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Abstract

Nonalcoholic fatty liver disease (NAFLD) is often accompanied by metabolic disorders 
such as metabolic syndrome and type 2 diabetes (T2DM). Heat shock response (HSR) is 
one of the most important homeostatic abilities but is deteriorated by chronic metabolic 
insults. Heat shock (HS) with an appropriate mild electrical stimulation (MES) activates 
HSR and improves metabolic abnormalities including insulin resistance, hyperglycemia 
and inflammation in metabolic disorders. To analyze the effects of HS + MES treatment on 
NAFLD biomarkers, three cohorts including healthy men (two times/week, n = 10), patients 
with metabolic syndrome (four times/week, n = 40), and patients with T2DM (n = 100; four 
times/week (n = 40) and two, four, seven times/week (n = 20 each)) treated with HS + MES 
were retrospectively analyzed. The healthy subjects showed no significant alterations in 
NAFLD biomarkers after the treatment. In patients with metabolic syndrome, many of the 
NAFLD steatosis markers, including fatty liver index, NAFLD-liver fat score, liver/spleen 
ratio and hepatic steatosis index and NAFLD fibrosis marker, aspartate aminotransferase/
alanine aminotransferase (AST/ALT) ratio, were improved upon the treatment. In patients 
with T2DM, all investigated NAFLD steatosis markers were improved and NAFLD fibrosis 
markers such as the AST/ALT ratio, fibrosis-4 index and NAFLD-fibrosis score were 
improved upon the treatment. Thus, HS + MES, a physical intervention, may become a 
novel treatment strategy for NAFLD as well as metabolic disorders.

Introduction

The increasing worldwide prevalence of obesity and 
type 2 diabetes, which are closely associated with the 
development of NAFLD, has become a major healthcare 
problem (1). NAFLD encompasses a broad spectrum 
of disorders ranging from simple hepatic steatosis to 
its inflammatory variant, nonalcoholic steatohepatitis 
(NASH); progressive fibrosis; cirrhosis and eventually 

hepatocellular carcinoma in the absence of significant 
alcohol consumption. NAFLD is considered an important 
phenotype in metabolic diseases, such as metabolic 
syndrome and type 2 diabetes. These metabolic 
disturbances are closely associated with insulin resistance. 
Hepatic insulin resistance also causes dyslipidemia, 
oxidative stress, endoplasmic reticulum (ER) stress, and a 
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pro-inflammatory state, all of which further contribute to 
the development and progression of NAFLD (2). A recent 
study indicated that patients with fatty liver alone or the 
accumulation of visceral fat with fatty liver demonstrated 
more significant insulin resistance in adipose tissue, 
muscle, and liver than patients with the accumulation of 
visceral fat alone (3). These data suggest that the fatty liver 
may be more closely associated with insulin resistance 
than the accumulation of visceral fat. In other words, 
targeting NAFLD could be beneficial for regulating insulin 
resistance and vice versa.

Perturbation of ER homeostasis, referred to as 
'ER stress', is associated with numerous pathological 
conditions such as inflammation, cardiovascular 
disease, and metabolic disorders including NAFLD 
(4). ER stress in the liver and NAFLD is closely  
associated with the development of hepatic  
insulin resistance (5).

Our interests are focused on the role of the HSR 
in metabolic diseases and insulin resistance. We have 
investigated the beneficial effects of the activation 
of the HSR by both chemical and physical medical 
interventions. Heat shock protein (HSP) 72 is a major 
effector of the HSR pathway and acts to protect cells or 
tissues from external/environmental and internal stimuli 
such as heat stress, UV light, heavy metals, infection, 
chronic hyperglycemia, and systemic inflammation. 
Our previous reports suggest that HSP72 induction by 
geranylgeranylacetone (GGA) or heat shock (HS) + mild 
electrical stimulation (MES) attenuates metabolic 
abnormalities such as glucose intolerance, insulin 
resistance, chronic inflammation, enhanced hepatic 
gluconeogenesis, and steatosis in mouse models of 
diabetes as well as in patients with metabolic syndrome 
and type 2 diabetes (6, 7, 8). The introduction of HSP72 
specifically in the liver of whole-body HSP72 knockout 
mice by lentivirus resulted in the amelioration of 
whole-body glucose homeostasis and inflammation 
as well as hepatic gluconeogenesis and steatosis (9). 
Therefore, the hepatic role of HSP72 should be more 
precisely investigated. Re-evaluation of the effects of 
NAFLD biomarkers on HS + MES treatment could provide 
additional insights into the relationship between HSP72 
and NAFLD. Thus, the effects of HS + MES on NAFLD 
biomarkers have been retrospectively analyzed in three 
different cohorts. The present study aimed to investigate 
the effects of HS + MES on NAFLD biomarkers in  
patients with metabolic syndrome and patients with 
type 2 diabetes.

