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Abstract
Aberrant activation of nuclear factor kappa B (NF-κB) has been linked with the pathogene-

sis of several proinflammatory diseases including number of cancers and inflammatory

bowel diseases. In the present work, we evaluated the anticancer activity of 1,2-oxazines

derivatives against colorectal cancer cell lines and identified 2-((2-acetyl-6,6-dimethyl-4-

phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)isoindoline-1,3-dione (API) as the lead anti-

cancer agent among the tested compounds. The apoptosis inducing effect of API was dem-

onstrated using flow cytometry analysis and measuring the caspase 3/7 activity in API

treated cells. Based on the literature on inhibition of NF-κB by oxazines, we evaluated the

effect of 1,2-oxazines against the ability of NF-κB binding to DNA, NF-κB-dependent lucifer-

ase expression and IκBα phosphorylation. We found that, API abrogate constitutive activa-

tion of NF-κB and inhibits IκBα phosphorylation in HCT116 cells. Our in silico analysis

revealed the binding of oxazines to the hydrophobic cavity that present between the inter-

face of p65 and IκBα. Given the relevance with aberrant activation of NF-κB in inflammation

bowel disease (IBD), we evaluated the effect of API on dextran sulphate sodium-induced

IBD mice model. The treatment of IBD induced mice with API decreased the myeloperoxi-

dase activity in colonic extract, modulated the colon length and serum levels of pro- and

anti-inflammatory cytokines such as TNF-α, IFN-γ, IL-6, IL-1β and IL-10. Furthermore, the

histological analysis revealed the restoration of the distorted cryptic epithelial structure of

colon in the API treated animals. In conclusion, we comprehensively validated the NF-κB
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inhibitory efficacy of API that targets NF-κB in in vitro colon cancer and an in vivo inflamma-

tory bowel disease model.

Introduction

Ulcerative colitis and Crohn’s disease are the disorders of the gastrointestinal tract and leading
types of inflammatory bowel disease (IBD) caused by various environmental and genetic fac-
tors [1]. IBD is characterized by recurrent inflammation of intestine due to transmural infiltra-
tion of immune cells such as macrophages, mast cells and lymphocytes leading to disruption of
mucosa and ultimately ulceration [2]. Patients suffering from IBD are with the high risk of
development of colorectal cancer [3,4]. Currently, sulfasalazine (5-aminosalicylic acid deriva-
tives), corticosteroids and several nonsteroidal anti-inflammatory drugs (NSAIDs) have been
used to treat IBD [5]. However, these drugs have limited efficacy and the long term use is asso-
ciated with multiple adverse effects [6]. Therefore, it projects the need of identifying a chemi-
cally novel, biologically active therapeutic agents with minimal adverse effects.

Nuclear factor kappa B (NF-κB) is a proinflammatory transcription factor resides abun-
dantly in the cytoplasmic compartment of most mammalian cells and aberrant expression has
been linked in the pathogenesis of IBD [7]. NF-κB family comprises of five types of subunits
namely, p50 (NF-κB1), p52 (NF-κB2), p65 (RelA), RelB and c-Rel [8]. It is present either in
homodimeric or heterodimeric form in association with its negative regulator, IκB (inhibitory
κB) and IκB prevents translocation into nucleus, in turn modulates the expression of NF-κB
targeted genes [9]. The signaling by various ligands ubiquitylates the IκB and subject it to pro-
teasome mediated degradation and thereby NF-κB translocate into nucleus [10]. NF-κB is
known to modulate the expression of over 500 genes involved in multiple cellular events such
as cell transformation, proliferation (IL-1β, cyclin D1), anti-apoptosis (Bcl-2, Bcl-xL), immor-
tality (telomerase), survival (cIAP, xIAP), inflammation (TNF, IL-1), angiogenesis (VEGF, IL-
8), invasion (uPA, MMPs), and metastasis (ICAM-1, CXCR-4) [11]. Besides, the deregulation
of NF-κB is tangled with initiation, progression and maintenance of several proinflammatory
diseases including cancers, inflammatory bowel disease, arthritis, and asthma.

