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Abstract
Coronavirus disease 2019 (COVID-19) is a current pandemic disease caused by a novel severe acute respiratory syndrome 
coronavirus virus respiratory type 2 (SARS-CoV-2). SARS-CoV-2 infection is linked with various neurological manifesta-
tions due to cytokine-induced disruption of the blood brain barrier (BBB), neuroinflammation, and peripheral neuronal injury, 
or due to direct SARS-CoV-2 neurotropism. Of note, many repurposed agents were included in different therapeutic protocols 
in the management of COVID-19. These agents did not produce an effective therapeutic eradication of SARS-CoV-2, and 
continuing searching for novel anti-SARS-CoV-2 agents is a type of challenge nowadays. Therefore, this study aimed to 
review the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19) is a current pandemic 
disease caused by a novel severe acute respiratory syndrome 
coronavirus virus respiratory type 2 (SARS-CoV-2) (Al-
Kuraishy et al. 2021a). SARS-CoV-2 is a single-strand RNA 
virus from the betacoronavireadae family and has a close 
genetic similarity with other coronaviruses like bat corona-
virus, SARS-CoV, and Middle East Respiratory Syndrome 
coronavirus virus (MERS-CoV) (Al-Gareeb et al. 2021). 
SARS-CoV-2 initially emerged in Wuhan, China, leading 
to an unrecognized pneumonia named Wuhan pneumonia. 

Later, this virus was renamed as a novel coronavirus virus 
2019 (nCov2019). After a short period, the world health 
organization (WHO) notified this disease as a pandemic 
and renamed this virus as SARS-CoV-2 (Al-Kuraishy et al. 
2021b). COVID-19 is regarded as a primary respiratory dis-
ease leading to respiratory symptoms identical to those of the 
flu-like illness characterized by fever, headache, dry cough, 
dyspnea, myalgia, joint pain, and anosmia (Al-Kuraishy et al. 
2021c). Further studies and scrutinized researches revealed 
that COVID-19 may cause extra-pulmonary manifestations 
including acute kidney injury, thromboembolic disorders, and 
gastrointestinal and neurological complications (Al-Kuraishy 
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et al. 2020a). In general, COVID-19 is mostly asymptomatic in 
about 85% of affected patients. However, 15% of the affected 
patients presented with severe dyspnea and critical respiratory 
symptoms due to the propagation of acute lung injury (ALI). 
In addition, 5% of COVID-19 patients need hospitalization and 
intensive care unit (ICU) admission due to the development 
of acute respiratory distress syndrome (ARDS) (Al-Kuraishy 
et al. 2021d). Critical and severe COVID-19 patients may 
require invasive oxygen supplementation and mechanical 
ventilation (Al-Kuraishy et al. 2021d).

Management of COVID-19 patients is mainly supportive 
and symptomatic relief, since specific anti-SARS-CoV-2 was 
not developed till now despite development of effective vac-
cines. Of note, many repurposed agents like ivermectin, rem-
desivir, and favipiravir were included in different therapeutic 
protocols in the management of COVID-19 (Carlotti et al. 
2020). These agents did not produce effective therapeutic 
eradication of SARS-CoV-2, and continued search for novel 
anti-SARS-CoV-2 agents is a of type challenge nowadays 
(Carlotti et al. 2020).

In the Noble Qur’an, there is something that indicates 
the greatness of humankind’s creation: we add to the first 
creation, but they are confused by a new creation (The Noble 
Qur'an, Surah Q-Verse (15). As well, Imam Ali said: “Do 
not say what you do not know, but do not say everything you 
know, for God has imposed on all of your limbs duties that 
will be used as evidence on the Day of Resurrection.” There-
fore, we should search for endogenous or similar agents to 
be used as a therapeutic tool against inflammatory changes 
in COVID-19.

Citicoline (CTN) is an endogenous chemical compound 
known as cystidine-5-diphosphocholine (Jasielski et  al. 
2020). CTN is commonly available in many dietary sources 
and is regarded in many countries as a dietary supplement 
or drugs. CTN has a neuroprotective role through its anti-
inflammatory and antioxidant effects (Jasielski et al. 2020; 
Al-kuraishy et al. 2022). Thus, this critical review aimed to 
elucidate the potential role of CTN in the management of 
neurological manifestations in COVID-19.

Pharmacology of citicoline

CTN is a [2R, 3S, 4R, 5R-5(4-amino-2-oxopyrimidin-1-yl)-
3,4-dihydroxyoxolan-2-yl) methoxy-hydroxyphosphoryl-
2-trimethylazaniumyl-ethyl phosphate] (Fig. 1).