Materials and methods

In this retrospective observational study, three different 
cohort studies previously conducted were reinvestigated to 
evaluate the effects of HS + MES (10) therapy with respect 
to whether this intervention improves NAFLD biomarkers 
in healthy men, patients with metabolic syndrome, or 
patients with type 2 diabetes. All those methods were 
carried out in accordance with relevant guidelines and 
regulations (11).

Study participants

Cohort 1
Cohort 1 comprised 10 healthy subjects. This was a single-
arm, before–after trial of an intervention (HS + MES twice 
a week) (10). This study was approved by the institutional 
review board of Kumamoto University (No. 154). This 
clinical trial was registered with an approved ICMJE 
clinical trial registry, UMIN (ID: UMIN000001336).

Cohort 2
Cohort 2 comprised 40 patients with metabolic syndrome. 
The definition of metabolic syndrome in the Examination 
Committee for Criteria of Metabolic Syndrome was 
employed for the diagnosis of metabolic syndrome (12). 
Briefly, a metabolic syndrome was defined as a condition that 
involves any two of the following conditions, in addition 
to visceral fat accumulation (waist circumference ≥ 85 cm 
in men): fasting hyperglycemia ≥ 110 mg/dL, dyslipidemia 
such as hypertriglyceridemia (≥ 150 mg/dL), hypo HDL-
cholesterolemia (< 40 mg/dL), and high blood pressure 
(≥ 130/85 mmHg). This was an open-label crossover trial 
(HS + MES four times a week) (8). This study was approved 
by the institutional review board of Kumamoto University 
(Advanced Ethics No. 736). The clinical trial was registered 
with an approved ICMJE clinical trial registry, UMIN (ID: 
UMIN 000001149).

Cohort 3
Cohort 3 comprised 100 patients with type 2 diabetes. 
Type 2 diabetes was diagnosed on the basis of the criteria 
of the American Diabetes Association (13). Briefly, 
type 2 diabetes was defined as HbA1c ≥ 6.5%, fasting 
glucose ≥ 126 mg/dL, post-prandial glucose ≥ 200 mg/dL 
or the usage of anti-diabetic agents. This cohort contained 
an open-label crossover trial (HS + MES four times a week) 
(8) and a triple-arm before–after trial of an intervention 
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(HS + MES two, four, or seven times a week) (7). These 
studies were approved by the institutional review board 
of Kumamoto University (Advanced Ethics No. 514). 
The clinical trial was registered with an approved ICMJE 
clinical trial registry, UMIN (ID: UMIN 000003210, and 
UMIN 000016309, respectively). In total, 150 Japanese 
subjects were treated with HS + MES for 8 to 12 weeks. The 
inclusion and exclusion criteria are described elsewhere (7, 
8, 10). Informed consent was obtained from all subjects.

HS + MES treatment

The device (BioMetronome) used to produce HS + MES was 
provided by Tsuchiya Rubber Co. Ltd. (Kumamoto, Japan). 
MES was delivered from abdominal (positive electrode) to 
lower back surfaces (negative electrode) on subjects’ body 
using a pair of electro-conductive and thermo-generative 
rubber electrodes of size 15 cm in length and 25 cm in 
width, which were padded with a soft cotton cloth. The 
electrodes were connected to an HS + MES generator 
that delivered 1.4 ± 0.1 V/cm (55 pulses/s) of direct 
current with an individual duration of 0.1 millisecond. 
Temperature at the surface of the electrode was adjusted 
to 42°C. HS + MES treatment was performed at each 
subject’s home, and complete adherence was confirmed 
by logs that the subjects were instructed to fill out at the 
time of treatment.

NAFLD biomarkers

NAFLD steatosis biomarkers

Fatty liver index (FLI)  The FLI was introduced in 2006 
(14) and is considered a simple and accurate predictor of 
hepatic steatosis. The FLI has shown good performance 
in detecting hepatic steatosis in several population stud-
ies (15). The FLI is a prevalent biomarker panel consisting 
of the BMI , waist circumference (Wc), TGs, and gamma-
glutamyl transferase (γ-GTP). It is used to identify NAFLD 
and has a total score of 0 to 100, the cut-off value was 
designated as 30 (14).

