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Abstract
Predicting the effects of global increase in temperatures on disease virulence is chal-
lenging, especially for environmental opportunistic bacteria, because pathogen fit-
ness may be differentially affected by temperature within and outside host 
environment. So far, there is very little empirical evidence on the connections be-
tween optimal temperature range and virulence in environmentally growing patho-
gens. Here, we explored whether the virulence of an environmentally growing 
opportunistic fish pathogen, Flavobacterium columnare, is malleable to evolutionary 
changes via correlated selection on thermal tolerance. To this end, we experimentally 
quantified the thermal performance curves (TPCs) for maximum biomass yield of 
49 F. columnare isolates from eight different geographic locations in Finland over ten 
years (2003–2012). We also characterized virulence profiles of these strains in a 
zebra fish (Danio rerio) infection model. We show that virulence among the strains 
increased over the years, but thermal generalism, and in particular tolerance to higher 
temperatures, was negatively associated with virulence. Our data suggest that tem-
perature has a strong effect on the pathogen genetic diversity and therefore presum-
ably also on disease dynamics. However, the observed increase in frequency and 
severity of F. columnare epidemics over the last decade cannot be directly linked to 
bacterial evolution due to increased mean temperature, but is most likely associated 
with factors related to increased length of growing season, or other time-dependent 
change in environment. Our study demonstrates that complex interactions between 
the host, the pathogen and the environment influence disease virulence of an envi-
ronmentally growing opportunistic pathogen.
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1  | INTRODUC TION

Climate projections suggest that changing climate not only affects 
the average temperature but also the occurrence of extreme and 
variable temperatures (IPCC, 2007). Such changes in climate alter 
extinction risks, provoke range shifts and cause selection pressure 
to favour genotypes that are adapted to cope with these new en-
vironments (Heino, Virkkala, & Toivonen, 2009; Parmesan, 2006; 
Visser, 2008). Microbes, many of which have the capacity to be or 
become pathogens, are expected to adapt rapidly. Global warming 
may benefit many bacterial species, because they will face milder 
winter months resulting in greater overwintering success, in-
creased numbers of generations and, thus, higher pathogen densi-
ties to damage hosts (Burdon & Chilvers, 1982; Coakley, Scherm, & 
Chakraborty, 1999). Environmentally growing opportunistic patho-
gens, in contrast to obligate (fully host-dependent) pathogens, can 
utilize outside-host resources, making them very sensitive to selec-
tion pressures outside the host (Brown, Cornforth, & Mideo, 2012). 
Therefore, predicting the effect of climate warming on environmen-
tal opportunistic bacteria with life cycles both outside and inside 
the host presents a particular challenge because pathogen fitness 
in both environments may be differentially affected by tempera-
ture (Harvell et al., 2002). Although the ability to stay alive in the 
environment, for example, as inactive spores, has been linked with 
high virulence (Day, 2002; Walther & Ewald, 2004), pathogens can 
also evolve towards a more benign virulence because investments 
in resource acquisition and defence in the outside environments 
can trade off with traits connected to virulence (Ketola et al., 2013; 
Mikonranta, Friman, & Laakso, 2012; Sturm et al., 2011; Sundberg, 
Kunttu, & Valtonen, 2014). Previous studies suggest that higher 
temperatures select genotypes that tolerate hotter temperatures, 
whereas fluctuations in temperature should select for more gener-
alist genotypes with improved tolerance to extreme temperatures 
(Condon, Cooper, Yeaman, & Angilletta, 2014; Condon et al., 2015; 
Duncan, Fellous, Quillery, & Kaltz, 2011; Kassen, 2002; Ketola et al., 
2013; Levins, 1968). Nevertheless, it has remained unclear how cli-
mate warming might affect growth parameters in environmentally 
growing opportunistic pathogens, and how this correlates with their 
potential to cause disease.

Understanding the selection pressures underlying the evo-
lution of virulence in outside-host environments is crucial in the 
current context of climate change, especially for diseases affecting 
world food production. Flavobacterium columnare, the aetiological 
agent of columnaris disease in farmed fish, is an opportunistic fish 
pathogen which severely impacts freshwater aquaculture world-
wide (Bernardet & Grimont, 1989; Declercq, Haesebrouck, Van den 
Broeck, Bossier, & Decostere, 2013). Specifically, this bacterium 
can cause infections both in cold- and in warm-water fish species 
such as carp, channel catfish, goldfish, eel, perch, tilapia, pike perch, 
rainbow trout, brown trout, salmon, tiger muskellunge and walleye 
(Anderson & Conroy, 1969; Schneck & Caslake, 2006; Shoemaker, 
Klesius, Lim, & Yildirim, 2003). F. columnare causes epidermal infec-
tions affecting gills, skin and fins of the fish, producing either acute 

or chronic infections, depending on the virulence and genetic group 
of the strain, as well as on environmental and host-related factors 
(Declercq et al., 2013). The temperature range in which it can grow 
actively is approximately 15 to 35°C (Declercq et al., 2013). Previous 
work on this bacterium and a number of other virulent pathogens 
in the context of global warming has focused mainly on long-term 
empirical data examining the relationship between mean ambient 
temperature and disease prevalence (Karvonen, Rintamäki, Jokela, 
& Valtonen, 2010; Pulkkinen et al., 2010). As both open and flow-
through aquaculture systems are connected to natural water bod-
ies, it can be expected that changes in ambient water temperatures 
strongly affect farming conditions. Analysis of more than 20 years’ 
worth of data has showed a significant positive effect of mean water 
temperature on the prevalence of columnaris disease at two fish 
farms (Karvonen et al., 2010). At the same time, the data point to an 
increase in virulence of this bacterium in fish farms over the years 
(Pulkkinen et al., 2010), which might have happened due to selec-
tion for certain genotypes of the bacterium (Sundberg et al., 2016). 
However, it is still unclear whether climate change will impact the 
thermal performance of this bacterium in the long term by selecting 
more thermotolerant strains and whether such changes may have 
any effect on bacterial virulence. This is important information for 
regions where climate change is expected to be most severe, such 
as Finland where average annual temperature is predicted to rise 
nearly twice as fast as the average temperature for the whole globe 
(Ruosteenoja, Jylhä, & Kämäräinen, 2016).