Pharmacokinetic of citicoline

CTN can be used orally and parenterally. In the body, CTN 
is hydrolyzed to choline and cytidine by dephosphorylation 
and hydrolysis processes in the intestine (Al-Kuraishy and 
Al-Gareeb 2020). Choline and cytidine, which cross the 

blood brain barrier (BBB), are regarded as substrates for 
neuronal synthesis of phosphatidylcholine (Abbaszadeh 
et al. 2018). CTN is a water soluble agent with 90% bio-
availability after oral administration. CTN reaches its peak 
plasma level within 1 h following oral administration (Al-
Kuraishy and Al-Gareeb 2020). CTN is highly absorbed 
from intestine, rapidly metabolized by liver enzymes to give 
inactive metabolites which are eliminated as carbon diox-
ide, and the remainders are excreted by urine. According to 
experimental and preclinical studies (Al-Kuraishy and Al-
Gareeb 2020; Abbaszadeh et al. 2018), CTN is a safe agent 
with low toxicity. The effective dose of CTN is 2 g/day. 
The side effects of CTN are mild and mainly related to gas-
trointestinal irritation. Though, some studies reported that 
chronic use of CTN was associated with psychiatric episodes 
and may have antagonized anti-psychotic drugs. However, a 
meta-analysis study does not support this claim (Gareri et al. 
2015). According to the pharmacokinetic studies, CTN has 
less interaction with other drugs (Gareri et al. 2015).

Pharmacodynamic of citicoline

CTN preserves the arachidonic acid content of phosphatidy-
lethanolamine and phosphatidylcholine of the neuronal cell 
membrane. CTN promotes the activity of glutathione reduc-
tase and increases synthesis of glutathione with inhibition of 
phospholipase A (PLA2) activity (Ek et al. 2014). This find-
ing suggests the antioxidant and anti-inflammatory effects of 
CTN (Ek et al. 2014). Besides, CTN stimulates acetylcholine 
(Ach) synthesis in the brain by increasing the availability of 
choline (Abdel-Aziz et al. 2021). As well, CTN maintains 
the integrity of the inner mitochondrial membrane by inhib-
iting the catabolism of cardiolipin by inhibition of phospho-
lipase A (PLA2) (Adibhatla and Hatcher 2002). Similarly, 
CTN stimulates synthesis of cardiolipin, reduces lipid per-
oxidation, and restores activity of neuronal Na+/K+-ATPase 
(Piamonte et al. 2020). Furthermore, CTN activates synthe-
sis and release of neurotransmitters like dopamine by stimu-
lating tyrosine hydroxylase (Piamonte et al. 2020; Secades 

Fig. 1   Chemical structure of citicoline
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2019). In addition, CTN improves the release of Ach and 
noradrenalin, which increases vigilance, learning, and cog-
nitive function (Secades 2019; Al-Kuraishy et al. 2021e).

Moreover, CTN inhibits neuronal excitotoxicity by reduc-
ing glutamine concentration in the synaptic cleft by aug-
menting glutamate uptake through increased expression of 
glutamate transporters in rat astrocytes (Hurtado et al. 2005; 
Piotrowska et al. 2022). Therefore, CTN could be effective 
in the management of ischemic stroke (Piotrowska et al. 
2022). However, a meta-analysis revealed that CTN ther-
apy was not associated with beneficial clinical outcomes in 
patients with ischemic stroke (Shi et al. 2016). Surprisingly, 
CTN increases the levels of adrenocorticotropic hormone 
(ACTH), luteinizing hormone (LH), follicular stimulating 
hormone (FSH), thyroid stimulating hormone (TSH), and 
growth hormone (GH) (Abdel-Aziz et al. 2021; Secades 
2011). Cavun et al. found that CTN regulates the release 
of vasopressin by activating presynaptic nicotinic receptors 
(Çavun et al. 2004).

Neuroprotective effect of citicoline

It has been reported that CTN has neuroprotective activ-
ity against different neurodegenerative and traumatic brain 
disorders through its neuro-restorative effects (Abdolmaleki 
et al. 2016). As well, CTN has anticonvulsive, sedative, 
and anxiolytic activities (Abdolmaleki et  al. 2016). Of 
interest, CTN can attenuate neuroinflammation by inhib-
iting the release of pro-inflammatory cytokines including 
tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), 
IL-1β, and monocyte chemoattractant protein 1 (MCP-
1) with activation release of anti-inflammatory cytokines 
IL-10 (Al-Mosawi 2019; Secades 2021). CTN regulates 
neuronal energy balance by controlling ATP levels and the 
activity of Na+/K+-ATPase (Piamonte et al. 2020). Simi-
larly, CTN reduced neuronal injury by reversing glutamate 
transport and associated excitotoxicity (Hurtado et al. 2005; 
Piotrowska et al. 2022). Furthermore, CTN decreases oxi-
dative stress-induced neuronal cell death and apoptosis 
by inhibiting lipid peroxidation and activating antioxidant 
enzyme capacity (Piamonte et  al. 2020). Interestingly, 
CTN improves expression of silent information regulator 
1 (SIRT1), which has an anti-apoptotic effect by reducing 
caspase expression (Krupinski et al. 2002). CTN as well pre-
vents development of endothelial dysfunction by inhibiting 
disruption of endothelial tight junction in ischemic stroke 
(Ma et al. 2013). Remarkably, CTN increases neurogenesis, 
gliogenesis, and synaptogenesis, which attenuates the nega-
tive impact of the neurodegenerative process (Martynov and 
Gusev 2015).