FLI = (e0.953 × loge (TG) + 0.139 × BMI + 0.718 × 
loge (γ-GTP) + 0.053 × Wc − 15.745)/(1 + e0.953 ×  
loge (TG) + 0.139 × BMI + 0.718 × loge (γ-GTP) + 0.053 ×  
Wc − 15.745) × 100

NAFLD-liver fat score (NAFLD-LFS) The NAFLD-LFS 
has been proposed (16) and validated against magnetic  

resonance spectroscopy, showing an overall good accu-
racy in diagnosing NAFLD (15). It integrates the levels of 
fasting insulin and transaminases as well as the presence 
of the metabolic syndrome. The NAFLD-LFS provides sim-
ilarly good NAFLD prediction compared with the FLI. The 
cut-off value was designated as −0.640 (16).

NAFLD-LFS = −2.89 + 1.18 × metabolic syndrome 
(yes: 1, no: 0) + 0.45 × type 2 diabetes (yes: 2, no: 0) +  
0.15 × insulin (µU/L) + 0.04 × AST (U/L) − 0.94 ×  
AST/ALT

Liver/spleen (L/S) attenuation ratio in computed 
tomography (CT) Unenhanced CT is more specific than 
ultrasound for the detection of NAFLD. Hepatic steatosis 
manifests as reduced attenuation in the liver parenchyma, 
which correlates with the degree of intrahepatic fat accu-
mulation. The L/S Hounsfield unit ratio (cut-off value as 
1.0) calculated using CT scans in patients with type 2 dia-
betes (17, 18) is reportedly useful for evaluation of the 
hepatic lipid content.

Hepatic steatosis index (HSI) The HSI, derived from 
the data of a Korean cross-sectional case-control study 
involving more than 10,000 patients (19), is a simple and 
promising score for predicting NAFLD (15). The HSI may 
offer an economical and noninvasive means of predict-
ing the presence of NAFLD with reasonable accuracy (cut-
off value as 36). The HSI is a biomarker panel consisting  
of the BMI, presence of diabetes, and ALT/AST ratio. HSI = 8 
× ALT/AST + BMI (+2: if type 2 diabetes, +2: if female).

Visceral adiposity index (VAI) The VAI is a surrogate 
biomarker of visceral adiposity and hepatic steatosis (20). 
A dose–response relationship exists between the VAI (cut-
off value as 1.92) and the risk of NAFLD in that a higher 
VAI is correlated with an increased incidence of NAFLD.

VAI = (Wc/(39.68 + (1.88 × BMI)) × (TG/1.03) ×  
(1.31/HDL) for males, (Wc/36.58 + 1.89 × BMI) × 
(TG/0.81) × (1.52/HDL) for females, where HDL is the 
high-density lipoprotein level.

TG × fasting glucose (TyG) index The TyG index (cut-
off value as 4.49), an indirect score of insulin resistance, 
has been demonstrated to be independently associated 
with histologically defined steatosis (21).

TyG index = log ((TG) × glucose/2)
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NAFLD fibrosis biomarkers

Aspartate aminotransferase (AST)/alanine amino-
transferase (ALT) ratio  The AST/ALT ratio was origi-
nally developed for the characterization of acute viral 
hepatitis by De Ritis (22). This ratio recently became con-
sidered as a fibrosis marker rather than a steatosis marker 
(23). Metabolic disturbances as insulin resistance, dyslip-
idemia, and hyperglycemia are closely related to elevated 
ALT concentrations; an AST/ALT ratio cut-off point of 
<1.0 has been defined for hepatic fibrosis assessment in 
patients with obesity (24).

Fibrosis-4 (FIB4) index The FIB4 index (cut-off value as 
1.45) is considered useful, reliable, and inexpensive for 
evaluating hepatic fibrosis (25). It is superior to other non-
invasive markers of hepatic fibrosis in Japanese patients 
with NAFLD, with a high negative predictive value for 
excluding advanced fibrosis (26).

FIB4 = (age (years) × AST (U/L))/(platelet count (109/L) ×  
ALT (U/L)½) (26)

NAFLD-fibrosis score (NFS) The NFS (cut-off value as 
−1.455) has been externally validated in ethnically differ-
ent NAFLD populations with consistent results (27). It is 
used to distinguish patients with NAFLD who do and do 
not have advanced liver fibrosis.

NFS = −1.675 + 0.037 × age (years) + 0.094 × BMI + 1.13 
× impaired fasting glycemia/diabetes (yes = 1, 
no = 0) + 0.99 × AST/ALT − 0.013 × platelet count 
(×109/L) − 0.66 × albumin (g/dL)

AST-to-platelet ratio index (APRI) The APRI (cut-off 
value as 1.0) was developed to predict fibrosis staging in 
noninvasive manner (28).