Several derivatives of oxazine have been studied comprehensively in various cancer models
and reported to possess very good antitumor potential [12–14]. Multiple reports have sug-
gested that oxazines are good inhibitors of NF- κB signaling pathway [15,16]. Specifically, γ-
and δ-tocotrienol conjugated oxazine derivatives displayed decrease in the levels of phosphory-
lated NF-κB syngeneic +SA mammary tumors [15]. 2-ethoxy-4,5-diphenyl-1,3-oxazine-6-one
is a small molecule reported to decrease the levels of nuclear NF-κB in lipopolysaccharide
(LPS)-inducedNGF-differentiated PC12 cells [16]. Given the relevance with aforementioned
reports and in continuation of our effort to synthesize various heterocycles to explore their
medicinal properties [17–24], herein we prepared the series of oxazine derivatives and evalu-
ated their effect on HCT116 cells. The lead compounds 2-((2-acetyl-6,6-dimethyl-4-phenyl-
5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)isoindoline-1,3-dione (API) and dimethyl 2-((2-ace-
tyl-4-(4-methoxyphenyl)-6,6-dimethyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)malonate
(DMO) were chosen and evaluated for their NF-κB DNA binding inhibitory activity and NF-
κB dependent luciferase expression studies. Finally, in vivo anti-inflammatory activity of the
API was reported using dextran sulfate sodium (DSS) induced IBD mouse model.
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Materials and Methods

Animals, cell lines and reagents

All animal experiments were approved by the Institutional Animal Ethical Committee, Depart-
ment of Studies in Zoology, University of Mysore, Mysore and were in accordance with the
guidelines of the Committee for the Purpose of Control and Supervisionof Experiments on Ani-
mals (CPCSEA). HCT116 (colorectal cancer) and LO2 (immortal hepatic) cell lines were ini-
tially purchased from ATCC and were cultured in DMEM medium containing 10% fetal bovine
serum, 1mM L-glutamine, 1 mM sodiumpyruvate, antibiotic and antimycotic agent. Human
Colonic epithelial cells (CoEpic) were purchased from ScienceCell Research Laboratories
(Carlsbad, CA, USA). Colonic epithelial cell culture medium and supplement were purchased
from ScienceCell Research Laboratories (Carlsbad, CA, USA). The cells were cultured in poly-l-
lysine coated culture flasks in colonic epithelial cell medium containing supplement. Caspase 3/
7 assay kit was purchased from Promega Inc (Hercules, CA). Dextran sulfate sodium salt (DSS,
MW 36–50 kDa) was purchased from MP Biomedicals, Solon, USA. Etacept was obtained from
CIPLA, Mumbai, India. Sulfasalazine (SZ) was from Cadila Healthcare Ltd., Ahmedabad, India.
Murine mini ELISA development kits for TNF-α, IFN-γ, IL-6, IL-1β, and IL-10 were purchased
from PeproTech, KHC Healthcare, New Delhi, India. IκBα and GAPDH antibodies were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies against phospho-specific
IκBα (Ser 32), was purchased from Cell Signaling Technology (Beverly, MA). Nuclear extraction
and DNA binding kits were obtained from Active Motif (Carlsbad, CA). All other chemicals
were of analytical grade and were purchased from Sisco research laboratories, Mumbai, India.

Synthesis of 1,2-oxazines

1,2-oxazines (1a-f) were synthesized as describedpreviously, whose 1H and 13C NMR spectra
are consistent with literature data and showed more than 95% purity [25]. The 1,2-oxazines
(1g-i and 2a-c)were prepared according to literature protocol [26] and their complete charac-
terization was reported recently [27]. The library of all the tested 1,2-oxazine structures are
given in Table 1.

MTT Assay

The cytotoxic effect of 1,2-oxazines against HCT116 cells was determined by the MTT dye
uptake method as describedpreviously [28,29]. Briefly, the cells (2.5×104/ml) were incubated in
triplicate in a 96-well plate in the presence or absence of the indicated concentrations of com-
pounds in a final volume of 0.2 ml for different time intervals at 37°C. Thereafter, 20 μl of MTT
solution (5 mg/ml in PBS) was added to each well. After a 2 h incubation at 37°C, 0.1 ml of lysis
buffer (20% SDS, 50% dimethylformamide) was added, incubation was done for 1 h at 37°C,
and subsequently the optical density at 570 nm was measured by a Varioskan plate reader.
Images of cell proliferation were also captured using a light microscope (Magnification 4x).

Caspase 3/7 assay for apoptosis detection

Apoptosis was determined using caspase3/7 assay kit according to manufacturer’s protocol
(Promega Inc, USA). HCT116 cells were incubated with or without API (5 or 10 μM) for 48 h.
After incubation the cells were collected and assayed for caspase 3/7 activity.

Flow cytometric analysis

The effect of API on cell cycle of HCT116 cells was performed as describedpreviously [30]. To
determine the effect of API on the cell cycle, cells were treated with API at indicated doses up
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to 48 h. Thereafter cells were washed, fixed with 70% ethanol, and incubated for 30 min at
37°C with 0.1% RNase A in PBS. Cells were then washed again, resuspended, and stained in
PBS containing 25 μg/ml propidium iodide (PI) for 30 min at room temperature. Cell distribu-
tion across the cell cycle was analyzed with a BD FACSVerse flow cytometer.