A past review illustrated that clinical trials involving more 
than 11,000 patients with different neurologic disorders, 

including acute ischemic stroke (AIS), were significantly 
ameliorated by CTN treatment compared to the controls 
(Overgaard 2014). Moreover, a meta-analysis including 1371 
patients with AIS from 4 randomized clinical trials revealed 
that CTN treatment in a dose range of 500–2000 mg/day 
given within 24 h of AIS led to a significant improvement 
at 3 months (Saver 2008). CTN improves clinical outcomes 
in patients with AIS compared to healthy controls [OR = 
1.33, 95% CI = 1.10–1.62], (Dávalos et al. 2012). Besides, 
data from an international CTN trial on AIS, which com-
prised 2298 AIS patients within 24 h treated by CTN at 2 g/
day compared to placebo for 6 weeks, revealed a significant 
improvement effect of CTN treatment on the primary out-
comes (Dávalos et al. 2012).

Furthermore, CTN prevents cerebral vascular impair-
ment-induced cognitive dysfunction (Gareri et al. 2015). 
Gareri et al. found that CTN therapy at 1 g/day for 1 month 
in 20 patients with vascular cognitive dysfunction advanced 
cerebral blood flow and reduced immunogenic reactivity 
(Gareri et al. 2015). Likewise, a randomized study involving 
347 patients with post-stroke cognitive dysfunction treated 
with CTN illustrated significant neuroprotective effects of 
CTN against deterioration of cognitive function (Alvarez-
Sabín et al. 2013).

In addition, CTN has been shown to be effective in the 
management of Parkinson disease (PD) by improving the 
activity of dopaminergic neurons (Que and Jamora 2021). A 
systematic review showed that CTN was operative in reduc-
ing levodopa requirements and associated adverse effects 
(Que and Jamora 2021).

These clinical observations indicated and confirmed the 
neuroprotective effect of CTN in the management of AIS 
and degenerative brain diseases through different mecha-
nistic pathways (Fig. 2).

COVID‑19 and neurological manifestations

Generally, SARS-CoV-2 infection is linked with various 
neurological manifestations, including dysgeusia and anos-
mia, due to the neurotropic effect of SARS-CoV-2 (Giaco-
melli et al. 2020; Al-Kuraishy et al. 2022d). Neurological 
manifestations have been reported to be found in about 
36.4% of COVID-19 patients, counting central and periph-
eral neurological complications as well as skeletal muscle 
disorders (Mao et al. 2020; Al-Buhadily et al. 2021). The 
most common neurological symptoms in COVID-19 are 
dizziness (16.8%), headache (13.1%), and fatigue (13.0%) 
(Niazkar et al. 2020). Furthermore, stroke, seizure, ataxia, 
and confusion were also documented as central neurological 
complications in COVID-19 patients (Niazkar et al. 2020; 
Al-Kuraishy et al. 2021f).
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In particular, fatigue in COVID-19 patients is devel-
oped due to autoantibodies against muscarinic and adr-
energic receptors with the development of dysautonomia 
(Townsend et al. 2021). Correspondingly, neuropsychiatric 
disorders including depression, psychosis, and anxiety have 
been reported in COVID-19 patients (Tang et al. 2021). 
Mazza and colleagues reported that depression and anxi-
ety in COVID-19 survivors were associated with a high 
inflammatory burden (Mazza et al. 2020). In COVID-19, 
hyperactive immune responses and neuroinflammation 
increased the risk of neuropsychiatric complications (Tang 
et al. 2021). It has been shown in an MRI-based study for 
taxation of neurological changes in COVID-19 survivors 
3 months following discharge, that there were notewor-
thy structural changes that were consistent with extending 
neurological symptoms such as cognitive deficits and anos-
mia (Lu et al. 2020). Of interest, a prospective study that 
included sixty COVID-19 survivors compared to thirty-nine 
matched controls found that there were neurological dys-
functions in 55% of COVID-19 survivors as compared with 
healthy controls (Lu et al. 2020). Thus, the prolonged effect 
of SARS-CoV-2 infection, even a mild-moderate one, may 
affect functional and micro-structural brain integrity, result-
ing in neurological consequences in COVID-19 survivors. 
Likewise, Paterson et al. demonstrated a high frequency 
of acute disseminated encephalomyelitis in COVID-19 
survivors that was not linked with the initial severity of 
COVID-19 (Paterson et al. 2020). This finding suggests 
that SARS-CoV-2 infection, irrespective of its severity, may 
cause long-term neurological complications, and this may 
explain neuropsychiatric manifestations in patients with 
post- COVID-19 survivors.

In addition, delirium was reported in hospitalized patients 
with severe COVID-19 and may be present in patients with 

post-COVID-19 (O’Hanlon and Inouye 2020). As well, early 
presentation of delirium in SARS-CoV-2 infection may pre-
dict the development of cognitive dysfunction, mainly in 
elderly COVID-19 survivors (Rogers et al. 2020). Remark-
ably, a meta-analysis study publicized that delirium symp-
toms in COVID-19 patients at the time of admission were 
connected with poor neurological outcomes (OR = 2.36, 
95% CI = 1.80–3.09, P < 0.00001) (Rogers et al. 2020).

Notably, neuropsychiatric symptoms in the acute phase 
of SARS-CoV-2 infection may lead to fatigue, cognitive 
impairment, and other neuropsychiatric complications due 
to cerebral dysfunction (Taquet et al. 2021). Also, a cohort 
study comprised 236,379 COVID-19 survivors 6 months 
after acute SARS-CoV-2 infection showed that 56% of 
COVID-19 survivors developed numerous neuropsychiatric 
spectrums, mainly with ICU admission (Bulfamante et al. 
2020).