APRI = (AST × (AST upper limit of normal)/platelet 
count (109/L) × 100

Statistical analysis

Statistical analysis was performed with SPSS 16.0 software 
(IBM Corp.). Values are expressed as mean ± s.d. or media 
with 25th percentile to 75th percentile. All the outliners 
have been included in the analyses. Wilcoxon signed-rank 
test was employed to compare the median values of each 

NAFLD biomarker which were not distributed normally. 
The differences among the multiple groups were primarily 
analyzed using an analysis of covariance (ANCOVA). Age 
and baseline values were used as covariates in ANCOVA 
analysis. Then, post-hoc procedures (Bonferroni pairwise 
tests) were used to examine particular differences between 
the groups. Univariable linear regression analysis was 
carried out to examine the association between delta 
NAFLD biomarkers and cumulative exposure time of 
HS + MES treatment. Categorical variables were assessed 
using proposed respective cut-off values of NAFLD 
biomarkers by performing chi-square analysis with 
Fisher’s exact test when the number of data points was 
small. Two-sided P-values of < 0.05 were considered to 
indicate statistical significance.

Results

Study participants

The general baseline characteristics of the study 
participants are summarized in Table 1. In this study, 
we have 150 participants with 132 male (88%) and 18 
female (12%). In general, patients with type 2 diabetes 
were older, had a higher incidence of obesity with visceral 
fat accumulation, had higher glucose levels, had more 
severe NAFLD steatosis/fibrosis markers and had a more 
inflammatory-prone phenotype at baseline (Table 1). All 
participants were treated with HS + MES from two to seven 
times a week, 30 to 60 min per session, for 8 to 12 weeks 
depending on the particular study design (Supplementary 
Fig. 1, see section on supplementary materials given 
at the end of this article). No serious adverse events or 
hypoglycemia over the periods of each intervention were 
found. The status of NAFLD was estimated and evaluated 
by NAFLD steatosis markers (fatty liver index (FLI), NAFLD-
liver fat score (LFS), liver/spleen (L/S) ratio, and hepatic 
steatosis index (HSI), visceral adiposity index (VAI) and 
triglyceride × fasting glucose index (TyG)), and NAFLD 
fibrosis markers (aspartate aminotransferase/alanine 
aminotransferase (AST/ALT) ratio, fibrosis-4 index (FIB4), 
NAFLD-fibrosis score (NFS) and AST-to-platelet ratio index 
(APRI)). All outliners have been included in the analyses.

Healthy subjects

The healthy subjects showed no significant alterations 
in the NAFLD steatosis or fibrosis markers after HS + MES 
treatment (Figs 1 and 2). Categorical analysis using 
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Table 1 Baseline characteristics of the study participants.

Healthy subjects Metabolic syndrome Type 2 diabetes P-value

Number of participants 10 40 100
Age (years) 34.0 ± 4.7 52.7 ± 6.8‡ 62.7 ± 11.6||,** 0.002
Male (%) 100 100 82
Diabetes history (years) N.A. N.A. 8.79 ± 5.13
Medications
 Sulfnylurea N.A. N.A. 54%
 Biguanide N.A. N.A. 55%
 α-glucosidase inhibitor N.A. N.A. 17%
 Glinide N.A. N.A. 3%
 Pioglitazone N.A. N.A. 22%
 Dipeptidyl peptidase-4 inhibitor N.A. N.A. 42%
 Sodium-glucose cotransporter 2 inhibitor N.A. N.A. 0%
Adiposity
 Visceral fat area 3400.5 ± 1401.3 cm3* 148.4 ± 40.8 cm2 174.1 ± 61.7 cm2** 0.004
 s.c. fat area 4464.5 ± 2353.3 cm3* 191.7 ± 60.7 cm2 188. 4± 87.3 cm2¶ 0.016
 Total fat area 7865.0 ± 3689.7 cm3* 340.1 ± 84.4 cm2 362.5 ± 125.9 cm2

