b = 0.3.

4.1.1. Trajectories and Period

We first compare from the most intuitive trajectory diagram. Figure 5a,b show the
trajectories of Equation (2) and Equation (8), respectively. It is not difficult to see that
Figure 5a entered the cycle when iterated to about step 50. In Figure 5b, before the system
entered the cycle, the state was pulled out of the cycle by a slight error compensation.
So, it can be seen from the figure that the perturbed Henon system is still random. This
shows that the ECMHD effectively prolongs the cycle of the digital system. In order to
observe the periods of the two systems more carefully, we measured the specific periods
of the two systems at low precision and the number of steps that they took to enter the
period for the first time, as shown in Table 1. From the Table 1, we can see that when p = 8,
the digital system enters the cycle of cycle 23 when it is iterated to the 54th time. As the
precision increases, the period and the number of iteration steps into the cycle also increase
with the precision and become longer. The cycle of a system that has been improved by
error compensation has been greatly extended, and the period can no longer be predicted
only when the precision is 10. It can be seen that the short-period phenomenon can be
eliminated after the error compensation.
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Figure 5. (a) The trajectory of the digital Henon map. (b) The trajectory of the improved Henon map.

Table 1. Period of the digital Henon map before and after error compensation.

Precision Period
(Digital)

Period
(ECMHD)

The Place It Fell
into Cycle (Digital)

The Place It Fell
into Cycle (ECMHD)

8 2323 83,690 54 196,964
9 252 217,763 26 6179

10 193 U 51 U
11 194 U 209 U
12 233 U 507 U
13 1295 U 234 U
14 891 U 88 U
15 1849 U 540 U
16 1364 U 732 U
17 2134 U 857 U
18 3914 U 4721 U
19 3359 U 6551 U
20 10,747 U 10,945 U
21 13,885 U 9344 U
22 754 U 17,357 U
23 10,031 U 72,207 U
24 32,513 U 59,022 U

4.1.2. Frequency Distribution and Phase Diagram

Figure 6a,b are the distributions of Equations (2) and (8), respectively. Figure 6c,d are
the phase diagrams of Equations (2) and (8), respectively. It can be seen that the phase
diagram of the system after error compensation was much denser than the phase space
mapped by the digital Henon map.The distribution was not only concentrated in several
states, which shows that the error compensation method can greatly improve its ergodicity,
and the phase diagram of the perturbed system was very similar to the real chaotic system,
which also shows that the ECMHD still maintained the original system structure.



Entropy 2021, 23, 1628 9 of 17

-1 -0.5 0 0.5 1
 x*

0

1

2

3

4

5

6

 F
re

q
u

e
n

c
y

10
4

(a)

-1 -0.5 0 0.5 1

 x

0

0.5

1

1.5

 F
re

q
u

e
n

c
y

10
4

(b)

-1 -0.5 0 0.5 1

 x*

-0.4

-0.2

0

0.2

0.4

 y

(c)

-1 -0.5 0 0.5 1
 x

-0.4

-0.2

0

0.2

0.4

 y

(d)

Figure 6. Frequency distribution and phase diagram. (a) The frequency distribution of the digital
Henon map. (b) The frequency distribution of the improved Henon map. (c) The phase diagram of
the digital Henon map. (d) The phase diagram of the improved Henon map.

4.1.3. Correlation

After error compensation, the strong auto-correlation in Figure 7a was strengthened
into the auto-correlation of an ideal chaotic sequence. As shown in Figure 7b, the auto-
correlation function will disappear rapidly with the interval. This is similar to trigonometric
functions. Its cross-correlation also changed from the high correlation in the large interval
of the digital system (Figure 7c) to a cross-correlation function close to zero (Figure 7d).
This fully shows that the method effectively improves the chaotic characteristics of the
digital system.

4.1.4. Entropy

We compared the approximate entropy under different precisions. It can be seen from
Figure 8 that when the precision was very low, the approximate entropy of the improved
system was twice that of the digital system. Only when the precision reached 20 was the
difference between the two systems very small. Additionally, the approximate entropy of
the ECMHD was always stable. In order to verify that the performance of the improved
system was not affected by the initial value, we also compared it under different initial
values. As shown in Figure 9, it is not difficult to see that the approximate entropy of the
compensated system was much higher than that of the system number.

We also compared the information entropy. As shown in Figure 10, under p = 8 and
different initial values, the information entropy of the compensated system was very close
to the ideal value of 8, which was much higher than the information entropy of the digital
system. This shows that the randomness of the improved system was also significantly
improved, close to the ideal value.
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Figure 7. Correlation. (a) The auto-correlation of the digital Henon map. (b) The auto-correlation
of the improved Henon map. (c) The cross-correlation of the digital Henon map. (d) The cross-
correlation of he improved Henon map.
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Figure 9. The approximate entropy of the systems before and after error compensation with different
initial values.
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Figure 10. The information entropy of the systems before and after error compensation with different
in initial values.

