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Summary

The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a novel

human respiratory viral infection that has rapidly progressed into a pandemic,

causing significant morbidity and mortality. Blood clotting disorders and acute

respiratory failure have surfaced as the major complications among the severe cases

of coronavirus disease 2019 (COVID‐19) caused by SARS‐CoV‐2 infection.

Remarkably, more than 70% of deaths related to COVID‐19 are attributed to

clotting‐associated complications such as pulmonary embolism, strokes and multi‐
organ failure. These vascular complications have been confirmed by autopsy. This

study summarizes the current understanding and explains the possible mechanisms

of the blood clotting disorder, emphasizing the role of (1) hypoxia‐related activation
of coagulation factors like tissue factor, a significant player in triggering coagulation

cascade, (2) cytokine storm and activation of neutrophils and the release of

neutrophil extracellular traps and (3) immobility and ICU related risk factors.
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1 | INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a
newly emerged positive sense RNA virus belonging to the family of

betacoronaviruses.1,2 Members of this family of coronaviruses have

crossed the species barrier, adapted to humans and get transmitted

effectively from person to person through the respiratory route. So

far, humankind has witnessed seven different human coronaviruses

with varying incubation times, degrees of transmissibility, and disease

severity, which are ordered by mortality rate as MERS‐CoV > SARS‐
CoV > SARS‐CoV‐2 > HKU1 ≃ NL63 ≃ OC43 ≃ 229E.3‐6 Among

these, SARS‐CoV‐2 is unique with a relatively prolonged incubation

time.2 In addition to the acute respiratory failure associated with this

virus, disturbances in haemostatic balance have emerged as a key

issue in moderately and severely ill patients. These disturbances can

result in hypercoagulability disseminated intravascular coagulation

(DIC), which can contribute to organ failure, stroke, and heart and

kidney complications.7‐10 Here, we briefly review and outline the

current knowledge on the progression of COVID‐19, and how

multifactorial pathologies and molecular responses influence the

coagulation system and the fibrinolytic system during COVID‐19.

2 | SARS‐CoV‐2 DISEASE PROGRESSION

Typically, SARS‐CoV‐2 infection runs a course of illness that is over

by 20 days post infection. Initial infection can manifest a range of

clinical symptoms, including dry cough, sore throat, fever, malaise,

myalgias, gastrointestinal symptoms such as anorexia, nausea and

diarrhoea.11,12 Some patients also present a temporary loss of taste
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and smell.13 If the infection progresses, by the end of second week

and early third week, patients exhibit shortness of breath or dysp-

noea, a range of haematological irregularities such as lymphopenia

and neutrophilia, coagulation abnormalities such as pulmonary

embolism (PE), blood thickening, and strokes and, rarely, neurological

symptoms.14,15

Patients with severe disease can develop a condition called

“cytokine storm”, in which cytokines, released by lymphocytes,

monocytes and alveolar macrophages that encounter virus,

contribute to damaging inflammatory responses. Damage to the liver

and other virus induced factors, indicated by an increase in D‐dimers,
combined with the cytokine storm, leads to altered blood coagulation

factors and DIC. The terminal stages of SARS‐CoV‐2 infection in

patients that die often include acute respiratory distress syndrome

(ARDS), stroke, myocardial injury, and multiorgan function damage.15

3 | HYPERCOAGULABILITY AND CLOTTING IN
SARS‐CoV‐2

Patients with COVID‐19 present with evidence, most commonly in

the form of elevated levels of D‐dimer, of activation of the coagu-

lation system. More than 70% of the deaths related to COVID‐19 are
associated with deregulation of the mechanisms that control blood

clotting. Blood thickening and clotting are important to prevent

excessive loss of blood due to injury. In infection, localized clotting or

systemic clotting are part of the innate immune response to limit the

spread of the pathogen.16 However, this clotting response might be

associated with harmful effects. When released into the blood

stream, a blood clot or thrombus can block the arteries supplying

oxygenated blood, resulting in an embolism and death of the oxygen‐
starved tissue.17 When coagulation is insufficiently controlled, DIC