NF-κB DNA binding assay

To determine NF-κB activation, we performedDNA binding assay using TransAM NF-κB Kit
according to the manufacturer’s instructions and as previously described [31]. Briefly, 20 μg of
nuclear proteins was added into 96-well plate coated with an unlabeled oligonucleotide con-
taining the consensus binding site for NF-κB (50-GGGACTTTCC-30) and incubated for 1 h.
The wells were washed and incubated with antibodies against NF-κB p65 subunit. An HRP
conjugated secondary antibody was then applied to detect the bound primary antibody and
provided the basis for colorimetric quantification. The enzymatic product was measured at 450
nm by microplate reader (Tecan Systems).

NF-κB luciferase reporter assay

The effect of DMO and API on constitutive a NF-κB-dependent reporter gene transcription in
HCT116 cells was determined as previously described [32]. NF-κB responsive elements linked
to a luciferase reporter gene were transfected with wild-type or dominant-negative IκB. The
transfected cells were then treated with various doses of API or DMO for 6 h. Luciferase activ-
ity was measured with a Tecan (Durham, NC, USA) plate reader and normalized to β-galacto-
sidase activity. All luciferase experiments were done in triplicate and repeated twice.

Table 1.

Entry Title Compounds Cytotoxicity CDOCKER Energy

(-CE)

CDOCKER interaction

energy (-CIE)

1a (S)-2-((6,6-dimethyl-4-phenyl-5,6-dihydro-4H-1,2-oxazin-3-yl)methyl)

isoindoline-1,3-dione

36.7 -126.725 -27.441

1b Dimethyl (S)-2-((4-(4-methoxyphenyl)-6,6-dimethyl-5,6-dihydro-4H-

1,2-oxazin-3-yl)methyl)malonate

NA -49.046 4.201

1c Dimethyl 2-(((4S)-4-(4-methoxyphenyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo

[e][1,2]oxazin-3-yl)methyl)malonate

36.2 -66.919 -8.642

1d Dimethyl 2-(((4S)-4-phenyl-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazin-

3-yl)methyl)malonate

32.7 -70.946 -18.931

1e Dimethyl 2-(((4S,5R,8S)-4-phenyl-4a,5,6,7,8,8a-hexahydro-4H-

5,8-methanobenzo[e][1,2]oxazin-3-yl)methyl)malonate

30.1 -189.683 -56.764

1f Dimethyl (R)-2-((4,6,6-trimethyl-5,6-dihydro-4H-1,2-oxazin-3-yl)methyl)

malonate

NA 11.307 24.401

1g Methyl (S)-2-(4-(4-methoxyphenyl)-6,6-dimethyl-5,6-dihydro-4H-1,2-oxazin-

3-yl)acetate

42.1 -21.13 6.733

1h Methyl 2-((4S)-4-phenyl-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazin-

3-yl)acetate

NA 10.342 20.658

1i Methyl 2-((4S,5R,8S)-4-phenyl-4a,5,6,7,8,8a-hexahydro-4H-

5,8-methanobenzo[e][1,2]oxazin-3-yl)acetate

14.3 -96.932 -8.225

2a (API) 2-((2-Acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)

isoindoline-1,3-dione

6.2 -330.737 -103.675

2b

(DMO)

Dimethyl 2-((2-acetyl-4-(4-methoxyphenyl)-6,6-dimethyl-5,6-dihydro-2H-

1,2-oxazin-3-yl)methyl)malonate

6.5 -211.836 -52.072

2c Dimethyl 2-((2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)

methyl)malonate

18.3 -421.525 -68.115

BPO Phenyl(4-phenylcyclopenta[c][1,2]oxazin-7-yl)methanone -200.245 -58.732

doi:10.1371/journal.pone.0163209.t001
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Western blotting

Western blotting analysis was performed as described earlier [33,34]. For detection of phos-
pho-proteins, cytoplasmic extracts of API treated cells were prepared. Lysates were then spun
at 14,000 rpm for 10 min to remove insoluble material and resolved on SDS gel. After electro-
phoresis, the proteins were electrotransferred to a nitrocellulosemembrane, blocked with 5%
non-fat milk, and probed with anti-phospho-IκBα/IκBα antibodies overnight at 4°C. The blot
was washed, exposed to HRP-conjugated secondary antibodies for 1 h, and finally examined by
chemiluminescence.

