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Abstract

Background: The role of forkhead-box A1 (FOXA1) and Androgen receptor (AR) in breast cancer (BC) has been
extensively studied. However, the prognostic role of their co-expression in Estrogen receptor positive (ER+) BC has
not been investigated so far. The aim of the present study was thus to assess the co-expression (protein and
mRNA) of FOXA1 and AR in BC patients, in order to evaluate their prognostic impact according to ER status.

Methods: Immunohistochemical expression of AR and FOXA1 was evaluated on 479 consecutive BC, with
complete clinical-pathological and follow up data. Fresh-frozen tissues from 65 cases were available. The expression
of AR and FOXA1 with ER was validated using mRNA analyses. Survival and Cox proportional hazard analyses were
used to evaluate the relationship between FOXA1, AR and prognosis.

Results: Expression of ER, AR and FOXA1 was observed in 78, 60 and 85% of cases respectively. Most AR+ cases
(97%) were also FOXA1+. The level of FOXA1 mRNA positively correlated with level of both AR mRNA (r = 0.8975;
P < 0.001) and ER mRNA (r = 0.7326; P < 0.001). In ER+ BC, FOXA1 was associated with a good prognosis
independently of AR expression in the three subgroups analyzed (FOXA1+/AR+; FOXA1+/AR-; FOXA1−/AR-).
Multivariate analyses confirmed that FOXA1 may provide more information than AR in Disease-Free Interval (DFI)
of ER+ BC patients.

Conclusion: Our results suggest that in BC the expression of FOXA1 is directly related to the expression of AR.
Despite that, FOXA1 is found as superior predicting marker of recurrences compared to AR in ER+ BC patients.
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Background
In breast cancer (BC), Estrogen (ER) and Androgen
Receptors (AR) regulate cell proliferation and differenti-
ation. They are frequently co-expressed, however AR
may be expressed in ER-negative (ER-) BC, where it
modulates gene transcription by using regulatory
molecules and pathways normally activated by ER [1].
As a result, in ER- BC cells, androgens activate cell
proliferation [2], whereas in ER-positive (ER+) cells,
androgens inhibit cell proliferation [3, 4]. In line with

these data, we demonstrated that patients with AR+/ER
+ BC have a better prognosis compared to those affected
by AR−/ER+ BC [5, 6].
FOXA1, a member of the forkhead family protein [7],

is an important regulator of ER DNA binding and
transcription of its target genes [8]. In addition, in both
ER+ and ER- BC cells, FOXA1 promotes AR DNA bind-
ing [1, 9, 10]. Several studies [11–19] evaluated the prog-
nostic role of FOXA1 in BC, and demonstrated that in
ER+ BC the expression of FOXA1 is positively correlated
with a better prognosis. Indeed, the role of FOXA1/AR
co-expression in ER+ BC has not been investigated,
although it has been suggested that the relative ratio
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among FOXA1, ER and AR could influence growth and
aggressiveness of cancer cells [20].
The aim of the present study was first to assess the

co-expression, at both protein and mRNA levels, of
FOXA1 and AR in BC, and then to evaluate their
prognostic impact in ER+ BC patients.

Methods
Case series
We collected a series of 479 female patients that under-
went surgery for BC from June 1994 to December 2012
at the Breast Unit of the Città della Salute e della
Scienza Hospital of Turin, Italy. All patients were treated
with surgery, either mastectomy or wide local excision,
followed by radiotherapy.
Clinical-pathological data such as age at time of diagno-

sis, surgery (conserving surgery vs radical mastectomy),
type of therapy (hormonal therapy, chemotherapy), type
and site of recurrences, histological types, tumor size (<
15 mm vs ≥ 15 mm), nodal involvement, histologic grade
and vascular invasion were collected. Medical charts of all
patients were reviewed to confirm accuracy of previously
recorded data. Tumor slides were re-evaluated to select
representative blocks that were used to construct multi-
core tissue microarrays (TMAs, tissue arrayer Galileo
TMA CK 3500, Integrated Systems Engineering Srl,
Milan, Italy), as previously described [21].