may evolve, resulting in a clinical syndrome that involves both

widespread microvascular thrombosis (referred to as micro-

thrombosis) from excessive clotting and enhanced bleeding from

depletion of clotting factors.18

3.1 | Hypoxia‐induced coagulopathy in SARS‐CoV‐2
infection

Alveoli, small thin‐walled bulb‐like structures, are the structural and

functional units of the lungs where blood gets oxygenated through a

very thin interstitial space between the capillary and alveoli. The

oxygenated blood returns to the heart, where it is pumped to other

parts of the body. In ARDS due to SARS‐CoV‐2 infection or other

lung infection or injury, the lungs become inflamed and fluid fills the

interstitial space, the capillaries become leaky, and the alveoli fill with

proteinaceous liquid that prevents oxygen exchange (Figure 1). The

resulting hypoxic condition necessitates artificial respiration or

assisted breathing. The hypoxic environment reduces the blood anti‐
coagulation and activates pro‐coagulation factors that may promote

hypoxia‐induced thrombosis.19

Animal studies showed that, under hypoxic conditions such as

that caused by infection, tissue factor (TF) is produced by the

endothelial and subendothelial smooth muscle cells of the vascula-

ture and leukocytes of the lungs.20‐22 Early growth response‐1
(Egr‐1), a cellular mediator, stimulates the transcription of the gene

encoding TF via vascular endothelial growth factor, initiating the

local procoagulant response.23 Homozygous Egr‐1–null mutant mice
placed in a hypoxic environment show no change in TF abundance in

the lungs.24 TF initiates the clotting process through thrombin for-

mation. Thrombin is a serine protease that catalyses coagulation‐
related reactions and converts soluble fibrinogen into insoluble

fibrin.25

Hypoxia also reduces the abundance of protein S (PS), a natural

anticoagulant produced primarily in the liver.26 The amount of PS is

inversely correlated with the amount of hypoxia inducible factor 1

(HIF1), a transcriptional regulator stabilized under hypoxic condi-

tions. This inverse relationship establishes a molecular link between

hypoxia and thrombosis. Cells respond to hypoxia through HIF1, a

dimeric transcription factor composed of HIF1α and HIF1β. In the

cytoplasm, HIF1α is continuously degraded in an O2‐dependent
manner.27 Patients deficient in PS, with the Factor V Leiden muta-

tion, have reduced endogenous antithrombotic activity and are

vulnerable to enhanced fibrin deposition at hypoxemic sites.28 Thus,

we hypothesize that the COVID‐19–induced hypoxia may cause a PS
deficiency, which elevates thrombotic risk.

In severe cases of COVID‐19, D‐dimer, a small protein fragment

that is a fibrin degradation product of the clot‐dissolving process, is

significantly increased, and this protein is a reliable marker of disease

severity.29 As a sensitive marker of coagulation and fibrinolysis,

D‐dimer abundance is also useful in diagnosing deep venous throm-

bosis or PE.30 D‐dimer abundance also displays a positive correlation
with liver dysfunction. By the third week of infection in patients with

severe COVID‐19, hypercoagulability issues occur. Autopsy exami-

nations of deceased patients revealed blood clots in the liver, kidney,

heart and lungs. D‐dimer is significantly increased and positively

correlates with disease severity in patients infected with various

other hemorrhagic viral infections, such as Ebola, Hantavirus hem-

orrhagic fever with renal syndrome and Dengue Hemorrhagic Fever

(DHF).30‐32

3.2 | An exacerbated immune response and
neutrophil‐derived extracellular traps in lungs during
SARS‐CoV‐2 infection

Severe illness and disease complications present in the later stage of

SARS‐CoV‐2 infection. In this later stage, use of an interleukin 6 (IL6)

inhibitor (toculizumab) or a recombinant human IL1 receptor antag-

onist (anakinra) can reduce illness, indicating that collateral organ

damage may result from an overactive immune response rather than

from direct induction of tissue damage by the virus.33,34

Pro‐ and anti‐inflammatory cytokines and chemokines, comprising
IL1β, IL2, IL6, IL7, IL8, IL10, IL17, interferon γ (IFNγ), IFNγ‐inducible
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protein 10, monocyte chemoattractant protein 1, granulocyte‐colony
stimulating factor, macrophage inflammatory protein 1α and tumour

necrosis factor‐α in the plasma, are elevated during SARS‐CoV‐2
infection.12,35‐37 This increase in cytokines and chemokines could play

a major role in the altered blood coagulation process and severe

disease pathology.