Thermal tolerance is usually depicted via thermal performance 
curves (TPC) composed from the measured performance of a gen-
otype in different thermal environments. Assuming that thermal 
performance curves obtained from measurements taken in con-
stant environments can be used to predict how genotypes survive 
under fluctuations (Huey, Berrigan, Gilchrist, & Herron, 1999; Ketola 
& Kristensen, 2017; Ketola & Saarinen, 2015; Sinclair et al., 2016), 
adaptation to fluctuating environments could occur either via over-
all elevated TPC or via broadened TPC (Ketola et al., 2013; Levins, 
1968; Scheiner & Yampolsky, 1998). The key ecophysiological pa-
rameters that characterize thermal performance curves are the 
critical thermal thresholds which represent the lower (CTmin) and 
upper (CTmax) temperatures at which performance (e.g., growth or 
biomass yield of bacteria) is zero, the optimum temperature (Topt) 
at which performance is maximal, and the maximum value of per-
formance itself (μmax). Ecological and evolutionary physiologists 
have proposed three directions or modes for changes in TPCs: in 
the width (or breadth; also called generalist-specialist trade-off), in 
the position of the Topt (through a horizontal shift of the curve; also 
called hotter-colder mode) and in the height (through a vertical shift 
of the curve; also called faster-slower mode) of the curve (Angilletta, 
2009; Izem & Kingsolver, 2005; Kingsolver, Ragland, & Diamond, 
2009; Figure 1). In addition to these parameters, variation in TPC 
can also be characterized using principal component analysis (PCA) 
on growth performances from different temperatures to identify the 
main patterns of performance variation among the genotypes (Huey 
& Kingsolver, 1989; Izem & Kingsolver, 2005).
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In this study, we measured bacterial growth at five different 
temperatures (spanning from 17 to 32°C which matches typical 
summer growth season in Finland and in the near future) to char-
acterize the temperature dependence of maximum biomass yield 
in 49 F. columnare isolates collected from Finland during the period 
2003–2012. Based on this data, we examined (a) variation of ther-
mal performance among isolates using two alternative approaches 
including estimation of TPC parameters for each strain and appli-
cation of principal component analysis (PCA) on maximum yields 
from different temperatures and (b) the link between thermal per-
formance and bacterial virulence, using virulence data measured in 
a zebra fish (Danio rerio) infection model. We showed that Finnish 
isolates differed in maximum yield and limits of thermal range and 
that their higher tolerance to high temperatures was linked to low-
ered virulence.

2  | MATERIAL AND METHODS

2.1 | F. columnare strains and culture conditions

We used 49 Finnish F. columnare isolates for which genotypes were 
previously determined by the conventional multilocus sequence 
typing (MLST) method using six loci (Ashrafi, Pulkkinen, Sundberg, 
Pekkala, & Ketola, 2015) (Supporting information Table S1). F. co-
lumnare are assigned into five genomovar groups using 16S rDNA 
restriction fragment length polymorphism analysis including genom-
ovar I, II, II-B, III and I/II (LaFrentz, Waldbieser, Welch, & Shoemaker, 
2014; Triyanto & Wakabayashi, 1999). All strains belonging to genom-
ovar I which has been characterized by low-temperature tolerance 
(Suomalainen, Kunttu, Valtonen, Hirvela-Koski, & Tiirola, 2006) were 
originally isolated from eight fish farms, from both northern (65°N) 
and southern (62°N) parts of Finland (Supporting information Table 

S1), from fish (mostly salmonids such as Atlantic salmon, brown trout 
or rainbow trout) or from tank water using standard culture meth-
ods with modified Shieh medium (Song, Fryer, & Rohovec, 1988), 
modified Shieh medium supplemented with tobramycin (Decostere, 
Haesebrouck, & Devriese, 1997) or AO agar (Anaker & Ordal, 1959).

2.2 | Thermal performance measurements

Bacterial isolates were grown overnight in modified Shieh me-
dium under constant agitation (120 rpm) in room temperature 
and further subcultured to fresh medium in ratio of 1:10 for an-
other 16–18 hr under the same conditions. Sterile 15-ml tubes 
containing 5.5 ml of bacterial culture were centrifuged for 5 min 
in 4°C at 3,500 g, after which the supernatant was discarded. 
240 μl of concentrated bacterial culture was mixed with 60 μl of 
10% of glycerol and 10% of foetal calf serum mixture on 100-well 
Bioscreen C® plate in a randomized order and stored at −80°C. 
Prior to growth measurements, bacterial isolates were inoculated 
to a new Bioscreen plate containing 400 μl fresh modified Shieh 
medium in each well directly from the frozen Bioscreen plate using 
heat-sterilized cryo-replicator (Enzyscreen B.V., Haarlem, the 
Netherlands (Duetz et al., 2000)). After 24-hr incubation at 25°C, 
inoculums of 40 μl of individual bacterial strains from these pre-
cultures were distributed into a Bioscreen plate containing 400 μl 
of fresh modified Shieh medium in each well for the growth meas-
urements. Growth experiments were run simultaneously in dupli-
cate in two 100-well plates in a Bioscreen C spectrophotometer 
(Oy Growth Curves Ab Ltd, Finland) over 2–8 days depending on 
the experimental temperature, at five different temperatures (17°, 
22°, 24°, 29° and 32°C). The bacteria were cultured without shak-
ing, and optical density (OD) measurements were performed at 
5-min intervals (absorbance at 600 nm). The growth curves were 
analysed as described in Ketola et al. (2013) to estimate maximum 

