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Prediction of antibiotic resistance by gene
expression profiles
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Although many mutations contributing to antibiotic resistance have been identified, the

relationship between the mutations and the related phenotypic changes responsible for the

resistance has yet to be fully elucidated. To better characterize phenotype–genotype mapping

for drug resistance, here we analyse phenotypic and genotypic changes of antibiotic-resistant

Escherichia coli strains obtained by laboratory evolution. We demonstrate that the resistances

can be quantitatively predicted by the expression changes of a small number of genes. Several

candidate mutations contributing to the resistances are identified, while phenotype–genotype

mapping is suggested to be complex and includes various mutations that cause similar

phenotypic changes. The integration of transcriptome and genome data enables us to extract

essential phenotypic changes for drug resistances.
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T
he emergence of multi-drug-resistant bacteria is a growing
concern for global public health1–3, as doses of antibiotics
have conferred a selective advantage for naturally emerged-

resistant bacteria to cause drug ineffectiveness4,5. A number of
mutations have been identified and shed light on how bacterial
cells acquire antibiotic resistance6,7. For some of these mutations,
scientists can easily extract the causal relationship to drug
resistance, such as a resulting modification in a specific
drug target8. However, the relationship between a mutation and
drug resistance is not always a simple one-to-one correspondence.
Multiple mutations are often required to acquire high levels of
resistance to a specific drug7,9,10, whereas a single mutation can
cause various phenotypic changes that change the resistance and
susceptibility to various drugs simultaneously11. Studies using
mutant libraries have revealed that a large number of genes
influence drug resistance and susceptibility, including many
genes not directly involved in known drug-resistant
machineries12–14. Furthermore, non-additive (for example,
synergistic and antagonistic) responses to combinatorial drug
treatments suggest interplay among the mechanisms of drug
resistances15,16. Overall, the complex relationship between
drug resistance acquisition, genetic alternations and global
phenotypic changes remains unclear.

Laboratory evolution of bacteria17 is a powerful tool for
investigating the acquisition dynamics of drug resistance7,18. In
such experiments, bacterial cells are exposed to fixed drug
concentrations around which the cell growth is partially or
completely inhibited such that a selective advantage for resistant
strains is maintained. Although some essential factors in
drug resistance evolution, including horizontal gene transfer
(HGT)19 and interspecies communication20, are difficult to
analyse using laboratory evolution, this experimental system has
several advantages in comparison with in vivo experiments when
studying de novo acquisition of drug resistance, including a well-
characterized ancestor strain, a defined environment and parallel
evolution experiments that discriminate necessary and
unnecessary phenotypic/genetic changes. In general, the genome-
wide phenotypic and genotypic analysis of emerging resistant
strains in laboratory evolution offers to clarify the relationship
between phenotype–genotype changes and drug resistances.

In this study, we performed laboratory evolution of Escherichia
coli under various drug treatment conditions to obtain resistant
strains. For each obtained drug-resistant strain, transcriptome
and genome re-sequencing analyses were performed to identify
fixed mutations and gene expression changes. Furthermore, we
analysed how the acquisition of resistance to one drug changes
the resistance and susceptibility to other drugs. By integrating
these data and using a simple mathematical model, we succeed to
quantitatively predict resistances to various drugs based on the
gene expression levels of a small number of genes. The
phenotype–genotype relationship in resistant strains is analysed
to elucidate the contribution of the fixed mutations to the drug
resistance.

Results
Laboratory evolution of antibiotic-resistant E. coli cells.
We selected 11 antibiotics that cover a wide range of action
mechanisms, including drugs that disrupt cell wall synthesis,
protein synthesis, folic acid biosynthesis and DNA replication
(Table 1). E. coli MDS42 cells were cultured in M9 synthetic
medium with eight different concentrations of drugs and were
propagated daily from a well containing the highest drug
concentration possible, in which cells were able to sustain growth
(see Methods for details). To evaluate the reproducibility of the
evolutionary pathways, for each antibiotic, four independent

culture lines were propagated in parallel. After 90 days
propagation, significant increases in minimum inhibitory con-
centrations (MICs) were observed in the culture series of all 11
antibiotics except colistin (Fig. 1; all time courses are presented in
Supplementary Fig. 1). In addition to these cultures, we observed
90 days propagation of two independent culture lines under the
antibiotic-free condition, where all other conditions were iden-
tical to the other culture lines, as control. For all resistant strains,
we confirmed drug resistances after cultivation for at least 30
generations in the absence of the drug, indicating that the phe-
notypes of drug resistance were stably memorized.