Immunohistochemistry
To confirm the results of the diagnostic reports,
immunohistochemistry (IHC) was performed on TMA
sections using an automated slide processing platform
(Ventana BenchMark AutoStainer, Ventana Medical
Systems, Tucson, AZ, USA) and the following primary
antibodies were used: prediluted anti-ER rabbit mono-
clonal antibody (SP1, Ventana-Roche, Tucson, AZ,
USA); prediluted anti-Progesterone receptor (PgR) rabbit
monoclonal antibody (1E2, Ventana-Roche); anti-Ki67
monoclonal antibody (MIB1, diluted 1:100 Dako);
anti-human c-erbB2 oncoprotein (Ventana Pathway
HER-2/Neu-4B5). In addition, AR and FOXA1 expression
were tested using anti-AR mouse monoclonal antibody
(AR441, diluted 1:50, Dako, Glostrup, Denmark) and
prediluted anti-FOXA1 mouse monoclonal antibody
(2F83, Ventana-Roche). Positive and negative controls
(omission of the primary antibody and IgG-matched
serum) were included for each IHC run.
The cut-off value for ER and PgR expression was set

at 1%, as suggested by St Gallen Consensus meeting
[22], and the same cut-off was also adopted for AR and
FOXA1 expression [5]. The percentage of Ki67-positive
cells was recorded and the cut-off for dichotomizing
tumors with low and high proliferative fraction was
established at 20% according to 2013 St Gallen

Consensus meeting [23] and also on the basis of the
median Ki67 value of our local laboratory [24, 25]. HER2
status was classified as negative (score 0, 1+ and 2+ not
amplified) or positive (when scored 3+ by IHC or HER2
amplified by FISH) according to the recommended
guidelines for invasive carcinoma [26].

Real-time PCR (qPCR) analysis
To determine the specificity of AR and FOXA1 anti-
bodies, we compared gene expression levels (using
qPCR) with IHC results. The relationship between AR
and FOXA1 was validated using relative quantification
mRNA analyses.
qPCR for AR and FOXA1 mRNA was performed on

65 fresh-frozen BC samples (Fig. 1). Total RNA was
extracted from tissues using TRIzol Reagent (Invitrogen
Ltd., Paisley, UK) following manufacturer’s instructions.
DNase I was added to remove remaining genomic DNA.
1 μg of total RNA was reverse-transcribed with iScript
cDNA Synthesis Kit (Bio-Rad Laboratories Inc.,
Hercules, CA, USA), following manufacturer protocol.
Primers (Additional file 1: Table S1) were designed using
Beacon Designer 5.0 software according to parameters
outlined in the Bio-Rad iCycler Manual. Specificity of
primers was confirmed by BLAST analysis. qPCR was
performed using a BioRad iQ iCycler Detection System
(Bio-Rad Laboratories Inc., Hercules, CA, USA) with
SYBR green fluorophore. Reactions were performed in a
total volume of 25 μl containing 12.5 μl of IQ SYBR
Green Supermix (Bio-Rad Laboratories Inc., Hercules,
CA, USA), 1 μl of each primer at 10 μM concentration,
and 5 μl of the previously reverse-transcribed cDNA
template. The protocol used was as follows: denaturation
(95 °C for 5 min) and amplification repeated 40 times
(95 °C for 15 s, 60 °C for 30 s). At each run, a melting
curve analysis was performed to ensure a single specific

Fig. 1 Flow chart of the study
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amplified product for every reaction. Results were
normalized using the Delta-Ct (Δct) method, using
β-actin as housekeeping gene. Samples with a Δct ≤ 6
were defined as positive.