The response of immune cells may also contribute to throm-

botic risk.17,18 In infected lung tissue, alveolar macrophages and

resident immune cells attract neutrophils and other immunomodu-

latory cells. Neutrophils are an important part of the innate immune

response to heal damaged tissues and resolve infections. These

cells clear pathogens by producing a burst of reactive oxygen

species (referred to as a respiratory burst) by phagocytosis, and by

the formation of neutrophil extracellular traps (NETs), which are

web‐like structures of DNA and proteins expelled from the neu-

trophils (Figure 2). NETs trap pathogens.38‐42 Autopsy results

indicate the formation of NETs in the patients with severe

COVID‐19 disease.43

Activation of neutrophils by the cytokines results in the release

of chemoattractants and an increase in the recruitment of neutro-

phils to the site of inflammation. NETs produced by neutrophils

induce macrophages to secrete IL1β, which in turn enhances NET

formation, creating a self‐amplifying loop.44 Electrostatic interactions
between the NET histones and platelet phospholipids activate the

blood coagulation pathway.45 Neutrophil elastase (a serine protease)

is one of the key enzymes that contributes to NET formation.46 We

hypothesize that this enzyme also promotes the coagulation process

by digesting inhibitors of coagulation, such as antithrombin III and TF

pathway inhibitor. Excessive NET formation can trigger a cascade of

inflammatory reactions that can destroy surrounding tissues, facili-

tate microthrombosis, and result in permanent organ damage,

including the vital pulmonary, cardiovascular and renal systems.

Elevated levels of NETs accelerate thrombosis in arteries and

veins.47‐49 NETs are also detected in a severe form of dengue fever,

DHF, which also involves multiorgan failure and is associated with

fatal outcomes.50

F I GUR E 1 Inflammation and fluid
accumulation in alveoli due to severe acute

respiratory syndrome coronavirus 2 infection

F I GUR E 2 Mechanism of activation of coagulopathy in severe acute respiratory syndrome coronavirus 2 infection
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The non‐pharmacological measures to sustain severe COVID‐19
patients may also contribute to hypercoagulopathy. Immobilization,

mechanical ventilation and central catheters in the intensive care

units are risk factors for developing issues related to blood clotting.51

4 | CONCLUSION

We are in the midst of an unprecedented pandemic situation due to a

new, rapidly emerging coronavirus. With time and experience, we are

learning more about the clinical features and disease pathogenesis of

this novel pathogen. In recent weeks, blood hypercoagulability has

emerged as a major clinical symptom in severe COVID‐19 patients.

Current SARS‐CoV‐2 literature is rapidly evolving on a daily basis.

With the current understanding, we propose a possible mechanism

that is driving the process of coagulopathy in COVID‐19. Upon entry

and binding to its receptor, the virus establishes itself in the upper

respiratory tract and the lung tissues. The cells of the endothelial

lining and the innate immune surveillance cells, such as alveolar

macrophages and neutrophils, are initially infected by the virus. The

infection‐mediated inflammation and hypoxic condition result in the

release of TF, IL6, and other chemokines, which attract more

neutrophils and lymphocytes into the lungs. Depending on the cell

type, activated neutrophils and endothelial cells release NETs or

pro‐coagulation factors. Reactive immune molecules intended for

infected cells leak into the blood circulation and trigger the clotting

process by activating platelets and thrombin, resulting in the

induction of a microthrombosis process that leads to PE, DIC and

multiorgan failure due to nutrient‐ and oxygen‐starvation (Figure 2).

In some rare cases, over utilization of platelets may result in bleeding

from orifices.

Symptomatic treatment along with close monitoring and mea-

surement of platelet counts and levels of D‐dimer and fibrinogen

might be beneficial for early diagnosis of PE in patients with COVID‐
19. Because the immune overreactions are not exclusive to SARS‐
CoV‐2, existing anti‐inflammatory therapeutics, such as tocilizumab

or anakinra, to improve the ARDS and reduce the impact of cytokine

storm, could help in minimizing COVID‐19 severity and morbidity.

Also, integrating antiviral treatment with promising antiviral candi-

dates, such as hydroxychloroquine and remdesivir, that target SARS‐
CoV‐2 entry and viral replication, could speed recovery times and

perhaps even reduce death rates. Future observations and experi-

mental studies will play a vital role in portraying a clear picture in

understanding the physiological, molecular and cellular signalling

pathways that contribute to SARS‐CoV‐2–related thrombus

formation.
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