In vivo anti-inflammatory studies

The in vivo anti-inflammatory efficacywas evaluated as described earlier [5]. Briefly, adult
Swiss albino mice (25–30 g) were injected intraperitoneally with 2 ml of 3% thioglycolate
(TG) broth or sterile saline. After 10 min, API (5, 10 or 15 mg/kg body weight) in saline was
injected through a lateral tail vein. After 24 h, LPS (1.0 μg) was injected intraperitoneally, and
1 h later, the peritoneal cavities were lavaged with 4 ml of PBS containing 3 mM EDTA and
total number of inflammatory cells was counted. Heparin (10 mg/kg) was used as a positive
control.

Molecular docking study

Accelrys Discovery Studio (DS) version 2.5 was used for molecular modeling studies [18]. The
crystal structure of IκBα/NF-κB complex (PDB: 1IKN) was considered and prepared the pro-
teins for molecular docking studies using the protein preparation modules of DS. The sdf for-
mat of the ligands were prepared in parallel and the CDOCKER(CHARMm-based
DOCKER)of DS was performed. The 1,2-oxazine ligands were docked at the interface of p65
(a subunit of NF-κB) and IκBα. The CDOCKERenergy, and the CDOCKER interaction
energy was tabulated and ligand bound NF-κB complex was visualized using DS visualization
tool.

DSS-induced inflammatory bowel disease (IBD) model

Swiss albino mice (6–8 weeks old) weighing 22–25 g were used in the present study and were
fed with standard mice diet and given free access to reverse osmosis (RO) water. Animals were
acclimatized for 10 days before start of the experiment. Animals were randomly divided into 5
groups and each consisted of 6 mice; group 1- RO water control, group 2- DSS induced, group
3- DSS induced mice treated with SZ (500 mg/kg/day, oral gavage), group 4- DSS induced mice
treated with Etacept (5 mg/kg/day, subcutaneously injected), group 5- DSS induced mice
treated with API (5 mg/kg/day, intraperitoneal injection). Etacept was used as standard TNF-α
inhibitor and SZ as standard therapeutic drug against colitis. IBD was induced to all groups
except group 1 by administering 5% DSS (w/v) in RO drinkingwater for 4 days. Respective
treatment was given from 5th day up to 9th day. Animals were anesthetized using sodium pen-
tobarbital (30 mg/kg body weight, intraperitoneal injection) to minimize the suffering of and
were sacrificedon 10th day by cardiac puncture and blood was collected, serum was separated
and stored at -20°C to assess various cytokines. Further, the colon was excised from the experi-
mental animals, flushed with ice-cold PBS and processed for histological analysis. The experi-
mental animals were monitored every 12 h upon DSS treatment and body weight, DAI were
recorded every 24 h until the completion of the experiment. There was no mortality in any
groups of mice used in the present study.
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Disease activity index (DAI)

DAI was scored as described earlier by Cooper et al [35]. In brief, weight loss, stool consistency,
and gross bleeding are the three individual parameters considered to assign the scoring of DAI.
Stool consistency scored zero for normal stool; two for loose stool; and four for diarrhea. Rectal
bleeding scored zero for normal; two for occult bleeding; and four for gross bleeding. Lastly,
severity of colitis in the colons were analyzed by measuring the length of the colon, which is an
indirect evidence of colonic inflammation.

Myeloperoxidase (MPO) assay

The excised colonic tissue from all the groups were homogenized in 50 mM potassium phos-
phate buffer pH 6.0 containing 0.5% hexadecyltrimethyl ammonium bromide. Tissue debris
were removed by centrifuging the homogenates at 8,000 rpm for 4 min at 4°C. Supernatant
(10 μL) was taken in 96-well plate in triplicate, and 200 μL of ODA-H2O2reagent (0.167 mg/mL
O-dianisidinedihydrochloride and 0.05% H2O2) was added to each well including the well con-
taining 10 μL of buffer alone, which served as blank. Absorbance was measured at 450 nm using
multimode plate reader (Varioskan, Thermo Scientific) at 0, 30, and 60 S. The difference between
two time points was taken, and the MPO activity was calculated (MPO constant: 1.13 ×10−2).

Estimation of serum cytokines

The serum levels of pro-inflammatory (TNF-α, IFN-γ, IL-6, and IL-1β) and anti-inflammatory
(IL-10) cytokines were estimated using ELISA kits according to the manufacturer’s protocol.