F IGURE  1 Hypothetical thermal 
performance curves with the commonly 
used descriptors of a performance curve 
(a) Main descriptors of performance. 
Patterns of variation for nonlinear thermal 
performance curves: (b) generalist–
specialist, (c) horizontal shift, (d) vertical 
shift. μmax: maximum performance; 
Topt: optimal temperature; CTmin: lower 
critical temperature; CTmax: upper critical 
temperature; TPB: thermal performance 
breadth (redrawn from Kingsolver, Izem, & 
Ragland, 2004)

(a)

(b)

(c)

(d)
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growth rate and maximum biomass yield. Maximum yield is esti-
mated from the plateau phase of a growth curve while maximum 
growth rate is estimated from its early phase and is thus influenced 
by the potentially large relative noise in the OD measurement dur-
ing this phase. Consequently, we chose to use maximum yield as a 
robust measure of strain performance at a given temperature (two 
measurements per temperature per strain). For each temperature, 
the repeatability of maximum yield measurement (intraclass cor-
relation coefficient (ICC)) was defined as R = VG/(VG + VR), where 
VG is the variance among strains and VR is the variance within 
strains (Sokal & Rohlf, 1995; Wolak, Fairbairn, & Paulsen, 2012). 
Repeatability was calculated using the rptR package for R (Stoffel, 
Nakagawa, & Schielzeth, 2017).

Two alternative approaches were used to analyse the thermal 
performance data: (a) for each strain, curve fitting using all maximum 
yield values followed by single-point estimation of TPC parameters 
(i.e., one value for CTmin, CTmax, Topt and μmax per strain) and (b) prin-
cipal component analysis (PCA) on the maximum yield values aver-
aged per temperature for each strain.

2.3 | Thermal performance curve fitting and 
parameter estimation

We used the TableCurve 2D software (version 5.01; Systat Software 
Inc., 2002) to select a set of candidate equations to describe the rela-
tionship between yield and temperature. Using data from a subset of 
experimental strains, all available equations described by functions 
with two or three terms plus an intercept (i.e., 1960 equations of all 
3,665 equations available in the software library) were fitted and the 
resulting fits with large R2 values were visually inspected. Candidate 
equations were selected based on the fulfilment of the following cri-
teria to ensure a biologically meaningful fit: (a) “bell-shaped” curve 
with maximum yield occurring within the experimental thermal 
range, (b) mostly concave curve (i.e., curves with several and clear 
local maximums in the experimental thermal range were discarded, 
but slight bumps were allowed), (c) extrapolation outside the experi-
mental thermal range predicted decreased performance (i.e., the be-
haviour of the curve outside the experimental thermal range was 
consistent with biological expectations). In the end, the following six 
equations were chosen as candidates for a plausible model of the 
relationship between temperature (x) and performance (y): 

 

 

 

 

 

 where a, b, c and d are strain-specific curve parameters.
For each strain, a weighted-average thermal performance curve 

was built after fitting those six candidate equations, where AIC val-
ues were used to calculate a strain-specific weight for each of the six 
equations according to the formula: 

where wi is the weight assigned to the ith equation and (△AIC)i is the 
difference between the AIC of the ith equation and the lowest AIC 
among the six equations for this strain. While acknowledging that 
our procedure for the selection of candidate equations might intro-
duce some subjectivity in the choice of candidate curves, keeping 
six different candidate equations and producing a weighted-average 
model based on their AIC values allowed for a variety of shapes in 
the final fitted curves with an overall good quality of fit, as shown in 
Supporting information Figure S1.

The obtained average thermal performance curves were used 
to determine maximum performance μmax and optimal temperature 
Topt. We decided not to extrapolate unreasonably the thermal per-
formance curves to determine CTmin and CThigh values, but instead 
chose to estimate thermal ranges by calculating for each strain 
the temperatures at which its TPC reached half its maximum per-
formance, hereafter CT50/low and CT50/high. Growth at lower tem-
peratures falls gradually and the growth in this species is already 
unmeasurable at 15°C, causing estimation inaccuracy in curve fitting 
and in estimating CTmin. Thermal performance breadth (TPB) was de-
fined as the difference between the estimated CT50/high and CT50/

low. A visual inspection of the fitted curves was performed to remove 
CT50/low (for 8 strains) and Topt values (for three strains) which were 
unreliable given the shape of the fit for a particular strain (e.g., very 
flat plateau at μmax, unreliable extrapolation for CT50/low), resulting in 
41 strains with all TPC parameters.