 BMI (kg/m2) 23.7 ± 2.9 26.8 ± 2.9‡ 28.6 ± 4.6||,** 0.011
 Wc (cm) 82.7 ± 10.2 94.1 ± 6.4‡ 99.1 ± 11.3|| 0.028
Blood pressure
 Systolic blood pressure (mmHg) 122.7 ± 9.2 135.5 ± 16.0† 137.9 ± 17.6§ 0.004
 Diastolic blood pressure (mmHg) 72.5 ± 8.7 85.8 ± 11.1‡ 76.9 ± 10.6¶ 0.001
 Heart rate (bpm) 76.8 ± 13.4 68.9 ± 8.8 74.2 ± 12.7
Glucose control and insulin resistance
 Fasting plasma glucose (mg/dL) 92.1 ± 6.0 112.3 ± 11.4‡ 154.7 ± 42.9||,** 0.0001
 Fasting immuno-reactive insulin (µIU/mL) 7.5 ± 3.3 11.4 ± 6.2 11.6 ± 9.9
 HOMA-IR 1.72 ± 0.78 3.16 ± 1.67‡ 4.63 ± 4.52||,** 0.0001
 HbA1c (%) 4.97 ± 0.21 5.24 ± 0.57† 7.52 ± 0.83||,** 0.003
 Glycated albumin (%) N.A. N.A. 19.1 ± 3.2
 Adiponectin (µg/mL) 6.50 ± 1.84 2.77 ± 1.53‡ 6.4 ± 4.0** 0.018
NAFLD markers and lipids
 AST (IU/L) 20.8 ± 6.6 22.7 ± 8.6 30.5 ± 16.3
 ALT (IU/L) 23.7 ± 11.3 30.5 ± 14.0 36.2 ± 21.5
 NAFLD steatosis markers
  Fatty liver index (FLI) N.A. 63.0 (48.0–77.3) 63.6 (45.7–87.2)
  NAFLD-liver fat score (LFS) N.A. −0.17 (−0.71 to 0.34) 1.06 (0.40–2.04)** 0.006
  Liver/spleen ratio N.A. 0.99 (0.89–1.11) 0.98 (0.89–1.07)
  Hepatic steatosis index (HSI) 31.9 (28.9–35.8) 37.4 (34.1–39.6)‡ 39.3 (36.4–44.8)||,** 0.012
  Visceral adiposity index (VAI) 0.68 (0.41–0.95) 1.69 (1.30–2.18)‡ 3.28 (2.26–5.53)||,** 0.009
  Triglyceride × glucose (TyG) 3.43 (3.35–3.70) 3.91 (3.82–4.01)† 4.05 (3.84–4.19)||,¶ 0.028
 NAFLD fibrosis markers
  AST/ALT 0.98 (0.85–1.06) 0.80 (0.65–0.92) 0.94 (0.71–1.06)** 0.023
  FIB4 index 0.71 (0.67–0.82) 1.00 (0.82–1.25)‡ 1.43 (1.04–2.11)||,** 0.007
  NAFLD-fibrosis score (FS) N.A. −1.20 (−1.66 to−0.69) −0.20 (−1.11 to−0.71)** 0.012
  AST to platelet ratio Index (APRI) N.A. 0.36 (0.28–0.39) 0.41 (0.30–0.58)¶ 0.011
 LDL-C (mg/dL) 128.2 ± 27.7 131.6 ± 28.5 113.6 ± 29.3¶ 0.033
 HDL-C (mg/dL) 59.4 ± 9.0 50.4 ± 8.5‡ 51.9 ± 14.4 0.048
 TG (mg/dL) 78.7 ± 40.4 156.1 ± 10.6‡ 174.3 ± 124.0|| 0.002
Systemic inflammation
 TNF-α (pg/mL) 0.91 ± 0.05 1.41 ± 0.58‡ 1.79 ± 1.41|| 0.004
 IL-6 (pg/mL) 0.81 ± 0.15 1.45 ± 0.86† 3.08 ± 2.45 §,** 0.0012
 hs-CRP (ng/mL) 521.9 ± 73.9 767.9 ± 971.2 2750.6 ± 7656.1
 WBC (/µL) 5220 ± 542.8 6015 ± 1513 6495.7 ± 1675.4

Values are numbers, n (%) or mean ± s.d. or median with 25th percentile to 75th percentile. For multiple group comparisons, P-values derived from ANCOVA 
analysis were indicated in most right. Post-hoc procedures (Bonferroni pairwise tests) were used to examine particular differences between the groups.
*The volume was calculated; †P < 0.05: H vs Mets; ‡P < 0.01: H vs Mets; §P < 0.05: H vs T2D; ||P < 0.01: H vs T2D; ¶P < 0.05: Mets vs T2D; **P < 0.01: Mets vs T2D.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; H, healthy subjects; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; 
HOMA-IR, homeostasis model assessment as an index of insulin resistance; hs-CRP, high sensitivity C-reactive protein; IL-6, interleukin-6;LDL-C, 
low-density lipoprotein cholesterol; Mets, metabolic syndrome; N.A, not applicable;T2D, type 2 diabetes;TNF-α, tumor necrosis factor-α; WBC: white blood 
cell count; WC, waist circumference.
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Figure 1
The changes in NAFLD steatosis biomarkers on HS + MES treatment. The absolute values (median with quartiles) of the NAFLD steatosis biomarkers such 
as fatty liver index (FLI), NAFLD-liver fat score (LFS), liver/spleen (L/S) ratio, hepatic steatosis index (HSI), visceral adiposity index (VAI) and triglyceride × 
glucose (TyG) were indicated at pre and post HS + MES treatment. *P < 0.05. **P < 0.01 compared to baseline. The multiple comparisons of delta changes 
in NAFLD biomarkers among the groups were performed. P-values derived from ANCOVA were 0.055 in delta HSI, 0.003 in delta VAI and 0.015 in delta 
TyG. †P < 0.05: H vs Mets in delta TyG. ‡P < 0.01: Mets vs T2D in delta TyG. §P < 0.01: H vs T2D in delta VAI. ||P < 0.01: Mets vs T2D in delta VAI.
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Figure 2
The changes in NAFLD fibrosis biomarkers on HS + MES treatment. The absolute values (median with quartiles) of the NAFLD fibrosis biomarkers such as 
AST/ALT ratio, FIB4 index, NAFLD-fibrosis score (NFS) and AST to platelet ratio index (APRI) were indicated pre and post MES + HS treatment. *P < 0.05 
compared to baseline. The multiple comparisons of delta changes in NAFLD biomarkers among the groups were performed. P-values derived from 
ANCOVA was 0.08 in delta AST/ALT, 0.002 in delta FIB4. ¶P < 0.01: H vs T2D in delta FIB4. ††P < 0.05: Mets vs T2D in delta FIB4.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-21-0084