Histological analysis

Colonic tissues were fixed overnight in 10% phosphate-buffered formalin and were dehydrated
using alcohol and chloroform mixture. The processed tissues were embedded in paraffin wax,
and 5 μm thick sections were prepared. Further, the sections were stained with hematoxylin-
eosin dye (H & E) and photographed under an Axio Imager A2 microscope (Zeiss, Oberko-
chen, Germany). The method of Gonzalez-Rey et al. was followed for histological scoring of
inflammation of colon sections on a 0–3 graded scale [36]. Zero for no sign of inflammation;
one for low leukocyte infiltration; two for moderate leukocyte infiltration, thickening of the
colon, moderate goblet cell loss, and focal loss of crypts; and three for transmural infiltration,
massive loss of goblet cells, and diffuse loss of crypts. Irrespective of the treatments, each slide
was scored from five random spots.

Statistical analysis

Results are expressed as mean ± SEM of three independent experiments. Statistical significance
was determined using one-way ANOVA, followed by Bonferroni post-hoc test. Significance
was accepted at p< 0.05 (�), p< 0.01 (��) and p< 0.001 (���). Data was analyzed using the sta-
tistical package GraphPad Prism (GraphPad Software 5.0). Student t-test was used to analyze
NF-κB activation data. p<0.05 was considered statistical significant �p<0.05; ��p<0.005.

Results

1,2-Oxazine derivatives suppresses proliferation of colorectal cells in

dose-dependent manner

We initially evaluated the cytotoxic efficacy of the series of 1,2-oxazines against colorectal can-
cer (HCT116) cells using MTT assay. Among the tested oxazine derivatives, API was found to
be the most effective antiproliferative compound followed by DMO. Paclitaxel was used as
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positive control. We observed the treatment of HCT116 cells with API at 20 μM for 48 h
reduced the cell proliferation nearly by 50% (Fig 1A). We further investigated the effect of lead
compound on cell proliferation at different concentrations (0, 5, 10 and 20 μM) for 48 h and
found the substantial decrease in the proliferation of HCT116 cells in a dose-dependentman-
ner. Interestingly, API had no significant effect on the viability of CoEpic cells (Fig 1A). We
have provided the microscopic images to demonstrate the inhibition of HCT116 cell prolifera-
tion (Fig 1B). We further noted that when HCT116 cells were treated with API for 48 h, a sig-
nificant dose dependent increase in caspase 3/7 activity levels were observeddemonstrating its
ability to induce substantial apoptosis (Fig 1C).

API causes increased accumulation of HCT116 cells in Sub-G1 phase

The formation of hypodiploid cells due to the activation of caspase activated DNases, thereby
fragmentation of nuclear DNA is a remarkable event in late apoptosis and the hypodiploid
cells are detected as sub-G1 population [37]. Therefore, we investigated the effect of API on the
distribution of cell cycle in HCT116 cells using propidium iodide staining. We observed the
gradual increase in the sub-G1 phase population to nearly 80% at 10 μM concentration (Fig 2).

API and DMO abrogate constitutive NF-κB activation in HCT116 cells

Oh and coworkers subjected 7,243 diverse compounds for their inhibitory efficacy against NF-
κB signaling using a robust and reproducible high throughput screening TR-FRET Assay and
identified 7-benzoyl-4-phenylcyclopenta [1,2] oxazine (BPO) as a potent inhibitor of IKKβ and
in turn abrogates NF-κB signaling [38]. Therefore, we next investigated the effect of lead
1,2-oxazine derivatives, API and DMO on constitutive NF-κB activation in HCT116 cells. We
found that treatment with various concentrations (0, 5, 10, 20 μM) of API and DMO suppressed
constitutive NF-κB activity in a dose-dependentmanner (Fig 3A). API reduced the NF-κB
DNA binding ability by nearly 50% (��p<0.005) and these results indicate that API and DMO
can modulate constitutive NF-κB activation in HCT116 cells. Although we observed that API
and DMO inhibits NF-κB activation by NF-κB DNA binding assay, DNA binding alone does
not always correlate with NF-κB-dependent gene transcription, indicating that additional regu-
latory steps may be involved in controlling NF-κB activation. To determine the effects of API
and DMO on constitutive NF-κB-dependent reporter gene expression in HCT116 cells, trans-
fection was performed as described in methods. In the presence of API and DMO NF-κB-
dependent luciferase expression was inhibited in a dose-dependentmanner with maximum
inhibition of nearly 45% observedat 20 μM (Fig 3B and 3C). These results demonstrate that
API and DMO can also abrogate constitutive NF-κB-dependent reporter gene expression.

API abrogates constitutive IκBα phosphorylation in HCT116 cells

Because IκBα phosphorylation is essential for NF-κB activation, we next analyzed whether
inhibition of NF-κB activation by API was due to inhibition of IκBα phosphorylation.We
found that constitutive IκBα phosphorylation was suppressed in a dose dependent manner in
cytoplasmic extracts obtained following the exposure of HCT116 cells to API for 6 h. Also, API
treatment stabilized the levels of total IκBα in HCT116 cells (Fig 3D). This data indicates that
API can also affect IκBα phosphorylation in colorectal cancer cells.