2.4 | PCA on yield measurements

As PCA is sensitive to outlier data points departing from normal 
distributions, we visually inspected normal quantile–quantile plots 
of the yield data to identify and remove three outliers of 49 strains 
prior to PCA. PCA was performed using the covariance matrix of 
maximum yields in five temperatures. Although outliers were re-
moved to minimize the possibility of exerting undue influence on the 
PCA by their departure from normality, these data point were oth-
erwise biologically meaningful. Therefore, the coordinates of all 49 
strains along each principal component (PC) were calculated based 
on the PCA loadings obtained from the subset of 46 strains. To make 
sure that the results did not depend on the specific treatment of 
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outliers, we rerun all downstream calculations without the outliers, 
with no change in main results.

To facilitate the biological interpretation of the patterns of vari-
ation described by each PC, we predicted the TPC of hypothetical 
strains located at the extreme boundaries of the 95% range of the 
coordinates of experimental strains along each PC using the inverse 
of the PCA matrix.

2.5 | Virulence assay

A virulence experiment was conducted according to the Finnish Act 
on the Use of Animals for Experimental Purposes, under permission 
ESAVI-2010-05569/Ym-23 granted for L-RS by the National Animal 
Experiment Board at the Regional State Administrative Agency for 
Southern Finland. Virulence of the 49 bacterial strains was assessed 
in an experiment using zebra fish (Danio rerio). The fish were infected 
using bacterial cultures grown overnight in fresh modified Shieh me-
dium and adjusted at 4 × 105 colony-forming units (CFU)/ml. Ten fish 
per bacterial strain were individually challenged in 500 ml of water 
by adding 500 μl of adjusted bacterial culture directly into the ex-
perimental aquaria. The water temperature was maintained at 25°C 
during the experiment, which is close to the mean Topt of the strains 
used. Aquaria containing fish were randomly placed on shelves in 
the experimental room to avoid systematic differences between 
aquaria. This infection method has been shown to produce a rapid 
onset of disease in fish, bringing out strain differences (Kinnula, 
Mappes, Valkonen, Pulkkinen, & Sundberg, 2017; Laanto, Penttinen, 
Bamford, & Sundberg, 2014). As a control, 10 fish were individually 
exposed to 500 μl of sterile modified Shieh medium. Disease signs 
and fish morbidity were monitored at 2-hr intervals for 97 hr. Morbid 
fish that had lost their natural swimming buoyancy, and which did 
not respond to external stimuli, were considered dead and removed 
from the experiment and euthanatized by cutting the spinal cord to 
avoid the suffering of the fish. Although rainbow trout and other 
salmonids are the natural hosts of F. columnare in Finland, we used 
zebra fish as an experimental model for bacterial virulence in this 
study: Previous study has demonstrated that zebra fish and rain-
bow trout respond to bacterial doses and strains qualitatively simi-
larly (Kinnula, Mappes, Valkonen, & Sundberg, 2015; Kinnula et al., 
2017), allowing for reasonable extrapolation of virulence experiment 
results across hosts. In addition, rainbow trout is a cold-adapted 
species, which makes it difficult to handle in laboratory conditions, 
while zebra fish is a well-studied model organism available all year 
round and sharing the temperature optimum of F. columnare, making 
it a more practical model organism for this study.

2.6 | Statistical analyses of thermal 
performance data

The effects of MLST (multilocus sequence typing) genotype group 
(categorical variable, four levels), year of strain isolation (continuous 
variable) and geographical location (categorical variable, two lev-
els: Northern and southern Finland) on thermal performance were 

assessed using model selection starting from a full linear model 
specified as: 

where performance was either one of the thermal performance 
curve parameters estimated from curve fitting (μmax, Topt, CT50/low, 
CT50/high or TPB) or coordinates along one of the principal compo-
nents of interest (PC1, PC2 or PC3). No interaction between Group 
and Year or Group and Location was included in the starting model 
due to the imbalanced distribution of strains from different MLST 
genotype groups across the years or across the geographical range 
of our study. Model selection was performed iteratively: At each 
step, variables were dropped one at a time and the significance of 
the change in fit for each dropped variable was tested using a chi-
square test (function drop1 in R). If the highest p-value for signifi-
cance of change in fit was >0.10, the corresponding variable was 
dropped from the model and the next selection step was performed; 
otherwise model selection was stopped.

2.7 | Statistical analyses of virulence data

As the vast majority of death events occurred early in the virulence 
assay, virulence data were analysed by considering fish survival as a 
binary variable (death/survival). The effects of explanatory variables 
on fish death were estimated using generalized linear mixed models 
(binomial family) with a logit link function and using strain identity as 
a random factor. Two full models differing in how they incorporated 
thermal performance as an explanatory variable (using either (1) PCs 
or (2) TPC parameters) were used as starting models. The fixed ef-
fects used in those two initial models were:

1.	 MLST genotype, year, location, PC1, PC2 and PC3 (49 strains)
2.	 MLST genotype, year, location, μmax, Topt and CT50/high (46 strains)

CT50/low and TPB were not included in the full model (2) due to co-
linearity with CT50/high (Figure 2).

Models were fitted using the glmer function from the lme4 
package in R. Model selection was performed starting from each of 
the full models and testing the effect of removing one variable out 
at a time, and testing for the significance of the change in fit with a 
likelihood-ratio test (function drop1 in R). At each step, the variable 
with the highest p-value for the significance of change in fit was 
dropped if this p-value was >0.10. We used the DHARMa package 
in R (Hartig, 2016) to assess the correctness of the residuals.