https://ec.bioscientifica.com	 © 2021 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-21-0084
https://ec.bioscientifica.com


T Kondo, N Miyakawa et al. Activation of HSR improves 
NAFLD biomarkers

528

PB–XX

10:5

previously designated cut-off values was also performed, 
and no significant changes were detected by HS + MES in 
healthy subjects.

Metabolic syndrome

In the patients with metabolic syndrome, many of the 
NAFLD steatosis markers were improved upon HS + MES 
treatment, including the FLI (P = 0.0016), NAFLD-LFS 
(P = 0.0008), L/S ratio (P = 0.003), and HSI (P = 0.0004); 
however, the VAI and TyG were not (Fig. 1). In contrast, 
there were no significant alterations in NAFLD fibrosis 
markers except for AST/ALT ratio (P = 0.0003) after 
HS + MES treatment in patients with metabolic syndrome 
(Fig. 2). Categorical analysis using previously proposed 
cut-off values was also performed. L/S ratio (the ratio of 
the cut-off value more than 1.0 was increased from 50.0 
to 70%. P = 0.022) and AST/ALT ratio (the ratio of the 
cut-off value more than 1.0 was increased from 20.0 to 
40%. P = 0.036) showed significant improvements upon 
HS + MES treatment.

Type 2 diabetes

In patients with type 2 diabetes, all investigated 
NAFLD steatosis markers were improved upon HS + MES 
treatment, including the FLI (P = 0.0001), NAFLD-LFS 
(P = 0.018), L/S ratio (P = 0.00003), HSI (P = 0.00006), VAI 
(P = 0.006), and TyG (P = 0.00003) (Fig. 1). NAFLD fibrosis 
markers were also improved, including the AST/ALT ratio 
(P = 0.013), FIB4 index (P = 0.024) and NFS (P = 0.024), 
but the APRI was not (Fig. 2). Categorical analysis using 
previously designated cut-off values was also performed. 
FLI (the ratio of cut-off value less than 30 was increased 
from 4.0 to 12.0%. P = 0.048), L/S ratio (the percentage 
of cut-off value more than 1.0 was increased from 46.0 
to 78.0%. P = 0.0001), VAI (the percentage of cut-off 
value less than 1.92 was increased from 16.0 to 46.0%. 
P = 0.001), TyG (the ratio of cut-off value less than 4.49 
was increased from 85.0 to 92.0%. P = 0.036) and AST/ALT  
ratio (the percentage of cut-off value more than 1.0 
was increased from 44.0 to 69.0%. P = 0.0001) showed 
significant improvements upon HS + MES treatment.

Cumulative intervention effects of MES + HS

Because our study combined the results from different 
frequencies and duration of HS + MES treatment, 
cumulative intervention effects were investigated 
using cumulative exposure time (CET: time (minutes) × 

frequency/week × weeks). Univariable linear regression 
analysis was performed to evaluate whether the effects in 
NAFLD biomarkers of HS +MES were cumulative exposure 
time dependent. In Fig. 3, delta HSI (P = 0.039), delta TyG 
(P = 0.038), delta FIB4 (P = 0.037), delta NFS (P = 0.036) 
and delta APRI (P = 0.043) were linearly correlated with 
the cumulative exposure time.