Quantification of cross-resistance and hyper-susceptibility. To
explore how the resistance acquisition to one drug changes the
resistance and susceptibility to other drugs, for each obtained
resistant strain, we measured the MICs of the 25 antibiotics
shown in Supplementary Table 1. Figure 2a,b show changes in the
MICs of various drugs for chloramphenicol (CP) and enoxacin
(ENX)-resistant strains, respectively. The results demonstrated
that these antibiotic-resistant strains generally exhibited sig-
nificant changes in the MICs of multiple drugs (all MIC data are
presented in Supplementary Fig. 2). The spectra of MIC values
were generally similar among strains resistant to a given drug,
suggesting that independently evolved resistant strains reached a
similar phenotype. Supplementary Figure 2k shows the MICs of
the control strains obtained by serial propagations under the
antibiotic-free condition and demonstrates that MICs were
unchanged when the cells were cultured without antibiotics.

Cross-resistance is a phenomenon where the acquisition of
resistance to a specific drug causes resistance to another drug
simultaneously. As expected, cross-resistance to drugs with the
same action mechanisms was widely observed. For example,
strains resistant to ENX also showed resistance to other
quinolone antibiotics (Fig. 2b). Cross-resistance to drugs with
other action mechanisms was also observed, as in the case of the
beta-lactam resistance exhibited by the CP- and ENX-resistant
strains. One possible cause of the observed cross-resistance is
that the resistance acquisitions to these drugs shared the
same mechanisms. Interestingly, in some cases, resistant strains
to a drug became more susceptible than the parent strain,
a phenomenon called hyper-susceptibility. For example,
CP-resistant strains showed cross-susceptibility to aminoglyco-
sides such as neomycin (NM) and amikacin (AMK).

Table 1 | List of antibiotics used for experimental evolution.

Antibiotics
name

Abbreviation Class Cellular target

Cefoperazone CPZ Cephalosporin,
b-lactam

Cell wall

Cefixime CFIX Cephalosporin,
b-lactam

Cell wall

Amikacin AMK Aminoglycoside Protein synthesis,
30S

Neomycin NM Aminoglycoside Protein synthesis,
30S

Doxycycline DOXY Tetracycline Protein synthesis,
30S

Chloramphenicol CP Protein synthesis,
50S

Azithromycin AZM Azalide,
macrolide

Protein synthesis,
50S

Trimethoprim TP Folic acid synthesis
Enoxacin ENX Quinolone DNA gyrase
Ciprofloxacin CPFX Quinolone DNA gyrase
Colistin CL Peptide Cell membrane
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To further study the interplay among the mechanisms for drug
resistances and susceptibility, the relationship between the MICs
of two drugs was analysed. Figure 2c shows the relationship
between the MICs of ENX and ciprofloxacin (CPFX). The clear
positive correlation suggests that these drugs share the same
mechanism of resistance. In contrast, the MICs of CP and NM in
Fig. 2d showed a significant negative correlation (Pearson’s
correlation coefficient R¼ � 0.71; Po10� 6), indicating that
there is a trade-off between resistances to these drugs.

To represent the overall relationship among drug resistances,
we plotted Pearson’s correlation coefficients for all pairwise drug
combinations, in which the order of the drugs was determined by
hierarchical clustering using the similarity of correlation
coefficients as the distance measure (Fig. 2e). The green clusters
close to the diagonal line represent groups of drugs showing
cross-resistance, and the analysis indicated that drugs with same
action mechanisms generally exhibited cross-resistance. Interest-
ingly, aminoglycoside drugs showed a negative correlation to
other drug classes, meaning that when E. coli cells acquired
resistance to aminoglycoside drugs, these resistant strains
generally became more susceptible to other drugs than the parent
strain, and vice versa. These results are consistent with several
previous works that analysed antibiotic resistance by E. coli
experimental evolution7,21,22. For example, the study by Lázár
et al.21 analysed the cross-resistance network, in which not only
the cross-resistances between drugs belonging to the same groups,
but also those between drugs in different functional groups,
such as quinolones and beta-lactams, were also demonstrated.
In addition, Imamovic and Sommer22 investigated collateral
sensitivity network using E. coli to develop drug cycling protocols,
in which the trade-off of resistances between aminoglycosides and
drugs in other functional groups were demonstrated.