Statistical and survival analyses
Pearson’s Chi square test and Student’s t-test were pre-
liminary performed to compare respectively categorical
and continuous variables, and to evaluate potential dif-
ferences in the variable distribution among groups. Test
for median and means (Analysis of Variance-ANOVA)
were performed. For more than two groups Tukey HSD
post-hoc test was performed. Disease-Free Interval (DFI)
was calculated from the date of surgical excision of the
primary tumor to the date of first disease relapse or last
check-up. Disease-specific survival (DSS) was calculated
from the surgical excision date of the primary tumor to
the date of BC death or last check-up [24, 27]. Survival
distribution curves were plotted using the Kaplan-Meier
method and the statistical comparisons were performed

Table 1 Clinical and histopathological characteristics of 479
breast cancer patients

Characteristics N (%)

Age

≤ 50 86 (18)

> 50 393 (82)

Type of surgery (missing 8 cases)

Conservative 282 (59.9)

Mastectomy 189 (40.1)

Size (missing 7 cases)

< 15 mm 176 (36.7)

≥15 mm 296 (63.3)

Lymph node involvement (missing 7 cases)

pN0 277 (58.7)

pN1–3 195 (41.3)

Histological Grade (missing 9 cases)

1 125 (26.6)

2 187 (39.8)

3 158 (33.6)

Histotype

NST - CDI 305 (63.7)

CLI 95 (19.8)

others 79 (16.5)

Vascular invasion (missing 113 cases)

No 200 (54.6)

Yes 166 (45.4)

ER

0 106 (22.1)

≥ 1% 373 (77.9)

PR (missing 48 cases)

0 122 (28.3)

≥ 1% 309 (71.7)

Ki67 (missing 9 cases)

< 20% 205 (43.6)

≥20% 265 (56.4)

HER2 (missing 43 cases)

Negative 398 (91.3)

Positive 38 (8.7)

FOXA1

Table 1 Clinical and histopathological characteristics of 479
breast cancer patients (Continued)

Characteristics N (%)

Negative 74 (15.4)

Positive 405 (84.6)

AR

Negative 193 (40%)

Positive 286 (60%)

Therapy (missing 15)

Only radiotherapy 18 (3.9%)

Hormonal therapy 229 (49.4%)

Chemo-Hormonal 125 (26.9%)

Chemotherapy 81 (17.4%)

No therapy 11 (2.4%)

Recurrences

No 389 (76.9%)

Yes 90 (23.1%)

Deaths

No 440 (91.9%)

Yes 39 (8.1%)

Table 2 Association between FOXA1 expression and AR status
according to immunohistochemistry test

FOXA1 positive FOXA1 negative P Value*

AR Positive 278 8 <0.001

AR Negative 127 66

* Chi-Square (X2)
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using the log-rank test. Cox regression analyses were
carried out on DFI and DSS to calculate crude and
adjusted HRs and 95% confidence intervals (CIs) for the
different study group. Cases lost to follow up and cases
with a non-BC related cause of death were censored at
the last follow up control. The step-wise model selection
method was used to determine the final Cox regression

model. Akaike Information Criterion test (AIC) and
likelihood ratio test (LRT) were carried out to measure
how selected variables improve parsimony and goodness
of fit of the selected model. The proportional hazard
assumption was assessed with the Schoenfeld residuals.
This did not give reasons to suspect violation of this
assumption. All statistical tests were two sided. P-values
< 0.05 were considered significant. Statistical analyses

Fig. 2 Protein (IHC) and mRNA (qPCR) expression for Androgen receptor (AR) and Forkhead box protein A1 (FOXA1). It can be observed that
positive protein expression (AR and FOXA1) correlates with higher mRNA levels (low delta-Ct). Tukey’s multiple comparisons test showed
significant differences between positive and negative cases, for both AR and FOXA1 (p < 0.0001). NT - Normal Tissue. *ANOVA analysis

Fig. 3 Spearman’s correlation test, show that FOXA1 mRNA level
positively correlated with mRNA levels of a. Androgen receptor (AR)
and b. Estrogen receptor (ER)

Fig. 4 FOXA1 mRNA expression in: a. NT - Normal Tissue; b. ER+/AR
+ tumors; c. ER+/AR- tumors; d. ER−/AR+ tumors; e. ER−/AR- tumors.
Independently of ER status, FOXA1 mRNA levels were higher (low
delta-Ct) in AR+ tumors, compared to AR- cases. Tukey’s multiple
comparisons test showed significant differences, mainly, between
groups with AR+ and AR- cases (p < 0.0001. Additional file 1: Table S4).
*ANOVA analysis
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were performed using Stata/SE12.0 Statistical Software
(STATA, College Station, TX).