Certainly, brainstem injury in acute SARS-CoV-2 infec-
tion may lead to cardio-respiratory dysfunction via injury 
of respiratory and vasomotor centers (Yong 2021). Of note, 
brainstem dysfunction may continue for long time after acute 
SARS-CoV-2 infection causing dyspnea and neurological 
dysfunctions in COVID-19 survivors (Matschke et al. 2020). 
Advanced expression of ACE2 in the brainstem escalates the 
susceptibility to SARS-CoV-2 neurotropism and successive 
inflammatory reaction-induced dysfunction (Matschke et al. 
2020). Interestingly, post-mortem studies demonstrated that 
SARS-CoV-2 proteins and genes were identified in COVID-
19 victims (Solomon et al. 2020; Rovere Querini et al. 2020).

Therefore, the fundamental mechanism of neuropsychiat-
ric disorders in COVID-19 might be due to cytokine-induced 
disruption of the BBB, neuroinflammation, and peripheral 
neuronal injury, or due to direct SARS-CoV-2 neurotropism 
(Majolo et al. 2021). Noteworthily, exaggerated inflamma-
tory responses could be the suggested mechanism for the 

Fig. 2   Neuroprotective effect 
of citicoline (CTN): CTN, 
through its anti-inflammatory 
and antioxidant effects as well 
as through induction of neuro-
genesis and neuronal energy, 
attenuates neurodegeneration 
and neuroinflammation, respec-
tively. CTN induces expression 
of silent information regulator 
1 (SIRT1), which inhibits neu-
roinflammation and produces 
a direct neuroprotective effect. 
The final effect of CTN is neu-
roprotection
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progression of neuropsychiatric and other neurological dis-
orders in COVID-19 (Kumar et al. 2021).

The underlying suggested mechanism for neurological 
involvement in COVID-19 might be related to the progres-
sion of demyelination disorders, as previous coronavirus 
infections were linked with different neurodegeneration and 
demyelination (Desforges et al. 2014). In addition, extraor-
dinary expression of ACE2 in some brain regions such as 
substantia nigra and limbic system may upsurge the inter-
action between SARS-CoV-2 and neurons with succeeding 
neurological complications (Chen et al. 2020; Garcia et al. 
2021).

These observations suggest that SARS-CoV-2 infec-
tions may lead to the occurrence of various neurological 
manifestations and complications in COVID-19 by complex 
mechanisms.

Citicoline and COVID‑19‑induced 
neurological manifestations

Citicoline and SIRT1

SIRT1 is a mono-ADP ribosyl transferase and NAD-depend-
ent deacylase signaling protein involved in cellular homeo-
stasis and metabolic regulation. SIRT1 has a wide biologi-
cal effect affecting both longevity and cell survival during 
acute and chronic oxidative stress-induced injury (Jiao and 
Gong 2020). In a similar way, SIRT1 regulates inflamma-
tory responses, DNA repair, apoptosis, metabolism, and 
stress during neuroinflammation (Jiao and Gong 2020). It 
has been shown that SIRT1 has a protective effect against 
the development of neuroinflammation in various neurologi-
cal disorders and could be a therapeutic target in this state 
(Jiao and Gong 2020). The potential mechanism of SIRT1 
against neuroinflammation is related to the inhibition of pro-
inflammatory cytokines including IL-1β, IL-6, and TNF-α. 
This SIRT1 effect is mediated by inhibiting expression of 
disntegrin and metalloproteinase 17 (ADAM17) and tissue 
metalloproteinase inhibitor 3 (TIMP3) (Fontani 2017). It has 
been hypothesized that reduction of NAD in aged patients 
with obesity and diabetes mellitus may increase susceptibil-
ity to SARS-CoV-2 infections, since SIRT1 is regarded as 
a defense mechanism against viral infections (Miller et al. 
2020; Al-Kuraishy et al. 2022e). In COVID-19, SIRT1 activ-
ity is inhibited, with subsequent loss of anti-inflammatory 
activity of SIRT1 and the development of an exaggerated 
inflammatory response due to activation of the ADAM17 
inflammatory signaling pathway (Huarachi Olivera and 
Lazarte 2020; Ferrara and Vitiello 2022). In addition, 
expression of SIRT1 and AEC2 is increased in the lungs of 
COVID-19 patients as a compensatory mechanism against 

SARS-CoV-2 infection-induced hyperinflammation (Pinto 
et al. 2020; Al-Kuraishy et al. 2022f).

Upregulation of SIRT1 by activators like CTN and res-
veratrol may attenuate expression of ADAM17 and release 
of pro-inflammatory cytokines with the development of 
cytokine storm in COVID-19 (Turana et al. 2021; Giordo 
et al. 2021). In this state, CTN may modulate expression of 
ACE2 through activation of SIRT1 and inhibition expres-
sion of ADAM17 which increase shedding of ACE2 (Giordo 
et al. 2021; Al-Kuraishy et al. 2022f).