Prediction of antibiotic resistance from transcriptome data.
The results shown in Fig. 2 demonstrated that an acquisition of
resistance to one drug drastically changed resistance and

susceptibility to other drugs, which suggests that the phenotypic
changes that occurred in the resistant strains were not always
restricted to specific factors, such as modification of the drug
target protein structure, but instead caused changes in several
intra-cellular properties. In the present study, we hypothesized
that such phenotypic changes are represented by changes in
the gene expression profile, which we tried to extract from
transcriptome data obtained by microarray analysis. For the
transcriptome data, all resistant strains were cultured in synthetic
medium without drug addition to standardize the culture con-
dition among the strains (all transcriptome data are presented in
Supplementary Data 1). To examine the contribution of the gene
expression changes to the antibiotic resistances, we constructed a
simple mathematical model to predict the resistances using the
obtained gene expression profiles. Here, we assumed that the drug
resistances quantified by the MICs are determined as a function
of gene expression levels and neglected any direct effect of the
mutations on the drug resistance. Furthermore, for simplification,
we neglected non-linear effects and cross terms of the gene
expression changes. Thus, we assumed the following simple linear
model to predict the MICs by the expression levels of N genes:

MICk
j ¼

XN

i¼1

ak
i Xijþ bk ð1Þ

MICk
j is the log2-transformed relative MIC of the jth strain for the

kth antibiotic, Xij is the log10-transformed expression level of the
ith gene in the jth strain after standardization to zero mean and
unit variance, and ak

i and bk are fitting parameters. The number
of genes in E. coli is around 4,000, which is much larger than the
number of MIC data. Thus, when we use all genes for the fitting,
overfitting is inevitable and leads to a meaningless prediction of
the MICs. To avoid overfitting and to seek the number of genes
with the highest predictive accuracy, we used the cross-validation
method, in which the MIC data were separated into training data
used for the parameter fitting and test data used to verify the
prediction accuracy. When N was large, the prediction accuracy
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Figure 1 | Laboratory evolution of antibiotic resistance. (a,b) The time courses of the increase in MIC for ENX and CFIX in 90 days experimental

evolution, respectively. Day 0 corresponds to the parent strain before evolution. Four parallel series of experiments were performed. (c) The increase

in MICs for 11 antibiotics used for experimental evolution. The log2-transformed averages of relative MICs of resistant strains to the parent strain

(day 0) for each antibiotic are presented. The error bars represent the standard deviation from four parallel-evolved resistant strains.
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for the test data became small due to overfitting; when N was
small, the linear combination of genes was insufficient to repre-
sent changes of the MICs and the prediction accuracy became
small. In this analysis, the appropriate gene sets were searched
using a genetic algorithm (GA) with a fitness function based on
the prediction accuracy of the test data (see Methods for details).
We found that N¼ 8 offered the highest prediction accuracy on
average (Fig. 3a). This conclusion was based on a random
selection of training and test data sets. We iterated the GA fitting
using thousands of sets of training and test data, and the fre-
quency of genes selected by these GA trials is shown (Fig. 3b).
The genes acrB and ompF were selected in almost all trials
(frequency is close to 1), indicating that their expression changes
provided the most relevant information for predicting MIC
changes. Figure 3c–f show the prediction accuracy of the linear
model using eight genes frequently selected in the GA trials: acrB,
ompF, cyoC, pps, tsx, oppA, folA and pntB. In this analysis, for
each drug, the coefficients ak

i of the eight genes were obtained by
fitting the training data, and the plotted data are test data that
were not used for the fitting. The estimated MICs agreed well

with the observed ones, indicating that the linear model can
represent the phenotypic changes that acquire drug resistance
using a small number of genes.