Results
Association of FOXA1 and AR IHC expression with clinical-
pathological characteristics
Clinical and histopathological characteristics of the
whole population are reported in Table 1. The median
follow up was 10.1 years (7,7-12,7). The majority of pa-
tients was over 50 years (> 80%) of age and underwent
conservative surgery. Positive expression of ER, AR and
FOXA1 was observed in 78, 60 and 85% of cases re-
spectively. As previously reported [13, 15], in our cohort
FOXA1 positivity was associated with small tumor size
(< 15 mm), absence of lymph node metastases, low
histological grade, no special type (NST) histotype, low
level of Ki67, as well as, with ER+ and PgR+ tumors
(Additional file 1: Table S2). In the consecutive series of
patients, 58% of cases showed AR+/FOXA1+ (Table 2),
while 14% presented AR-/FOXA1- immunophenotype

and only 1.7% of cases were AR+/FOXA1-. This latter
subgroup, did not show specific features. Compared to
the other subgroups, FOXA1-/AR- BC phenotype was
more frequently associated with high histological grade,
large tumor size, no expression of ER and PgR and
high proliferation index (P < 0.001) (Additional file 1:
Table S3).

qPCR analysis: Correlation between mRNA and protein
levels of FOXA1 and AR in BC
We found a strict correlation of FOXA1 and AR mRNA
and protein expression (Fig. 2). To correlate the expres-
sion of ER, AR and FOXA1, we decided to use qPCR re-
sults, because this procedure allows quantifying more
precisely the level of expression of each molecule. As
shown in Fig. 3, there was a linear correlation (Spear-
man’s correlation) of the level of FOXA1 mRNA with
the level of AR (r = 0.8975; P < 0.001) (Fig. 3a) and ER
(r = 0.7326; P < 0.001) mRNA (Fig. 3b).