Of interest, SIRT1 improves neurogenesis and synaptic 
plasticity as well as enhancement of cognitive functions 
(Wang et al. 2021a). Experimental study by Wang et al. 
demonstrated that resveratrol attenuates lead-induced hip-
pocampal injury through activation of neurogenesis by 
a SIRT-dependent pathway (Wang et al. 2021a). As well, 
SARS-CoV-2 infection-induced oxidative stress also sup-
presses SIRT activity (Turana et  al. 2021; Al-Kuraishy 
et al. 2022g). Moreover, the unbalanced p53/SIRT1 axis 
in SARS-CoV-2 infection may affect lymphocyte homeo-
stasis, causing lymphopenia, and ARDS (Bordoni et al. 
2021). Reduction of SIRT1 along with hypercytokinemia in 
SARS-CoV-2 infection triggers activation of p53, leading 
to an uncontrolled immunoinflammatory response with the 
development of neuroinflammation (Bordoni et al. 2021). In 
this regard, CTN through activation of SIRT1 may attenu-
ate SARS-CoV-2 infection-induced hyperinflammation 
and neuroinflammation-mediated cognitive dysfunction in 
COVID-19 patients.

Indeed, the forkhead box O (Foxo), which is a transcrip-
tion factor involved in the regulation of oxidative stress, 
apoptosis, inflammatory response, and maturation of lym-
phocytes, is inhibited by SARS-CoV-2 infection (Cheema 
et al. 2021). Foxo activators like LOM612 and exportin-1 
inhibitors might be effective in reducing SARS-CoV-2 
infection-induced oxidative stress and hyperinflammation 
(Cheema et  al. 2021). Sui and colleagues revealed that 
SIRT1 is regarded as a potent activator of Foxo protein (Sui 
et al. 2019). Recently, it has been shown that metformin 
attenuates the progression of diabetic kidney disease through 
activation of the SIRT1/Foxo axis in rats (Ren et al. 2020). 
Notably, overexpression of Foxo protein can bind to the 
SIRT1 promoter to provoke SIRT1 transcription (Chong 
et al. 2012). Interestingly, SIRT1 increases expression of 
adenosine monophosphate protein kinase (AMPK) through 
deacetylation of liver kinase B1 (LKB1). In turn, SIRT1 
through stimulation of NAD/NADH increases expression of 
SIRT1 (Chong et al. 2012). Lin et al. found that activation 
of AMPK by lycopene can reduce neuroinflammation (Lin 
et al. 2014). Thus, CTN may play a critical role in reducing 
dysautonomia in animal model studies through activation of 
AMPK signaling (Amin et al. 2021).
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In this notion, CTN through activation of SIRT1/Foxo/
AMPK axis (Cacabelos et al. 2019) could be a therapeutic 
utility in the attenuation of neuroinflammation in COVID-
19 (Fig. 3).

Citicoline, oxidative stress, 
and hyperinflammation

Notably, oxidative stress is linked with the progression 
of SARS-CoV-2 infection and COVID-19 severity due 
to ROS generation, mitochondrial dysfunction, dysregu-
lation of RAS, and reduction of endogenous antioxi-
dant capacity (Cecchini and Cecchini 2020). In turn, 
oxidative stress triggers release of pro-inflammatory 
cytokines via activation of inflammatory signaling path-
ways including nuclear factor kappa B (NF-κB), nod-
like receptor pyrin 3 receptor (NLRP3) inflammasome 
and p38 mitogen activated protein kinase (p38MAPK) 
(Al-Kuraishy et al. 2022a; Mostafa-Hedeab et al. 2022; 
Al-Kuraishy et al. 2021g). Pro-inflammatory cytokines 
and activated inflammatory signaling pathways inter-
acted together in the induction of oxidative stress in 
SARS-CoV-2 infection (Al-Kuraishy et  al. 2022b). 
Therefore, there is a close relationship between oxi-
dative stress and inflammation in SARS-CoV-2 infec-
tion (Al-Kuraishy et al. 2022a; b). A prospective study 
including 39 patients with mild to moderate COVID-
19 compared to 41 patients with severe COVID-19 
revealed that higher oxidative stress and inflammatory 
biomarkers were associated with COVID-19 severity 
and mortality (Al-Kuraishy et al. 2022b). Remarkably, 
Mingoti et al. confirmed that higher oxidative stress and 
inflammatory levels were correlated with a higher risk 

of neuroinflammation in COVID-19 patients (Mingoti 
et al. 2022). Indeed, oxidative stress and hyperinflam-
mation induce disruption of the BBB with activation of 
microglial cells and the development of neuroinflam-
mation (Mingoti et al. 2022).

CTN has been observed to improve human vigilance 
and working memory by inhibiting oxidative stress levels 
during neuronal activation (Al-Kuraishy and Al-Gareeb 
2020). A prospective study comprised 20 healthy volun-
teers treated by CTN 500 mg/day for 2 weeks and showed 
that CTN improved cognitive function with a reduction 
of oxidative stress biomarker malondialdehyde (MDA) 
compared to the placebo effect (P < 0.001) (Abdel-Salam 
et al. 2019). Similarly, CTN attenuates tramadol-induced 
organ injury by inhibiting the generation of ROS and 
the development of oxidative stress in rats (Abdel-Salam 
et al. 2019). CTN significantly reduces expression of 
MDA with increased expression of antioxidant enzymes 
and reduced glutathione (GSH) and paraoxonase-1 
(PON-1) in rats with experimental cerebral injury (Chen 
et al. 2021). Systemic oxidative stress with reduction of 
PON-1 is linked with severity of preeclampsia and pri-
mary hypothyroidism (Al-Kuraishy et al. 2018; Al-Naimi 
et al. 2018).