To verify whether our linear model simply discriminates the
resistant strains from non-resistant strains or it can quantitatively
predict the resistances of non-resistant strains also, we evaluated
the prediction accuracy after excluding groups of strains evolved
to a given class of antibiotics (Supplementary Fig. 3). For
example, to evaluate the prediction accuracy for ENX resistance
shown in Supplementary Fig. 3a, the data of evolved strains under
quinolone antibiotics (ENX, CPFX) were excluded, and the
remaining data were randomly separated into training and test
data sets. Then, the parameters were fitted using the training data
sets, and predicted and observed MICs of test data sets were
plotted. Furthermore, by using the fitted parameters, MICs of the
excluded strains were also estimated. These results demonstrated
that, although the prediction accuracy slightly decreased upon
the exclusion of corresponding resistant strains, quantitative
predictions were possible by using only cross-resistance and
hyper-susceptibility data.
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Figure 2 | Cross-resistance and hyper-susceptibility between antibiotics. (a,b) Changes in MICs for other antibiotics in CP and ENX resistant strains,

respectively. The radial axis depicts the log2-transformed relative MIC to the parent strain. The black thick line indicates MICs of the parent strain, and the

coloured thick lines indicate relative MICs of four parallel-evolved resistant strains. (c,d) The relationships between the MICs of resistant strains for

(c) ENX and CPFX and (d) NM and CP. Red circles represent the relative MICs of all but colistin-resistant strains to the parent strain for the antibiotics

depicted in the axes. The data points have been slightly randomized to avoid overlapping of points. (e) Pearson’s correlation coefficients for all

pairwise antibiotic combinations. The order of antibiotics was determined by hierarchical clustering. Bottom left shows the colour panel indicator

of the correlation coefficient.
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The obtained ak
i of the above eight genes for each

antibiotic are shown (Fig. 4a) and provide information on the
cellular processes responsible for the drug resistance acquisition.
acrB encodes a subunit of a well-characterized multi-drug efflux
pump that forms a complex with AcrA and TolC23. The increase
of acrB expression is known to contribute to resistance against
various drugs24,25. The estimated ak

i of acrB were positive for all
investigated drugs except aminoglycosides, which suggests that
the upregulation of acrB contributed to the resistance. ompF
encodes an outer membrane porin protein, which allows for the
passive diffusion of small molecules26. It is known that a decrease
of ompF expression results in decreasing drug uptake, which leads
to drug resistance26. The estimated ak

i of ompF were relatively
large negative values for beta-lactam and quinolone drugs,
suggesting that the observed resistance in the obtained
resistant strains was mainly explained by the ompF
downregulation. In aminoglycoside-resistant strains, the ak

i of

cyoC, which encodes the subunit of cytochrome bo terminal
oxidase, were also relatively large negative values, suggesting
that the downregulation of this gene or related genes contributed
to aminoglycoside resistance. Because the analysis was based on
correlations between gene expression changes and resistant
acquisition, we could not necessarily conclude a direct
causal relationship. To verify the prediction of our model, we
constructed deletion strains of the acrB, ompF and cyoC genes,
and then quantified the changes of the MICs of multiple
drugs. The observed MICs of these deletion strains agreed
well with the predicted MICs (Fig. 4b), in which the
parameter values were obtained from the fitting of the resistant
strains, and the expression levels of the deleted genes were
set to background level. This result demonstrated that, at least for
these three genes, our model could quantitatively represent
the contribution of the gene expression changes to drug
resistance.
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The ability to predict resistance levels quantitatively does not
necessarily mean that our linear model can predict cross-
resistance and collateral sensitivity interactions among drugs.
When positive or negative correlations between predicted
resistances by the model are observed, one possible cause is
non-trivial correlations among gene expression levels in the
resistant strains, while another possibility is that cross-resistance
and collateral sensitivity are embedded in the coefficients ak