Table 3 Univariate analysis

Characteristics DFI DSS

HR CI P HR CI P

Age 0.98 0.96–1.00 0.110 1.00 0.98–1.03 0.727

Conservative vs Mastectomy 3.36 2.22–5.10 0.000 2.56 1.42–4.63 0.002

Lymph node involvement

0 1 1

1 2.01 1.19–3.42 0.009 1.27 0.54–2.97 0.581

2 5.63 3.22–9.86 0.000 5.26 2.44–11.3 0.000

3 12.1 6.74–21.7 0.000 12.5 5.61–27.7 0.000

Histotype

NST - CDI 1 1

CLI 0.75 0.44–1.26 0.275 1.03 0.52–2.06 0.925

Other 0.59 0.30–1.15 0.122 0.40 0.12–1.32 0.132

Hystological grade

1 1 1

2 2.53 1.35–4.74 0.004 3.34 1.12–9.94 0.030

3 4.31 2.30–8.05 0.000 7.52 2.61–21.7 <0.001

Tumor Size > 15 mm 4.98 2.46–10.1 0.000 5.42 1.90–15.4 0.002

Vascular invasion 5.16 2.99–8.90 0.000 3.84 1.86–7.93 0.000

ER Positive 0.44 0.28–0.69 0.000 0.34 0.18–0.64 0.001

PGR > 20% 0.63 0.41–0.97 0.034 0.37 0.19–0.69 0.002

Ki67≥ 20% 3.10 1.96–4.92 0.000 4.15 1.99–8.64 0.000

FOXA1 Positive 0.54 0.32–0.90 0.019 0.43 0.21–0.88 0.022

AR positive 0.60 0.40–0.91 0.015 0.38 0.21–0.70 0.002

HER2 Positive 2.50 1.25–5.00 0.010 1.98 0.70–5.58 0.195

Clinical and pathological data correlated with disease free interval (DFI) and disease specific survival (DSS)
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Furthermore, FOXA1 mRNA was closely related to
AR mRNA expression, regardless of ER status. Indeed,
FOXA1 mRNA was expressed in all samples with ER
+/AR+ (27 cases) and ER−/AR+ (3 cases) (Low delta-Ct.
Fig. 4b and d), in 8/25 ER+/AR- cases and in only 1/10
ER−/AR- cases (High Delta-Ct. Fig. 4c and e).

Impact of FOXA1 and AR IHC co-expression on prognosis
At univariate analysis performed on whole cohort,
metastatic lymph nodes, histological grade, vascular
invasion, ER and PR positivity, high Ki67 and HER2
overexpression were confirmed as significant prognostic
factors. Additionally, the expression of AR and FOXA1
were associated with a better DFI and DSS (Table 3,
Additional file 1: Figure S1).
To analyze the impact of FOXA1 and AR in patients

with BC (ER+ or ER-), we created three BC subgroups
(FOXA1+/AR+; FOXA1+/AR-; FOXA1−/AR-). We were
unable to perform any analyses on the FOXA1−/AR+ BC
since only 8 patients carried this phenotype (Table 2). As
shown in Fig. 5, in the consecutive series of patients, the
lack of expression of both, FOXA1 and AR (FOXA1
−/AR-), was related to a worse DFI and DSS compared to
the other groups.
Finally, we investigated the relationship between

FOXA1, AR and prognosis in BC patients stratified for
ER expression. As shown in Fig. 6, in ER+ BC, FOXA1
expression was closely related to good prognosis
independently of AR expression.
Multivariate analyses (Table 4) performed on ER+ BC

confirmed that FOXA1 may provide more information
than AR on DFI, but not on DSS. In the subset of

patients with ER- BC, FOXA1, alone or in association
with AR, did not show any relationship with outcome
(data not shown).

Discussion
We assessed, for the first time, the expression of FOXA1
and AR in BC, evaluating their prognostic impact
according to ER status. We found that (i) the expression
(protein and mRNA) of FOXA1 and AR was closely
related: the majority of cases expressing AR showed
FOXA1 positivity, conversely, negative expression of
FOXA1 correlates with very low level of AR; (ii) the
expression of FOXA1 is strictly related to good outcome,
and in the subgroup of patients with ER+ BC may
provide more information on DFI than AR.
FOXA1 is a “winged helix” transcription factor. It was

demonstrated that, by interacting with histones H3 and
H4, FOXA1 is responsible for opening compacted
chromatin [28], permitting efficient interaction of ER
with its response elements. For this reason, the presence
of FOXA1 suggests a functional ER complex, which
probably will respond to endocrine therapy [11, 29, 30].
Moreover, FOXA1 seems to have a repressor effect on
BC growth by promoting transcription of E-cadherin
and cell cycle-dependent kinase inhibitor p27(Kip1),
thus reducing the motility and invasion of BC cells [31,
32]. These findings suggest that FOXA1 expression in
BC may be associated with a better clinical outcome. In
our study we confirmed literature data, demonstrating
that FOXA1 is mainly expressed in low grade, lymph
node negative BC tumors, with size < 15 mm and low
Ki67 index [15, 33, 34].

Fig. 5 Kaplan–Meier estimates of DFI and DSS according to AR and FOXA1 in all breast tumors
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In addition, FOXA1 has been associated with recruit-
ment of AR [7] and, it has been suggested that in pros-
tate epithelium FOXA1 acts with AR in promoting
differentiation [35].
ChIP-seq analysis of AR, ER, and FOXA1 in BC cell

lines revealed a significant level of co-occupancy between
these markers, presumably due to the presence of fork-
head motif found at AR and ER binding sites [8, 10, 36,
37]. Furthermore, evidences of the relationship between
AR and FOXA1 was supported by experiments demon-
strating the co-localization of the two proteins on
chromatin [1, 9, 37]. Our results support the evidence of
those studies, showing that BC tumor with high mRNA
level of FOXA1 are generally ER and AR enriched. On the
contrary, tissues with low FOXA1 mRNA level present
low level of hormonal receptors, especially of AR.