Therefore, CTN, through its antioxidant effects, may 
reduce SARS-CoV-2 infection-mediated neuroinflammation 
and associated cognitive dysfunction in COVID-19 patients. 
Taken together, the anti-inflammatory and antioxidant 
effects of CTN could reduce SARS-CoV-2 infection-induced 
neuroinflammation.

Furthermore, CTN has anti-inflammatory effects by 
inhibiting the activity of neuronal PLA2, thereby main-
taining cardiolipin and sphingomyelin content in the neu-
ron cell membrane and inner mitochondrial membrane 

Fig. 3   Citicoline reduces SARS-
CoV-2-induced neuroinflamma-
tion through a silent information 
regulator 1 (SIRT1)-dependent 
pathway: citicoline (CTN) 
increases expression of forkhead 
box O (Foxo) and adenosine 
monophosphate protein kinase 
(AMPK) with inhibition expres-
sion of disintegrin and metal-
loproteinase 17 (ADAM17) and 
p53 with subsequent inhibition 
of SARS-CoV-2-induced oxida-
tive stress, neuroinflammation, 
and release of pro-inflammatory 
cytokines leads to inhibition of 
SARS-CoV-2-induced neuroin-
flammation
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(Ek et al. 2014). Increasing activity of secretory PLA2 
(sPLA2) is linked with COVID-19 severity (Snider et al. 
2021). A prospective study illustrated that sPLA2 levels 
were increased in children with COVID-19 and correlated 
with its severity (Bonaz et al. 2020). Thus, PLA2 inhibi-
tors like darapladib and varesplaide could be effective in 
attenuating inflammatory disorders in COVID-19 (Batsika 
et al. 2021; Kuypers et al. 2021). Hence, CTN could be 
effective in reducing COVID-19 severity through inhibition 
of PLA2 activity.

CTN improves mitochondrial dysfunction by mitoprotec-
tive effects including preservation of inner mitochondrial 
membrane potential, controlling opening of inner mitochon-
drial membrane and inhibition of mitochondrial PLA2 (Ste-
fano et al. 2021). In SARS-CoV-2 infection, there is notewor-
thy neuronal mitochondrial dysfunction which linked with 
development of cognitive dysfunction in COVID-19 patients 
(Stefano et al. 2021). Particularly, neuronal mitochondrial 
dysfunction and energy metabolism are severely impaired in 
severe SARS-CoV-2 infection with neuroinflammation caus-
ing cognitive dysfunction (Stefano et al. 2021). Thus, CTN 
via its anti-inflammatory effects and restoration of neuronal 
mitochondrial function could be a proposed mechanism for 
attenuating of COVID-19-induced cognitive impairment.

Citicoline and ubiquitin protease system

The ubiquitin protease system (UPS) is an intracellular pro-
teolytic pathway involved in the regulation of intracellular 
trafficking, protein synthesis, and folding/degradation of intra-
cellular proteins (Chen et al. 2021). Dysfunction of UPS is 
linked with the development of different neurological disor-
ders, including Parkinson disease, Alzheimer’s disease, and 
amyotropic lateral sclerosis (Gong et al. 2016). This intra-
cellular defect in the clearance of many misfolded proteins 
induces intracellular deposition of misfolded proteins and 
progression of cytotoxicity (Gong et al. 2016). Modulation 
of UPS is effective in decreasing inflammatory reactions and 
responses during different viral infections (Luo 2016). Viral 
infections may cause dysfunction of the UPS. Of interest, 
viral infections induce accumulation of ubiquitin conjugates 
during the replication process, with subsequent inhibition of 
protein synthesis and development of endoplasmic reticulum 
stress (Luo 2016). Many viruses avert the function of UPS to 
inhibit host proteins which interfere with viral replication. As 
well, UPS is blocked by some viruses to reduce viral clearance 
(Gong et al. 2016). Herein; inhibition of dysfunctional UPS by 
selective inhibitors may reduce the severity of SARS-CoV-2 
infection (Clemente et al. 2020). It has been reported that 
CTN modulates the activity of UPS by suppressing protea-
some activity, by which CTN can reduce the replication of 

SARS-CoV-2 and associated inflammatory reactions (Long-
hitano et al. 2020). CTN, like other proteasome inhibitors 
like MG132 and lactacistin, can attenuate the early stages of 
SARS-CoV-2 replication by preventing the release of viral 
particles from endosomes into the cytosol with inhibition of 
the p38MAPK pathway (Moutzouris et al. 2010).

These observations suggest that CTN through modulation 
of UPS can impair SARS-CoV-2 replication and release of 
pro-inflammatory cytokines. As well, CTN via regulation of 
dysfunctional UPS can attenuate SARS-CoV-2-induced neu-
roinflammation and associated degenerative brain diseases.

Citicoline and cholinergic neurotransmission

It has been shown that CTN stimulates synthesis of Ach in 
the brain by increasing the availability of choline (Abdel-
Aziz et al. 2021). CTN improves cognitive function through 
improvement of cholinergic transmission and associated 
synaptic plasticity (Abdel-Aziz et al. 2021). Choline from 
CTN is essential for the synthesis of brain Ach and regula-
tion of the neurochemical process of Ach neurotransmission 
(Secades 2019). In their study, Piamonte et al. found that 
CTN can be used as an adjuvant therapy with cholinesterase 
inhibitors in the management of cognitive dysfunction in 
patients with Alzheimer’s disease (Piamonte et al. 2020).