i of
the linear model. A direct test to discriminate between these two
possibilities is to check the correlations among predicted
antibiotic resistances by using randomly generated expression
levels without any correlations instead of experimental data.
Thus, we analysed the correlations of antibiotic resistances
obtained by the fitted parameters shown in Fig. 4a with randomly
determined expression values of the eight genes. To do this, first,
we set the maximum and minimum expression levels for each
gene from the experimentally obtained expression levels of all
resistant strains. Then, we created 100 sets of artificial expression
profiles of the eight genes, in which each expression level was
randomly determined by a uniform distribution between the
maximum and the minimum expression levels. For each of the
random expression profiles, we calculated the resistances to 25
antibiotics using the fitted parameters in Fig. 4a, and then the
correlation of resistances between all the possible combinations of
two antibiotics were obtained using the artificial data.
Supplementary Figure 4b shows correlation coefficients for all
pairwise drug combinations obtained by the randomly generated
expression levels, and Supplementary Fig. 4c represents the
relationship between correlation coefficients obtained from the
experimental and random expression data. The predicted
pairwise correlations by random expression profiles agreed well
with the experimentally obtained correlations, which strongly
suggested that the cross-resistances and collateral sensitivity
interactions are not generated from specific expression patterns in

the resistant strains, but rather are embedded in the fitted
parameters of the linear model.

Mechanism of trade-off between antibiotic resistances. In the
aminoglycoside-resistant strains, the ak

i of cyoC, whose product is
involved in the electron transfer system (ETS)27, were relatively
large and negative, suggesting that the downregulation of this
gene contributed to the aminoglycoside resistance. In fact, gene
expression analysis revealed that the cyoC gene involved in the
ETS was significantly downregulated in NM-resistant strains
(Supplementary Fig. 5a). This result suggested a decrease in ETS
activity in these strains, which can subsequently result in a
reduced proton-motive force (PMF) across the inner membrane.
This correlation between the downregulation of ETS-related
genes and aminoglycoside resistance is consistent with previous
studies demonstrating that the PMF is required for
aminoglycoside uptake28,29. That is, the tolerant strains
acquired their resistance by decreasing aminoglycoside uptake,
which was caused by a decrease in ETS activity and PMF. This
decrease in the expression of ETS-related genes may relate to the
hyper-susceptibility of aminoglycoside-resistant strains described
above. Also mentioned above was how the activity of the multi-
drug efflux pump AcrA/AcrB/TolC can contribute to various
drug resistances. Note that this efflux pump is a proton
antiporter, and its activity depends on the PMF30,31. Thus, the
reduction in PMF in aminoglycoside-resistant strains can cause
the decrease in AcrB activity, leading to hyper-susceptibility for
other drugs. Recently, the trade-offs between the resistance
against aminoglycoside and other drugs were demonstrated in the
laboratory evolution of E. coli11, and several mutations in genes
relating to the respiratory chain and the proton pump were
identified in the aminoglycoside -resistant strains. On the basis of
these results, a hypothesis was proposed where the hyper-
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susceptibility of the aminoglycoside-resistant strains is at least
partly caused by changes to the PMF. Our results suggest that the
change in the PMF leading to the trade-off in resistances can also
be caused by the expression changes of ETS-related genes.

Mutations fixed in resistant strains. The number of mutations
identified in the resistant strains is shown in Fig. 5, and the
detailed information is presented in Supplementary Data 2. We
analysed the genomic DNA samples using two high-throughput
sequencers, Roche FLXþ and Illumina Hiseq. All identified
mutations were confirmed by Sanger sequencing (see Methods for
details). Less than 20 mutations were fixed in each of the resistant
strains. The numbers of fixed mutations were relatively small in
the control strains obtained under the antibiotic-free condition,
which is consistent with the smaller selection pressure in this
condition. We found several genes and gene functions to which
mutations were commonly fixed in the resistant strains (Table 2),
suggesting contributions by these mutations to the drug
resistances.