In several studies has been demonstrated that AR
expression is a favorable prognostic marker of disease
outcome in ER+ BC [5, 6]. This result has recently been
confirmed in a meta-analysis conducted on 17,000
women with early-stage breast cancer [38]. The present
work confirms the prognostic role of AR. However, the
concurrent evaluation of the expression of both AR and
FOXA1, shows that FOXA1 is superior to AR as prog-
nostic marker in patients with BC, especially in ER+
cases. In fact, FOXA1 expression was always related to a
better outcome even if AR was not detectable. Similar
results were recently obtained in prostate cancer [39], in
which it has been demonstrated that FOXA1 expression
is closely related to prognosis independently of AR level.
Hence, in FOXA1+ BC patients, similar results regarding
prognosis were found in AR- and AR+ cases. Thus, we

Table 4 Multivariate analysis

Characteristics DFI (global test p = 0.5497)a DSS (global test p = 0.7496)a

HR CI P HR CI P

Age 0.99 0.97–1.02 0.703 0.99 0.96–1.04 0.844

Size≥ 15 mm 2.40 1.00–5.78 0.050 5.40 0.65–44.6 0.117

Lymph node involvement

0 1

1 2.01 0.89–4.52 0.090 1.23 0.27–5.54 0.790

2 4.24 1.68–10.7 0.002 4.27 1.07–17.0 0.040

3 6.34 2.24–17.9 0.001 6.58 1.45–29.9 0.015

KI67≥ 20% 2.58 1.19–5.58 0.016 4.27 0.88–20.7 0.071

FOXA1 0.24 0.08–0.74 0.013 0.34 0.04–3.08 0.340

Association of tumor characteristics with disease free interval (DFI) and disease specific survival (DSS) among ER+ patients with complete data for all covariates
aTest of proportional-hazards assumption

Fig. 6 Kaplan–Meier estimates of DFI and DSS according to AR and FOXA1 in ER+ breast cancer patients
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suppose that in ER+ BC patients, FOXA1 could be
more important than AR as a marker of better prog-
nosis. Actually, several studies suggested that func-
tionality of AR as well as ER may depend on FOXA1
activity [1, 8, 11].
Sahu, B et al. suggested that in prostate cancers

FOXA1 level may contribute to select specific AR bind-
ing sites on DNA, activating different gene expression
signatures [39]. In our case series we observed very low
number of AR+/FOXA1- cases; moreover, as shown in
Fig. 4, the expression of these markers seems to correl-
ate. Therefore, we hypothesize that FOXA1 in ER+ BC
may control the level of AR expression.

Conclusions
Our results suggest that in BC the expression of FOXA1
is directly proportional to the expression of AR. Despite
that, FOXA1 is found as a superior predicting marker of
recurrences compared to AR in ER+ BC patients. There-
fore, FOXA1 expression evaluated by IHC on ER+ BC
specimens could be considered in routine diagnosis as
an additional support to oncologists in the definition of
the patient prognosis.

Additional file

Additional file 1: Table S1. Primers for real-time PCR. Table S2. Patients’
clinical and histopathological characteristics according to FOXA1 expression.
Table S3. Clinical and histopathological characteristics of BC patients
according to FOXA1 and AR status. Table S4. Multiple comparisons
of FOXA1 mRNA expression in tumors classified according to ER and
AR status. Figure S1. Kaplan–Meier estimates of a) disease free interval and
b) disease-specific survival according to FOXA1 status in 479 breast tumors.
(DOCX 662 kb)
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