It has been proposed that the cholinergic system be 
regarded as a possible regulator of SARS-CoV-2-induced 
hypercytokinemia (Courties et al. 2021). A non-interventional 
study involving 37 COVID-19 patients that examined expres-
sion of choline acetyltransferase, acetylcholine esterase, native 
alpha-7 nicotinic subunit, and its negative duplicate showed 
that COVID-19 patients without expression of native alpha-7 
nicotinic subunit and its negative duplicate increased the risk 
for release of pro-inflammatory cytokines (Courties et al. 
2021). Of note, the alpha-7 nicotinic Ach receptor (α7nAchR) 
has an anti-inflammatory role by inhibiting the release of pro-
inflammatory cytokines from activated macrophages (Koop-
man et al. 2016). This receptor represents a neuro-immune tar-
get in different chronic inflammatory diseases (Koopman et al. 
2016). Activation of the anti-inflammatory α7nAchR has been 
proposed to be a therapeutic target to limit SARS-CoV-2-in-
duced hypercytokinemia (Bonaz et al. 2020). In silico studies 
observed that SARS-CoV-2 interacts with α7nAchR, thereby 
reducing the anti-inflammatory effect of this receptor (Alex-
andris et al. 2021; Al-Kuraishy et al. 2021h). Thus, α7nAchR 
agonists could inhibit the interaction between SARS-CoV-2 
and α7nAchR (Alexandris et al. 2021). In contrast, Hasanagic 
and Serdarevic proposed that α7nAchR antagonists such as 
memantine could be effective in the prevention and treatment 
of SARS-CoV-2 infection by inhibiting ACE2 expression in 
the respiratory epithelium (Hasanagic and Serdarevic 2020). 
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Insufficiency of cholinergic neurotransmission is linked with 
the development of delirium and cognitive dysfunction in 
COVID-19 patients (Hshieh et al. 2008; Al-Kuraishy et al. 
2022h). In this state, CTN treatment may improve cholinergic 
neurotransmission by increasing the anti-inflammatory effect 
of Ach through α7nAchR-dependent effect. An experimental 
study demonstrated that activation of α7nAchR by an allos-
teric modulator attenuates lipopolysaccharide (LPS)-induced 
neuroinflammation in mice (Abbas and Rahman 2016). As 
well, CTN treatment can reduce neurotoxicity through activa-
tion of cholinergic muscarinic receptors (Galal et al. 2019).

These findings suggest that CTN treatment could be effec-
tive in reducing COVID-19-induced cholinergic dysfunction 
and associated neuroinflammation and cognitive impairment.

Citicoline and dopaminergic 
neurotransmission

In COVID-19, it has been hypothesized that alteration of 
dopamine neurotransmission is associated with the patho-
genesis of SARS-CoV-2 infection (Nataf 2020). Interest-
ingly, expression of ACE2 is co-expressed with dopa-decar-
boxylase (DDC), which is the main enzyme for synthesis 
of dopamine, serotonin, and conversion of histidine to his-
tamine (Nataf 2020). Therefore, downregulation of ACE2 
by SARS-CoV-2 infection is linked with a reduction in the 
levels of dopamine and serotonin. An experimental study 
demonstrated that administration of the dopamine agonist 
fenoldopam attenuates pulmonary inflammation and ALI in 
mice through upregulation of ACE2 (Bone et al. 2017).

Notably, CTN improves dopamine neurotransmission in 
both the brain and the retina (Rejdak et al. 2002). A compre-
hensive review illustrated that CTN was effective in the man-
agement of degenerative brain diseases (Oddone et al. 2021). 
Que and Jamora’s systematic review revealed that CTN is 
effective as an adjuvant therapy in the management of PD 
through modulation of dopamine neurotransmission and inhi-
bition of apoptosis (Que and Jamora 2021). As well, CTN has 
an antidepressant effect through improvement of dopamine 
and serotonin in male mice (Roohi-Azizi et al. 2018).

These results suggest that CTN, through regulating dopa-
mine and serotonin neurotransmission, may attenuate patho-
logical alterations of neurotransmitters in COVID-19 patients.

Citicoline and glutamatergic 
neurotransmission

Glutamate is an excitatory neurotransmitter in the brain 
engaged in neurocognitive function. As well, overexpression 
of glutamate is implicated in the development of different 

neurological disorders, including epilepsy, stroke, amyo-
trophic lateral sclerosis, and Alzheimer’s disease (Kotru 
et al. 2021). Of note, glutamate neurotoxicity and long-
term neurological disorders have been linked with different 
coronavirus infections (Kotru et al. 2021; Al-Gareeb et al. 
2022). Previous SARS-CoV epidemics were associated 
with the development of degenerative brain diseases due 
to glutamate neurotoxicity (Cataldi et al. 2020). Remark-
ably, SARS-CoV-2 can exploit metabotropic glutamate 
receptor 2 (mGluR2) for its entry in the host cells (Wang 
et al. 2021b). As well, mGluR2 cooperates with ACE2 for 
internalization of SARS-CoV-2 (Wang et al. 2021b). This 
interaction induces some neurological manifestations like 
convulsion, headache, abnormal taste, and anosmia (Wang 
et al. 2021b; Engin et al. 2021). As well, neuronal injury by 
direct SARS-CoV-2 neurotropism and associated hyperin-
flammation and oxidative stress induce excessive release of 
glutamate (Engin et al. 2021). Glutamate through interac-
tion with N-methyl-D-aspartate (NMDA) receptor triggers 
progression of neurotoxicity (Al-Kuraishy et al. 2020b).