3  | RESULTS

3.1 | Correlations between thermal performance 
curve parameters

Repeatability of yield measurements was reasonable between 
17 and 29°C, but was lower for the highest temperature, close 

Performance= intercept+�g ⋅Group

+�y ⋅Year+�1 ⋅Location+residuals
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to maximum tolerable temperature (R17°C = 0.808, R22°C = 0.927, 
R24°C = 0.747, R29°C = 0.798, R32°C = 0.595). TPC parameters were 
estimated from the AIC-weighted-average curves for each of the 
49 strains. Due to uncertainty in estimated values for some fits, 
Topt values were calculated for 46 strains, and CT50/low values for 
41 strains (Supporting information Figure S1, Supporting informa-
tion Table S1). A correlogram was built to explore pairwise correla-
tions between TPC parameters (Figure 2). CT50/low and CT50/high 
were negatively correlated, and thus, an increase in cold tolerance 
(i.e., decrease in CT50/low value) was correlated with an increase 
in heat tolerance (i.e., increase in CT50/high value), suggesting vari-
ation along a gradient of narrow to wide thermal range. Topt was 
positively correlated with CT50/low but not with CT50/high, which 
reflects a horizontal shift of the left-hand part of the TPC while 
maximum thermal tolerance is more constrained. Finally, μmax was 
positively correlated with CT50/low and negatively correlated with 
CT50/high and TPB; this might reflect a trade-off between increased 
tolerance to a larger range of temperatures and higher maximum 
performance.

3.2 | Principal components describing variation 
in thermal performance

We selected the first three principal components (PCs), which 
accounted for 93% of the variability of the yield measurements 
at 17, 22, 24, 29 and 32°C for 46 strains (Figure 3, Supporting 

information Figure S2 and Table S2). PC1 (46% of variation) de-
scribes correlated changes in performance at the extreme tem-
peratures (17 and 32°C) while performance at the optimum 
temperature remains unchanged. PC1 thus mostly describes a gra-
dient from narrow to wide thermal range. PC2 (30% of variation) 
is characterized by a negative correlation between performance in 
cold and warm temperatures (17°C, 22°C vs 32°C) and PC2 can be 
seen as a cold adaptation/warm adaptation axis. PC3 (17% of varia-
tion) corresponds to a negative correlation between performances 
in the coldest temperature (17°C) and in medium temperatures 
around the optimal temperature (22–29°C) and could to some ex-
tent be seen as a trade-off between cold adaptation and optimum 
performance.

3.3 | Determinants of thermal performance

The MLST genotype affected all calculated thermal performance pa-
rameters (μmax, Topt, CT50/low, CT50/high and TPB; Table 1). Year effect 
was close to significance for μmax, with maximum performance de-
creasing slightly over the years (Table 1). Geographical location had 
no significant effect on any TPC parameter.

Location had a significant effect on PC2 coordinates, with north-
ern strains exhibiting lower PC2 values (Table 2), corresponding to 
cold adaptation (Figure 3). MLST genotype had a significant effect 
on PC3 coordinates (negative correlation between maximum perfor-
mance and cold tolerance, Figure 3).

F IGURE  2 Correlogram for thermal 
performance parameter estimates. Upper 
triangle, Pearson’s product moment 
correlation coefficients between pairs 
of variables. The numbers in brackets 
indicate the 95% confidence interval; the 
N value is the number of strains available 
to calculate the correlation coefficient. 
Lower triangle, scatter plot between 
pairs of variables. When the Pearson’s 
product moment correlation coefficient 
is significant (p-value <0.05), a dashed 
line indicates the ranked major axis. For 
the upper triangle, the colour coding 
on a green to red scale matches the 
correlation coefficient value (−1, green; 
0, grey; +1; red). For the lower triangle, 
colours match multilocus sequence typing 
(MLST) genotype: red, purple, green and 
blue are for genotypes C, E, G and A&H, 
respectively. μmax, maximum biomass 
yield; Topt, optimal temperature; CT50/

low and CT50/high, lower and upper critical 
temperatures for which performance is 
half of μmax; TPB, thermal performance 
breadth

µmax 0.23
(−0.06,0.49)

n = 46

0.40
(0.10,0.63)

n = 41

−0.36
(−0.58,−0.09)

n = 49

−0.46
(−0.67,−0.17)

n = 41

Topt 0.34
(0.04,0.59)

n = 41

0.04
(−0.26,0.32)

n = 46

−0.02
(−0.32,0.29)

n = 41

CT50 low −0.39
(−0.62,−0.09)

n = 41

−0.84
(−0.91,−0.71)

n = 41

CT50 high 0.83
(0.70,0.91)

n = 41

TPB
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3.4 | Determinants of virulence

When the effect of thermal performance on virulence was analysed 
using TPC parameters estimated from curve fitting, 46 strains of 49 
could be included in the analysis due to missing values in Topt. Year 
of isolation had a positive effect on virulence (Figure 4b, Table 3).

Among analysed TPC parameters, both Topt and CT50/high had an 
effect on virulence (Table 4): Strains with higher Topt were more vir-
ulent and strains with higher tolerance to high temperatures were 
less virulent. When the effect of thermal performance on virulence 
was analysed using PCs (49 strains used), both year and PC1 coor-
dinate had a significant effect on virulence: Strains collected more 
recently were more virulent (similarly as observed using TPCs) and 
strains with wider thermal range (PC1) had lower virulence (Table 4, 
Figure 4a).