Differential effects MES + HS depending on the 
metabolic background

The multiple comparisons of delta changes in NAFLD 
biomarkers among the groups may detect if the 
effectiveness of HS + MES may vary in different metabolic 
backgrounds. We found that the reduction in TyG 
(−0.05 vs +0.07, adjusted P = 0.02 (†). Fig. 1) was larger 
in metabolic syndrome than that in healthy subjects. 
The reduction in VAI (−1.26 vs +1.41 in healthy subjects 
or −0.22 metabolic syndrome. Adjusted P = 0.005 (§, ||), 
respectively. Fig. 1.) and FIB4 (−0.10 vs +0.32 in healthy 
subjects (adjusted P = 0.008 (¶)) or +0.06 (adjusted 
P = 0.041 (††)) in metabolic syndrome. Fig. 2.) were larger 
in type 2 diabetes than those in healthy subjects or in 
metabolic syndrome. The reduction in TyG (−0.10 vs 
−0.05, adjusted P = 0.002 (‡) Fig. 1.) was larger in type 
2 diabetes than that in metabolic syndrome. These data 
implicate that the trend of larger effects in HS + MES could 
be expected in metabolic syndrome or type 2 diabetes 
compared with those in healthy subjects. Changes in 
body compositions and biochemical markers on HS + MES 
treatment were summarized in Table 2.

Discussion

NAFLD is a common complication of metabolic syndrome 
and type 2 diabetes mellitus. The spectrum of this disease 
is broad, ranging from simple steatosis, which is generally 
nonprogressive, through NASH to cirrhosis, liver failure, 
and even hepatocellular carcinoma.

In this study, we have observed that most of the 
NAFLD steatosis biomarkers in patients with metabolic 
syndrome and the NAFLD steatosis and fibrosis biomarkers 
in patients with type 2 diabetes were improved upon 
HS + MES treatment.

Excess amounts of lipids/fuels trigger low-grade 
inflammation in both adipocytes and the liver. This results 
in the development of NAFLD, which in turn contributes to 
impaired insulin signaling that involves the activation of 
c-Jun NH2-terminal kinases (JNK), nuclear factor (NF)-κB,  
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transforming growth factor (TGF)-β, and ER stress in both 
humans and rodents (29).

A steatotic liver is susceptible to stressful loads such as 
ischemia–reperfusion injury during surgical intervention. 
Heat shock preconditioning provides steatotic rat livers 
with significant tolerance to ischemia–reperfusion 
injury (30). This may reflect improvements in hepatic 
microcirculation and reduction of free radicals by heat 
shock-induced HSP72 (30). Matrine, a medication used 
clinically for viral hepatitis and hepatic carcinoma, 
ameliorated visceral adiposity and glucose intolerance 
as effectively as metformin in high-fat-fed mice, with 
additional effects of reducing hepatic steatosis mainly 
due to HSP72 induction (31). Matrine also reportedly 
protects the liver from CCl4-induced fibrosis in rats 
(32). While reduced HSP72 expression in the skeletal 
muscle is correlated with insulin resistance (33), a similar 

correlation between reduced hepatic HSP72 expression and 
hepatosteatosis/glucose intolerance has been observed, 
suggesting that reduction of HSP72 might be a key 
mediator of metabolic disturbances in the liver (31). Other 
potential anti-diabetic compounds such as resveratrol 
(34), BGP-15 (35), naringin (36), α-linolenic acid (37), and 
GGA (6) were shown to induce HSP72 expression in vitro 
and in vivo. In particular, GGA almost exclusively induces 
HSP72 in the liver of high-fat-fed mice and ameliorates 
glucose homeostasis as well as hepatic lipid accumulation 
(6). Thus, HSP72 induction by HS + MES is considered 
to be a major contributor to improve metabolic profiles 
and NAFLD biomarkers in metabolic syndrome and 
type 2 diabetes. Although we have not examined the 
expression of HSP72 in the liver of those participants, 
HSP72 induction on HS + MES treatment was observed in 
monocytes of the patients with metabolic syndrome (8). 

Figure 3
The univariable linear regression analysis on HS + MES treatment as cumulative exposure time. The changes of NAFLD biomarkers and HS + MES 
cumulative exposure time (CET: time × frequency/w × weeks) were plotted. The correlation coefficient r and P values were estimated. Blue dot: healthy 
subject (CET: 480). Light green dot: metabolic syndrome (CET: 2880). Dark green dot: type 2 diabetes (CET: 1440). Orange dot: type 2 diabetes (CET: 2880). 
Red dot: type 2 diabetes (CET: 5040).
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The intensity of the intervention in HS + MES estimated 
by cumulative exposure time (Fig. 3) may explain the 
effects of HS + MES for NAFLD biomarkers, indicating 
that the magnitude of the HSP72 induction may mediate 
these metabolic benefits. Archer  et al. (38) reported that 
weekly in vivo hyperthermia improved glucose tolerance, 
elevated muscle and hepatic HSP72 protein content 
and reduced muscle triglyceride storage, suggesting that 
hyperthermia may improve systemic metabolism via the 
induction of hepatic HSP72. Additionally, an acute loss 
of HSP72 in primary hepatocytes impacts mitochondrial 
health as well as fat oxidation and storage. These findings 
suggest therapies targeting HSP72 in the liver may  
prevent NAFLD.