Therefore, reduction of glutaminergic neurotransmis-
sion may attenuate SARS-CoV-2-induced neurotoxicity and 
neuroinflammation in COVID-19 patients. Of note, CTN 
decreased neuronal injury through reversal of glutamate 
transport and associated excitotoxicity (Hurtado et al. 2005; 
Piotrowska et al. 2022). Likewise, CTN inhibits neuronal 
excitotoxicity through attenuation of glutamine concentra-
tion in the synaptic cleft by augmenting glutamate uptake 
through increasing expression of glutamate transporters in 
rat astrocytes (Hurtado et al. 2005; Piotrowska et al. 2022). 
Thus, CTN has been observed to be effective in treating dif-
ferent neurological disorders by regulating excitotoxicity and 
glutamate concentrations in COVID-19 patients [18, 125]. A 
randomized clinical trial revealed that CTN treatment acts as 
a neuroprotective agent against brain injury induced follow-
ing cardiac arrest in children (Salamah et al. 2021).

Thus, these findings suggest that CTN treatment could be an 
effective agent in reducing SARS-CoV-2-induced neurotoxicity.

Citicoline and hypothalamic pituitary axis

In severe SARS-CoV-2 infection, there is a significant 
reduction in fasting cortisol and ACTH serum levels in 
COVID-19 patients compared to controls due to impair-
ment of glucocorticoid response and central adrenal 
insufficiency (Alzahrani et al. 2021). Similarly, severe 
SARS-CoV-2 infection may induce dysfunction of the 
hypothalamic-pituitary-thyroid axis, causing central hypo-
thyroidism (Zheng et al. 2021). This dysfunction is cor-
related with COVID-19 severity in hospitalized patients 
(Zheng et  al. 2021). Likewise, COVID-19 may cause 
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suppression of the hypothalamic-pituitary gonadal axis 
with the development of infertility (Selvaraj et al. 2021). 
Indeed, a deficiency of GH in elderly and obese subjects 
increases their vulnerability to severe SARS-CoV-2 infec-
tion due to immunosuppression (Lubrano et al. 2020). 
Administration of GH in high-risk patients may decrease 
the risk of COVID-19 severity (Lubrano et al. 2020). The 
underlying causes of hypothalamic pituitary dysfunction 
are related to hypoxia, oxidative stress, hyperinflamma-
tion, and cytokine storm (Alzahrani et al. 2021; Zheng 
et al. 2021; Selvaraj et al. 2021).

Interestingly, CTN stimulates the release of ACTH, LH, 
FSH, TSH, and GH (Abdel-Aziz et al. 2021; Secades 2011). 
This thrilling effect of CTN may attenuate SARS-CoV-2 
infection-induced hypothalamic-pituitary dysfunction, 
mainly in patients with severe COVID-19.

Taken together, in virtue of its anti-inflammatory and 
antioxidant properties together with modulation of SIRT1, 
neurotransmission, and hypothalamic pituitary dysfunc-
tion, CTN could be effective against neuroinflammation 
and COVID-19 severity (Fig. 4). Of note, the effective 
dose of CTN in treating COVID-19 patients is 2 g/day. 
This effective dose does not interact with most of drugs 
used in the management of COVID-19 [125].

Conclusion

SARS-CoV-2 infection is linked with various neurological 
manifestations. The fundamental mechanism of neuropsy-
chiatric disorders in COVID-19 might be due to cytokine-
induced disruption of the BBB, neuroinflammation, and 
peripheral neuronal injury, or due to direct SARS-CoV-2 
neurotropism. As well, an exaggerated inflammatory 

response could be the suggested mechanism for the pro-
gression of neuropsychiatric and other neurological dis-
orders in COVID-19. CTN has neuroprotective activity 
against different neurodegenerative and traumatic brain 
disorders through its neuro-restorative effects. In vir-
tue of its anti-inflammatory and antioxidant properties, 
together with modulation of SIRT1, neurotransmission, 
and hypothalamic-pituitary dysfunction, CTN could be 
effective against neuroinflammation and COVID-19 sever-
ity. Further experimental, preclinical, and clinical studies 
are warranted to confirm the potential role of CTN in the 
management of COVID-19.
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Fig. 4   The possible role of citi-
coline in SARS-CoV-2-induced 
neuroinflammation: citicoline 
(CTN) activates the hypotha-
lamic pituitary axis (HPA), 
acetylcholine (Ach), dopamine 
(DPM), silent information 
regulator 1 (SIRT1) and inhibits 
inflammation, oxidative stress, 
and glutamine release (Glu), 
leading to attenuation of SARS-
CoV-2-induced neuroinflam-
mation
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