4  | DISCUSSION

There is a growing body of evidence indicating that some patho-
gens become more prevalent (Chiaramonte, Munson, & Trushenski, 
2016; Sterud et al., 2007) and more virulent at warmer temperatures 
(Smith et al., 2014). For example, it has been shown that increased 
expression of virulence factors is correlated with increased tempera-
ture in Vibrio species (Mahoney, Gerding, Jones, & Whistler, 2010; 
Oh, Lee, Lee, & Choi, 2009). In theory, virulence will evolve to a 
level at which virulence and transmission are balanced to optimize 

the spread of the pathogen (Alizon, Hurford, Mideo, & Van Baalen, 
2009). Nevertheless, virulence is context–dependent, as both bi-
otic factors such as host condition (Pulkkinen & Ebert, 2004) and 
host density (Bieger & Ebert, 2009) and abiotic factors such as tem-
perature (Guijarro, Cascales, García-Torrico, García-Domínguez, & 
Méndez, 2015) can influence virulence. Consequently, pathogens 
that are able to survive outside their hosts and therefore less de-
pendent on direct contact transmission are likely to experience 
nonoptimal virulence, high or low, depending on various factors that 
affects virulence outside the host (Bull & Ebert, 2008; Sundberg 
et al., 2014; Walther & Ewald, 2004). Temperature can have com-
plex and even opposing effects on pathogens with free-living stages 
and their ectothermic hosts, as high temperatures can cause stress 
and often lead to lowered host defences and increased susceptibil-
ity to infection, which could counteract the positive effects of tem-
perature on abundance, transmission and better survival rates of the 
pathogen (Harvell et al., 2002).

In this study, we explored whether strains of an aquaculture-
associated pathogen vary in their thermal performance, and 
whether thermal performance was correlated with strain virulence. 
This type of information is crucial in predicting how climate change 
scenarios could alter environmental pathogens’ virulence via cor-
related selection on their thermal performance. To this end, we 
characterized the temperature dependency of maximum biomass 
yield of 49 isolates of F. columnare that were collected from eight 
different areas located across Finland between 2003 and 2012. We 
estimated their temperature performance curves (TPC) and used 

F IGURE  3 PCA results and their interpretation in terms of TPC patterns. Upper panels, prediction of TPC variation patterns along each 
of the first three PCs. Grey dashed line, average performance curve of the 49 strains used in this study. Orange and green lines, performance 
curves of hypothetical strains with coordinates at the lower and upper 95% quantiles, respectively, along each PC, as depicted in the 
explicative panel on the right. Lower panels, loadings for each original temperature on the first three PCs
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TABLE  1 Effect of multilocus sequence typing genotype, year of collection and location on strain thermal performance estimates

Estimate SE F-value (df1, df2) p-value

μmax (n = 49)

Genotype

C 1.091 0.012 16.8141 (3, 44) <0.001

E 0.993 0.015

G 1.044 0.029

A&H 0.928 0.026

Location

Northern 1.035 0.020 1.4126 (1, 43) 0.241

Southern 1.006 0.012

Year −0.007 0.004 3.9550 (1, 44) 0.053

Topt (n = 46)

Genotype

C 26.118 0.160 3.9975 (3, 42) 0.014

E 25.762 0.179

G 24.922 0.357

A&H 25.391 0.292

Location

Northern 25.432 0.262 0.2627 (1, 41) 0.611

Southern 25.589 0.153

Year −0.013 0.049 0.0656 (1, 40) 0.799

CTlow (n = 41)

Genotype

C 17.577 0.178 5.2715 (3, 37) 0.004

E 16.511 0.212

G 17.028 0.397

A&H 16.668 0.459

Location

Northern 16.864 0.320 0.2220 (1, 35) 0.640

Southern 17.036 0.199

Year 0.057 0.055 1.0523 (1, 36) 0.312

CThigh (n = 49)

Genotype

C 31.570 0.167 7.3322 (3, 45) <0.001

E 32.471 0.200

G 31.107 0.400

A&H 32.720 0.326

Location

Northern 32.144 0.285 0.5236 (1, 44) 0.473

Southern 31.902 0.171

Year 0.005 0.054 0.0095 (1, 43) 0.923

TPB (n = 41)

Genotype

C 13.994 0.275 7.8427 (3, 37) <0.001

E 15.970 0.328

G 14.079 0.614

A&H 15.437 0.709

(Continues)
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principal component analysis on raw performance measurements to 
assess the variation in thermal performance between strains. Our 
results revealed that despite northern location, Finnish F. columnare 

typically have a rather high optimum temperature between 23.7 and 
27.9°C and an upper critical temperature for yield between 30.1 
and 34.7°C. Finnish lakes form predominantly closed and shallow 

Estimate SE F-value (df1, df2) p-value

Location

Northern 15.080 0.496 0.4048 (1, 35) 0.529

Southern 14.721 0.308

Year −0.069 0.086 0.6543 (1, 36) 0.424

Notes. Marginal means are reported for each level of the qualitative variables (Genotype, Location), and slope is reported for the continuous variable 
Year. The values reported in italics are the ones that were obtained in the last step before variables were removed during model selection. The number 
of strains (n) that we used in each model is reported next to the response variable name.