In vivo anti-inflammatory studies

Previous findings have suggested that small molecules (including estradiol) abrogate LPS-
induced TNF-α-mediated NF-κB activation which is a key event in inflammation [39]. Further,
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Fig 1. A. The lead compounds identified among the 1,2-oxazine derivatives tested decreased the cell

proliferation of HCT116 cells in dose-dependent manner. B. Microscopic images to demonstrate the

inhibition of cell proliferation (Magnification 4x). C. HCT116 cells were treated with API for 48 h and caspase

3/7 assay was performed. We observed a significant dose dependent increase in caspase 3/7 activity levels

demonstrating the ability of API to induce apoptosis.

doi:10.1371/journal.pone.0163209.g001
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we investigated the effect of API on infiltration of macrophages to the peritoneal cavity of mice
induced with thioglycolate broth and lipopolysaccharide. The results displayed decrease in
infiltration of inflammatory cells in the lavage fluid by 27.6, 48, and 58% at 5, 10, and 15 mg/kg
body weight respectively, compared with vehicle treated mice (Fig 4). Heparin suppressed the
infiltration of inflammatory cells in the lavage fluid by 76% at 10 mg/kg body weight. These
results indicate that, API imparts in vivo anti-inflammatory activity by modulating NF-κB sig-
naling pathway.

In silico interaction of 1,2-oxazines towards NF-κB

Since 1,2-oxazines binds to NF-κB in vitro, we docked all the ligands to the IκBα/NF-κB crystal
structure viamultistep docking protocol implemented in the Accelrys Discovery Studio soft-
ware. The docked poses were ranked based on their CDocker energy (kcal•mol−1) which was
calculated and used as a mean for the binding strength of oxazines (Table 1). The tested oxa-
zines were found to bind to the hydrophobic cavity that present between the interface of p65
and IκBα (Fig 5A). Consistent with bioactivity evaluation, the compound API interacted with
the highest CDocker binding energy of -330.737 kcal•mol−1. Compound API (oxygen atom of
pthalazine ring) makes hydrogen bonding with Tyr251, whereas the other oxygen forms strong
hydrogen bond with Asp271, Arg246, and His245. Therefore, compound API scaffold bound
strongly with hydrophobic Van der Waals interactions and a hydrogen bond to the backbone
of many key amino acids of the NF-κB heterodimer (Fig 5B and 5C). Overall, most of the active

Fig 2. HCT116 cells were treated with different doses of API (0.5, 1, 5, and 10 μM) for 48 h, harvested and stained with propidium

iodide and subjected to flow cytometry. Histogram obtained indicated the accumulation cells in sub-G1 phase.

doi:10.1371/journal.pone.0163209.g002
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Fig 3. A. API and DMO suppresses NF-κB DNA binding ability in HCT116 cells. HCT116 cells were treated with DMO and

API at indicated doses, nuclear extracts were prepared, and 20 μg of the nuclear extract protein was used for the ELISA-

based DNA-binding assay *p<0.05; **p<0.005). B & C. NF-κB responsive elements linked to a luciferase reporter gene

were transfected with wild-type or dominant-negative IκB and transfected cancer cells were treated at indicated doses for

6 h and luciferase activity was measured as described in Materials and Methods section. All luciferase experiments were

done in triplicate and repeated twice (*p<0.05; **p<0.005). D. API abrogates constitutive IκBα phosphorylation in dose-

dependent manner in HCT116 cells. HCT116 cells were treated with different concentrations of API (0, 5, 10 and 20 μM)
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oxazines biding energies are comparable to the compound BPO, which was previously identi-
fied as a selective inhibitor of NF-κB pathway.

Modulatory effect of API on DSS-induced DAI, colon length and

myeloperoxidase activity

A selective novel low-molecular-weight inhibitor of IKKβ exhibits broad anti-inflammatory
activity in various in vivo inflammatory models [40]. Given the relation with NF-κB inhibitors
and inflammation, we assessed anti-inflammatory efficacy of API by determining the colon
length, myeloperoxidase and DAI score in each group of DSS-induced colitis animals. In order
to investigate the effect of API on colonic inflammation, colon length from caecum to anus of
individual animals was measured. The colon length of DSS-induced animals found to be
reduced significantly (p< 0.001) compared to RO control animals (Fig 6A). Whereas, the
colon length of diseased animals treated with SZ, etacept and API showed significant increase
(p< 0.05) in colon length compared to untreated diseased animals. Further evaluation revealed
that, DAI score was increased in group 2 (DSS-induced)with respect to RO control animals
(group 1) throughout the experimental period.Animals treated with etacept, SZ and API

for 6 h and cytoplasmic extract was prepared. Lysates were resolved on SDS gel and electrotransferred to a nitrocellulose

membrane and probed with anti-phospho-IκBα/IκBα. The blot was washed, exposed to HRP-conjugated secondary

antibodies for 1 h, and finally examined by chemiluminescence. GAPDH was used as loading control.