HSP72 transcriptional activation is positively 
regulated by heat shock transcription factor-1 (HSF1). 
Obesity triggers the differential regulation of various HSRs 
and decreases the HSF1 level in the liver, which correlates 
with the impairment of HSP72 in NAFLD (39). The HSF1–
HSP72 axis is progressively suppressed in the adipose 
tissue and liver of patients with obesity as NAFLD evolves 
(40). A clear negative correlation between the progression 
of NAFLD to fibrosis and the expression/activation of the 
HSF1/HSP72 biochemical pathway is observed in both the 
liver and adipose tissues of patients with NAFLD (40). This 
suppression of the HSF1–HSP72 axis is strongly correlated 
with the degree of enhancement of JNK activation (40), 
which contributes to the further enhancement of chronic 
inflammation and insulin resistance.

Conversely, HSP72 strongly inhibits JNK by several 
mechanisms (41) and protects cells from ER stress through 
the activation of the inositol-requiring enzyme 1–X-box-
binding protein-1 pathway (42). In addition, modulations 
of the HSP pathway have been shown to suppress canonical 
TGF-β and NF-κB signaling. HSP72 blocks NF-κB activation 
at multiple aspects, such as by impeding inhibitor of κB 
(IκB) phosphorylation (43) and by directly binding to IκB 
kinase γ (44). All of these target molecules of HSP72 are 
involved in the development and progression of NAFLD. 
Therefore, these anti-inflammatory and anti-fibrosis 
functions of HSP72 may contribute to the amelioration of 
NAFLD steatosis as well as fibrosis biomarkers. The other 
HSR-associated gene Sirtuin 1, an NAD+ dependent class 
III histone deacetylase is also involved in the prevention 
of insulin resistance, and in the deacetylation of HSF1 to 
promote HSP transcription (45), and may have possible 
interactions to elicit the HS + MES effects on NAFLD 
biomarkers. Sirtuin 1 expression and HSF1 deacetylation 
should be examined upon HS + MES treatment if there are 
other pathways associated with HS + MES effects.Ta
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Our investigation possesses several limitations. No 
liver biopsies or FibroScan examinations were performed 
to evaluate the exact NAFLD stages, and this study was 
not designed for prospective procedures. Additionally, 
no measurements of fragment of propeptide of type III 
collagen or cytokeratin-18 were performed. From the 
molecular point of view, we haven’t assessed other heat 
shock proteins, such as HSP27, HSP40, HSP60 or HSP90. 
Although in vitro experiments using HS + MES identified 
HSP40 or HSP90 were not elevated in our model (46), 
the expression of other HSPs should be examined in vivo. 
Recent research identified that plasma lipid signatures may 
predict pathological lipid abundance in the liver of mice 
and humans (47). Although we have used several NAFLD 
biomarkers calculated by some biochemical or body 
composition parameters, plasma lipid signatures may 
predict and evaluate NAFLD more precisely. This strategy 
may identify promising diagnostic and prognostic NAFLD 
biomarkers. Although cumulative exposure time may 
explain the effects of HS + MES for NAFLD biomarkers, 
the differences in intervention dose and different cohorts 
limit our conclusions. We also have large variability in 
the study group, especially in age. In addition, as we have 
recruited only 12% of females in this study, this relatively 
largely imbalanced population in age and sex should be 
modified. Because above reasons and the relatively small 
numbers in subjects, we are now planning to prospectively 
evaluate the effects of a renewed, smaller, and easy-to-use 
HS + MES device on metabolic disturbances and NAFLD 
biomarkers in patients with type 2 diabetes.

Conclusion

In this study, most of the NAFLD steatosis biomarkers in 
patients with metabolic syndrome and the NAFLD steatosis 
and fibrosis biomarkers in patients with type 2 diabetes 
were improved upon HS + MES treatment. Because no 
NAFLD treatment strategy has been established so far, this 
is the first clinical manuscript to show that a medical device 
(physical medicine) may have a wide variety of clinical 
indications, including NAFLD, metabolic syndrome and 
type 2 diabetes. Thus, HS + MES, a physical intervention 
targeting HSP72, may become a novel treatment strategy 
for NAFLD as well as metabolic disorders, including 
metabolic syndrome and type 2 diabetes.
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