TABLE  1  (Continued)

Estimate SE F-value (df1, df2) p-value

PC1 (n = 49)

Genotype

C −0.006 0.040 1.3967 (3, 45) 0.256

E 0.063 0.048

G −0.123 0.097

A&H 0.091 0.079

Location

Northern 0.092 0.068 2.1427 (1, 44) 0.150

Southern −0.025 0.041

Year −0.005 0.013 0.1339 (1, 43) 0.716

PC2 (n = 49)

Genotype

C −0.030 0.040 0.8276 (3, 43) 0.486

E −0.037 0.059

G −0.146 0.094

A&H 0.038 0.080

Location

Northern −0.094 0.039 6.1395 (1, 47) 0.017

Southern 0.030 0.031

Year 0.009 0.010 0.8898 (1, 46) 0.350

PC3 (n = 49)

Genotype

C −0.060 0.018 9.8473 (3, 45) <0.001

E 0.051 0.021

G 0.002 0.042

A&H 0.120 0.034

Location

Northern −0.005 0.030 1.6892 (1, 44) 0.200

Southern 0.040 0.018

Year 0.006 0.006 1.2330 (1, 43) 0.273

Notes. Marginal means are reported for each level of the qualitative variables (Genotype, Location), 
and slope is reported for the continuous variable Year. The values reported in italics are the ones that 
were obtained in the last step before variables were removed during model selection. The number 
of strains (n) that we used in each model is reported next to the response variable name.

TABLE  2 Effect of multilocus sequence 
typing genotype, year of collection and 
location on strain coordinates along PCs
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basins (average depth about 7 m) and surface waters may reach high 
temperatures in summer (Korhonen, 2002). As this bacterium can 
be isolated from natural waters (Kunttu, Sundberg, Pulkkinen, & 
Valtonen, 2012), tolerance to high temperature might be necessary 
for inhabiting natural waters during summer. Consistent with the 
idea that cold tolerance is a key element for survival and growth 
in high latitudes, isolates from Northern Finland were more tol-
erant to colder temperatures than isolates from southern Finland 
(see PC2 in Figure 3 and effect of location on PC2 in Table 2). Our 
findings are in agreement with previous studies showing that se-
lection may favour higher performance in higher altitude/latitude 
environments to guarantee successful reproduction and transmis-
sion during short growth seasons (Yang et al., 2016). On the other 
hand, ample amount of genotype-dependent variation in all TPC 
parameters (Table 1, Figure 2) suggests that genetic background 
might play a significant role in shaping thermal performance of this 
bacterium. These findings clearly indicate that thermal conditions 
can in principle have a strong effect on the genetic diversity of 

F. columnare in the environment and therefore presumably also on 
disease dynamics.

Our results show that Finnish F. columnare strains have become 
more virulent in recent years, as evidenced in our experiments under 
controlled laboratory conditions where confounding effects such as 
increased environmental temperature, variable nutrient availability 
or variable host density were removed (year effect in Table 3 and 
Figure 4b) (see also Sundberg et al., 2016). Interestingly, not only 
did we find compelling evidence that higher optimum temperatures 
could be associated with increased bacterial virulence, but also 
bacterial virulence was negatively correlated with upper thermal 
tolerance (CT50/high) and with broader thermal performance curve 
(Tables 3 and 4). It has been shown in other fish pathogens that 
growth of bacteria at higher-than-optimal temperature can result in 
decreased virulence (Crosa, Hodges, & Schiewe, 1980; Ishiguro et al., 
1981). This suggests that elevated temperatures or increased fluctu-
ations associated with climate change should not select for higher 
virulence in this species. Nevertheless, the constraints of elevated 

F IGURE  4 Effect of PC1 coordinate 
and year of collection on strain virulence. 
Each marker represents the average 
mortality observed for a given strain. 
Fitted curves are plotted using the GLMM 
results presented in Table 3 (n = 49 
strains). Colours represent genotype 
groups. The black fitted line corresponds 
weight-averaged fixed effect estimates 
based on the abundance of genotype 
groups in our dataset. Panel A, effect of 
PC1 coordinate on strain virulence. The 
three subpanels illustrate how TPC varies 
from specialist to generalist phenotype 
along PC1. Panel B, effect of year of 
collection on strain virulence

(a)

(b)
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temperature that we tested here (such as 25°C) on virulence should 
be relatively limited in temperate regions such as Finland. Therefore, 
there will be an opportunity for increasing virulence and more po-
tential for deadly outbreaks in future Finnish aquaculture due to the 
following reason(s): (a) Ambient temperatures in the Finnish farming 
environment rarely exceed 25°C, (b) Guijarro et al. (2015) showed 
that some bacterial diseases in aquaculture, particularly those of 
freshwater fish, could occur at temperatures below bacterial optimal 

growth (i.e., optimum growth temperature for the fastest growth 
under laboratory conditions), (c) the summer water temperature in 
the fish farms could potentially be kept under relative control in 
some flow-through farm systems due to the mixing of ground water 
with the inflow water from natural bodies. Yet, F. columnare occurs 
globally and negative association of virulence with CT50/high provides 
relevant information for tropical environments where water tem-
perature may exceed 30°C.

(n = 49 strains) Estimate SE Chi-square df p-value

Genotype

C Pdeath = 0.844 0.155 7.1673 3 0.067

E Pdeath = 0.918 0.121

G Pdeath = 0.069 0.149

A&H Pdeath = 1.000 0.001

Location

Northern Pdeath = 0.835 0.234 0.2283 1 0.633

Southern Pdeath = 0.932 0.075

Year 1.962 0.869 5.0903 1 0.024

PC1 −1.960 0.872 5.0560 1 0.025

PC2 −1.373 0.859 2.5552 1 0.110

PC3 −1.516 0.964 2.4701 1 0.116

Notes. Model used in R: death ~ genotype + year + location + PC1 + PC2 + PC3 + (1|strain), with a 
binomial family distribution and a logit link function (n = 49 strains). Continuous variables (Year, PC1, 
PC2, PC3) were z-normalized. Marginal means and standard errors are reported for each different 
level of qualitative variables (Genotype and Location) in the original response scale (Pdeath), while 
slope estimates and standard errors in the logit scale are reported for the z-normalized continuous 
variables. The values reported in italics are the ones that were obtained in the last step before vari-
ables were removed during model selection. Results with p-values below 0.05 are highlighted in a 
bold font.