4.2. Comparison of the Proposed Error Compensation Scheme with Existing Methods

In this section, we compare ECMHD with the other three latest methods. The first one
is from Liu et al. [30]. Their method is that in the iterative process of the digital system, as
long as there are repeated states, the parameters and states of the system will be disturbed,
so that the system jumps out of the cycle. The second one is from Wu et al. [31]. They
constructed a control function by introducing the iteration time to replace the control pa-
rameters in the original chaotic map. The third one is from Tang et al. [33]. They introduced
delayed state variables in the digital system and used the state variables of one system to
change the control parameters of another system. We compared these methods under the
condition of p = 8.
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4.2.1. Trajectories

Figure 11 shows the trajectory of the latest several improvement methods and the
ECMHD. It can be seen intuitively that when Liu’s method iterated to about 100, the
system entered a cycle. Wu’s and Tang’s method was that the system has a cycle after
walking more than 50 steps. Our method showed better performance without periodic
phenomena. This shows that the ECMHD can extend the cycle of the system well even
with low precision.
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Figure 11. The trajectory of different methods. (a) The trajectory of Liu’s method. (b) The trajectory
of Wu’s method. (c) The trajectory of Tang’s method. (d) The trajectory of ECMHD.

4.2.2. Frequency Distribution

It can be seen from the Figure 12 that the ECMHD can be highly consistent with the
distribution of the real chaotic system even at lower precision. This shows that the ECMHD
is not restricted to low-precision states. The other several improvement methods expose
their limited state range under low precision. Their improved method is still affected by
dynamic degradation at low precision and cannot achieve ergodicity. It shows that the
ECMHD is more capable of resisting attacks than other methods.

4.2.3. Auto-Correlation

It can be seen from the Figure 13 that their improvement method had a greater
improvement with the digital system when the accuracy was lower. However, their auto-
correlation function still maintained a high correlation in a large range. The auto-correlation
function of the ECMHD decreases rapidly with the passage of time. Then, it remains stable
around 0 to form an impulse function. This shows that the ECMHD is more random.
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Figure 12. The frequency distribution of different methods. (a) The frequency distribution of Liu’s
method. (b) The frequency distribution of Wu’s method. (c) The frequency distribution of Tang’s
method. (d) The frequency distribution of ECMHD.
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Figure 13. The auto-correlation of different methods. (a) The auto-correlation of Liu’s method. (b) The
auto-correlation of Wu’s method. (c)The auto-correlation of Tang’s method. (d) The auto-correlation
of the ECMHD.
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4.2.4. Entropy

In order to further compare the performance of these methods, we analyzed and
compared their entropy. We first tested the approximate entropy of different initial values
with p = 8. It can be clearly seen from Figure 14 that the approximate entropy of the
ECMHD is far superior to other methods, and it was stable at around 0.7. The approximate
entropy of Liu’s method was stable around 0.1. Wu’s method was stable at around 0.4.
Tang’s method fluctuated between 0.2–0.5. This fully shows that the ECMHD has higher
complexity and is more unpredictable.
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Figure 14. Approximate entropy values of improved systems for different methods.

Figure 15 shows the information entropy under the p = 8 and different initial values.
It can be seen that the ECMHD was very close to the ideal value of 8. However, the other
methods are still far from the ideal value. Moreover, Tang’s method also showed relatively
low and unstable information entropy values. This means that the ECMHD has greater
uncertainty than the other systems.
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Figure 15. Information entropy values of improved systems for different methods.
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4.2.5. Similarity Comparison with Real Chaotic System

There are two basic categories of similarity. The first one is objective similarity. It
means that the similarity between objects is a certain functional relationship between
the multi-dimensional features of the objects, such as the Euclidean distance between
objects. The second one is subjective similarity. It means that the similarity is the cognitive
relationship between people and the research object, which depends on the person and the
environment in which they are located. The subjective similarity meets the visual needs of
the human eye and has a certain degree of ambiguity.

In order to judge the similarity with the original system more accurately, we used the
Euclidean distance for measurement here. The Euclidean distance is the most common
representation of the distance between two or more points, also known as the Euclidean
metric, which is defined in Euclidean space. The distance between x = (x1, ..., xn) and
y = (y1, ..., yn) is defined as Equation (9):

d(x, y) =
√
(x1 − y1)

2 + (x2 − y2)
2 + ... + (xn − yn)

2 =

√
n

∑
i=1

(xi − yi)
2 (9)

According to the above Equation (9), we calculated the distance between each method
and its real chaotic system as shown in Table 2:

Table 2. The distance from the original system.

Method Distance

Liu’s method 455.9403
Wu’s method 459.8772

Tang’s method 636.9570
ECMHD 252.1862

It can be seen that the ECMHD was more consistent with the real chaotic system,
which shows that our compensation effect is better.

Through the above analysis, it is concluded that, under severe conditions, the other
three methods still cannot avoid the collapse of the chaotic system in the digital world,
and they still showed obvious cycles and limited state space while being unable to be
traversed and showing a strong correlation. For other problems, the AE and IE values were
also far lower than the ideal value; so, there is still a large gap in the agreement with the
original chaotic system. The ECMHD can still maintain the chaotic characteristics, which
also shows that the ECMHD has high performance in reality while ensuring low cost; so, it
can be more widely used.

5. Conclusions

This study proposed a method of error compensation for a two-dimensional digital
system based on the generalized mean value theorem of differentiation. The proposed
method, ECHMD, can not only make the digital Henon system behave chaotically and
show the ideal characteristics again, including ergodicity, higher complexity, an auto-
correlation similar to δ, and close-to-zero cross-correlation, but it is also highly consistent
with the original real Henon system. The study also compared the performance of three
recent methods. Under the same severe conditions, we compare and analyze several other
methods from the perspectives of period, state distribution, autocorrelation, approximate
entropy, and information entropy. This shows that the ECMHD can achieve a low-cost,
high-performance effect. In the future, we will add an adaptive control to the improved
system to further optimize system performance.
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