doi:10.1371/journal.pone.0163209.g003

Fig 4. In vivo anti-inflammatory activity of API. The in vivo anti-inflammatory efficacy of API was evaluated by

intraperitoneally administering thioglycolate broth and LPS to Swiss albino mice. The administration of API (5, 10, and 15

mg/kg body weight) suppressed the infiltration of macrophages into the peritoneal cavity. Heparin was used as positive

control which inhibited the macrophage infiltration by 70%.

doi:10.1371/journal.pone.0163209.g004
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showed significantly decreasedDAI score as compared to DSS-induced group. The DAI was
found to be decreased from day 6 and reached to near normal at the end of the experimental
period (Fig 6B). Additionally, MPO levels were estimated in order to assess the neutrophil infil-
tration and extent of colonic inflammation. From the results, it is clear that augmented levels
of MPO in colon homogenates of diseased animals was observed compared to RO control ani-
mals (Fig 6C). In contrast, colon homogenates of API treated diseased animals exhibited
decreased levels of MPO activity and it is similar to that of standard drugs used in the study
(SZ and etacept).

API reverses DSS-induced alteration of cytokines

DSS-induced colitis model demonstrates an imbalance in the levels of serumpro- and anti-
inflammatory cytokines. In order to confirm this notion, serum cytokine profiling was carried
out using commercial ELISA kits. The pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-
6, and IL-1β were found to be significantly increasedwhereas, IL-10, an anti-inflammatory
cytokinewas found to be decreased in diseased animals in comparison with RO control ani-
mals. In contrast, Serum cytokine levels in API treated diseased animals were significantly
reverted to basal levels. The results were well comparable to that of diseased animals treated
with standard drugs, SZ and etacept (Fig 7A–7E).

Modulatory effect of API on DSS-induced colonic histology

DSS-induced colitis showed massive loss in the structural integrity of colon architecture as evi-
denced by histopathological analysis of colons by using H and E staining and as well as

Fig 5. In silico interaction between the oxazines and IκBα/NF-κB complex. A. Representation of the native IκBα/NF-

κB heterodimer and docked solution of tested oxazines (in stick representation). The sub-unit of p50 is represented in

green, p65 in cyan, and IκBα in pink. B. Molecular docking of the lead structure API with the NF-κB heterodimer solution

was shown. C. Interaction map lead compound API that bound with key amino acids of the crystal structure. Hydrogen

bonding (black dots) between API oxygen atoms with Tyr251, and other Asp271, Arg246, His245 was shown.

doi:10.1371/journal.pone.0163209.g005
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histopathology scoring (Fig 8A–8E). Colons of DSS-induced untreated animals were observed
with substantial loss of cryptic epithelium, and infiltration of inflammatory leukocytes as com-
pared to RO control (Fig 8F). While, colitis induced animals treated with SZ, etacept and API
exhibited lesser infiltration of inflammatory leukocytes along with reversal of normal architec-
ture of colon in comparison with untreated animals.

Discussion

NF-κB is an inducible transcription factor present in the cytoplasm of most mammalian cells
[8]. Researchers have rightly called NF-κB as a double-edged sword due to its entanglement in
the proper functioning of immune system and its inappropriate activation may result inflam-
mation and tumorigenesis [41]. Aberrant activation of NF-κB has been detected and reported
in several types of human malignancies [42]. Several natural and synthetic small molecules
with the wide-array of heterocyclic nucleus including oxazines, coumarins, biscoumarins,

Fig 6. A. Extent of colonic inflammation was assessed indirectly by measuring the colon length of control and

experimental mice. B. Severity of dextran sulphate sodium-induced colitis was monitored daily by assessing the DAI

throughout the experimental period. From day 4 onward DSS induced a significant increase in DAI. C. Severity of colonic

inflammation was assessed by colonic MPO activity from control and experimental mice. SZ-Sulfasalazine. Data are

presented as mean ± S.E.M. * p<0.05; **p<0.01; ***p<0.001.

doi:10.1371/journal.pone.0163209.g006
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benzofurans (rocaglamide), pyridine conjugates (sulfasalazine), pyrans (trichodion) and non-
steroidal anti-inflammatory drugs such as sodium salicylate, ibuprofen, sulindac and indo-
methacin have been evaluated for their inhibitory activity against NF-κB signaling pathway
[43] and many of them have been unsuccessful in advancement to clinics due to their limited
efficacy. Among these scaffolds, we were interested to prepare the oxazine derivatives, because
of their good bioavailability and acceptable safety profile in preclinical studies on rat and cyno-
molgus monkey toxicity studies [44]. Furthermore, pharmacodynamics and bioavailability of
bemoradan (a benzoxazine derivative) in humans, rats and dogs demonstrated the rapid
absorption after oral dosing, linear pharmacodynamics and long elimination half-lives across
species [45].