TABLE  3 Effect of strain 
characteristics on virulence (using PCs 
coordinates)

(n = 46 strains) Estimate SE Chi-square df p-value

Genotype

C Pdeath = 0.713 0.251 5.9872 3 0.112

E Pdeath = 0.869 0.163

G Pdeath = 0.322 0.531

A&H Pdeath = 1.000 0.001

Location

Northern Pdeath = 0.946 0.094 0.0153 1 0.901

Southern Pdeath = 0.931 0.073

Year 1.962 0.954 4.2277 1 0.040

μmax 0.689 1.079 0.4078 1 0.523

Topt 2.168 0.902 5.7709 1 0.016

CThigh −2.459 1.069 5.2938 1 0.021

Notes. Model used in R: death ~ genotype + year + location + μmax + Topt + CT50/high + (1|strain), with 
a binomial family distribution and a logit link function (n = 46 strains). Continuous variables (Year, 
μmax, Topt, CT50/high) were z-normalized. Marginal means and standard errors are reported for each 
different level of qualitative variables (Genotype and Location) in the original response scale (Pdeath), 
while slope estimates and standard errors in the logit scale are reported for the z-normalized con-
tinuous variables. The values reported in italics are the ones that were obtained in the last step be-
fore variables were removed during model selection. Results with p-values below 0.05 are highlighted 
in a bold font.

TABLE  4 Effect of strain 
characteristics on virulence (using TPC 
estimates)
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On the other hand, growth season and abundance of F. co-
lumnare is expected to increase as a result of the longer summer 
associated with climate warming, as temperature records from 
two fish farms in Northern and Central Finland over the past few 
decades show that the duration of the warm-water season has 
increased (Supporting information Figure S3B). It has also been 
shown that the thickness of ice in Finnish lakes will decrease and 
the ice-covered period will be considerably shorter than today 
(Elo, Huttula, Peltonen, & Virta, 1998). Therefore, the increase 
in the length of the pathogen growth season could allow for 
faster rate of adaptation in parasite traits under selective pres-
sure during host exploitation (Supporting information Figure S3A 
and B). Consequently, coupled with intensive farming in Finland, 
these climate changes would further increase the severity of co-
lumnaris disease (Sundberg et al., 2016). Virulence in the wild is a 
complex interplay between host, parasite and environment, and 
future experimental studies should include variation in infection 
temperature to tease apart the role of temperature for both the 
bacteria and the host. This is especially important for salmonid 
fish (the natural hosts of columnaris disease) because they are 
cold-adapted and increased stress due to high temperature may 
lead to higher morbidity.

We also found that maximum performance was overall nega-
tively correlated with thermal performance breadth, suggesting 
a trade-off between generalism and high-performance special-
ism (negative correlation between μmax and TPB in Figure 2). This 
supports to some extent the classic generalist–specialist trade-off 
hypothesis. However, the main variation patterns found by PCA 
separate variation in thermal generalism (PC1) from variation in 
maximum performance (PC2 and PC3). Based on those two axes 
(PC2 and PC3, Figure 3), maximum performance is associated with 
CT50/low and CT50/high in complex ways. As TPB itself is defined 
by the difference between CT50/high and CT50/low, the overall 
trade-off between μmax and TPB observed in Figure 2 might be an 
indirect correlation resulting from the sum of those relationships. It 
is noteworthy that theories about specialism/generalism trade-off 
are highly idealized and a “Jack of all temperatures” does not always 
have to be a master of none (Angilletta, 2009). Genotypes can have 
broader thermal performance range without always paying a visible 
performance cost at optimum conditions, but possibly involving a 
trade-off with other traits (Huey & Hertz, 1984; Ketola et al., 2013), 
such as virulence (Ketola et al., 2013; Sturm et al., 2011). For envi-
ronmentally growing opportunist pathogens, adaptations for more 
efficient exploitation of one growth environment could be expected 
to cause repercussions in their ability to grow in the other environ-
ment (Brown et al., 2012), such as host environment. Alternatively, 
the presence of virulence factors in the bacteria is unnecessary 
during the planktonic state but essential for the infection process, 
helping bacteria to save energy by not expressing virulence genes 
until they sense they have entered the host environment (Guijarro 
et al., 2015). This could explain why more generalist strains with 
broader thermal performance breadth were less virulent than 
strains with narrower TPB (see: PC1 effect in Table 3 and Figure 4a). 

Similarly, expression of virulence factors was found to decrease 
outside-host growth rate in Salmonella typhimurium (Sturm et al., 
2011) and adaptation to tolerate thermal fluctuations and protozoan 
predators have caused lowered virulence in experimental evolution 
settings with microbial pathogens (Friman et al., 2011; Ketola et al., 
2013; Mikonranta et al., 2012; Zhang et al., 2014).

In conclusion, it seems that current problems with steadily in-
creased severity of outbreaks and evolved virulence cannot be 
directly linked to increased mean temperature at fish farms and as-
sociated bacterial evolution. Still, the clear genotype and location 
effects on several thermal tolerance parameters suggest that tem-
peratures might play strong role in dictating diversity and geograph-
ical distribution of this important fish pathogen.
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