Therefore, the present study focusses on synthesis of a panel of oxazines, the determination
of lead compound (API), demonstration of mechanism of lead compound as it targets NF-κB
in vitro and in vivo, and validation of the target using in silico analysis. The antiproliferative
efficacy exhibited by oxazines are in agreement with previous studies against lung and colon
cancer [12], hepatocellular carcinoma [13], breast cancer [15] and pheochromocytoma cells
[16]. Although oxazine derivatives have been presented as NF-κB inhibitors in several types of
cancer cells, to the best of our knowledge, this is the first time, we are demonstrating the inhibi-
tory efficacy of 1,2-oxazines against NF-κB in colitis-inducedmice model. Increased activation
of NF-κB has been reported to be involved in regulation of inflammatory response in IBD
[46,47], which makes it most likely that oxazines induce their inhibitory effect on animals
affected with IBD by suppressing NF-κB.

NF-κB has a crucial role in regulation of inflammatory responses, innate immunity, cell
proliferation and apoptosis and it has been identified as a key factor in cancer initiation and
progression [48]. The role of NF-κB in regulation of immune response and its persistent activa-
tion in many types of cancers to exert its pro-tumorigenic effect increases the complexity in
designing of inhibitors against NF-κB. However, combinations of NF-κB inhibitors along with

Fig 7. Serum cytokine profile of control and experimental mice were estimated using murine mini ELISA

development kits according to the manufacturer’s protocol. A. TNF-α. B. IFN-γ. C. IL-1β. D. IL-6. and E. IL-10.

SZ-Sulfasalazine. Data are presented as mean ± S.E.M. * p<0.05; **p< 0.01; ***p<0.001.

doi:10.1371/journal.pone.0163209.g007

Oxazines Target NF-κB Pathway

PLOS ONE | DOI:10.1371/journal.pone.0163209 September 29, 2016 14 / 19



classical chemotherapeutics have been reported to produce promising synergetic effects [48–
52]. Therefore, we opted colitis induced mice model to study the possible inhibitory effect of
oxazines against NF-κB. The histological analysis of colon clearly demonstrated the significant
restoration of cryptic epithelium architecture and decrease in the myeloperoxidase activity in
colonic extract and disease activity index, which is highly comparable with Etacept and Sulfasa-
lazine. The increased anti-inflammatory cytokines and decreased pro-inflammatory cytokines
in the API-treated group providing a better in-sight into the mode of action of oxazines.

Conclusion

In summary, herein we synthesized a series of 1,2-oxazines and screened for their antiprolifera-
tive activity against colon cancer cell lines and identified the bioactive compound. Considering
the inhibitory efficacy of oxazine derivatives NF-κB signaling cascade, we tested the lead com-
pounds against possible blockade of NF-κB pathway and found significant reduction in NF-κB
DNA binding ability and NF-κB-dependent luciferase expression. Based on NF-κB entangle-
ment with inflammation, we established the DSS-induced IBD model and presented the anti-
inflammatory activity of the lead compound. The in vitro and in vivo results were validated
using molecular docking analysis. In conclusion, this report proposes 1,2-oxazines as therapeu-
tically potential scaffolds to develop drugs against inflammatory diseases.

Fig 8. A. Represents colon section of RO control mice showing normal crypt structures along with intact mucosal and

sub-mucosal epithelium. B. represents colon section of DSS-induced mice showing massive inflammation with complete

loss of structural integrity of crypt epithelium. C-E. represents colons sections of DSS-induced animals treated with SZ,

etacept and API respectively showing re-establishment of cryptic epithelial deterioration and with lesser infiltration of

inflammatory cells (Magnification 200X). F. Represents the histology scoring of control and experimental animals.

SZ-Sulfasalazine. Scoring is presented as mean ± S.E.M of five independent observations of colon sections. **p< 0.01;

***p<0.001. a is significant v/s RO water control and b is significant v/s DSS control.

doi:10.1371/journal.pone.0163209.g008
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