Mutations in genes relating to the AcrA/AcrB/TolC multi-drug
efflux pump were observed in all but the aminoglycoside-resistant
strains. Fourteen resistant strains had mutations in acrR, a local
repressor of acrAB32. We confirmed that strains with these
mutations exhibited significantly higher expression levels of acrB
(Supplementary Fig. 6), suggesting that these mutations disrupted
the repression by AcrR. It is natural to conclude that the
mutations in acrR were beneficial because of increased expression
of acrB. In addition, eight non-synonymous mutations were
identified in the open reading frame (ORF) of the acrB gene,
which might suggest that structural changes in AcrB by these
mutations can increase the activity of the AcrB efflux pump. To
verify the contribution of these mutations on drug resistance, we
introduced them into the genome of the parent strain using site-
directed mutagenesis33. Increases in the MICs of three antibiotics
caused by these mutations were relatively small (Supplementary
Fig. 7), suggesting that the mutations fixed in the ORF of acrB
make minor contributions to the drug resistances in comparison
with the expression changes of acrB. marR is another gene known
to regulate the expression level of acrB, and we found that seven
resistant strains had mutations in the ORF or promoter region of
marR. However, the contribution of the marR mutations on acrB
expression levels was unclear, since five of the seven strains also
had mutations in acrR or acrB.

Mutations in genes related to outer membrane porin protein
(Omp) were also observed in various resistant strains. Six

mutations were found in ompR, which codes a cytoplasmic
protein that has been shown to bind upstream of both the ompF
and ompC promoters34. Although these mutations might
contribute to the expression change of ompF, their effects were
unclear since the expression levels of ompF decreased in
most resistant strains regardless of the ompR mutations
(Supplementary Fig. 8). No further mutations were identified in
genes known to regulate ompF expression, as according to
Regulon DB35.

The resistant strains to quinolone DNA gyrase inhibitor (ENX
and CPFX) exhibited specific patterns of fixed mutations. In
addition to mutations in genes related to the multi-drug efflux
pump and porin protein, the quinolone-resistant strains com-
monly had mutations in genes encoding DNA gyrase (gyrA), the
target protein of quinolone antibiotics. The contribution of gyrA
mutations to quinolone resistance has been widely studied8. We
found that half of the quinolone-resistant strains had mutations
in dinG, which encodes a putative DNA helicase and is involved
in stress-induced DNA-repair, and mipA, which encodes
a scaffolding protein involved in murein synthesis. The
contributions of these mutations to quinolone resistance,
however, are unclear. It should be noted that the expression
level of mipA was significantly downregulated in most quinolone-
resistant strains (Supplementary Fig. 9), which might suggest that
the disruption of mipA function contributed to the quinolone
resistance.

Resistant strains to aminoglycosides (AMK and NM) showed a
significantly different pattern of mutations from all other resistant
strains. In the aminoglycoside-resistant strains, no mutation was
found in genes related to acrB and ompF, for which many
mutations were fixed in the other resistant strains. In contrast,
aminoglycoside-resistant strains had a variety of mutations in
genes related to the respiratory chain and oxidative phosphoryla-
tion, including NADH dehydrogenase (nuo), cytochrome bo
terminal oxidase (cyo), and the haem biosynthesis pathway (hem).
These mutations probably disrupted the activity of the respiratory
chain and resulted in a decrease in the PMF. In addition to genes
related to respiration, we found that several aminoglycoside-
resistant strains had mutations in cpxA and in genes related to the
sensitive-to-antimicrobial-peptides (Sap) transporter. CpxA is the
sensor protein of a two-component signal transduction pathway,
which includes CpxR as the cognate response regulator that
responds to extracytoplasmic stress36. We also found that the
expression levels of cpxA and cpxR were upregulated in the
aminoglycoside-resistant strains (Supplementary Fig. 5b). These
results are consistent with previous reports that showed
mutations in cpx genes can constitutively activate the Cpx
system, which promotes aminoglycoside resistance by the
downregulation of ETS-related genes37–40. The identified
mutations and expected expression changes were consistent
with previous studies on antibiotic resistance acquisitions. For
example, mutations in acrR were widely observed in laboratory-
evolved and clinically isolated quinolone-resistant strains21,41,42,
as observed here. These acrR mutations probably contribute to
the resistance by upregulating acrAB expressions, which is
consistent with the prediction of resistances on the basis of the
expressions shown in Fig. 3. The mutations in ompR were also
identified in studies using experimental evolution of E. coli under
antibiotics21,43, which can contribute to the resistance through
the downregulation of ompF, as discussed above. The overlap
between mutations identified in our study and previous
studies7,11,21,43 are presented in Supplementary Data 2.

Phenotypic convergence and genotypic diversity. Genome re-
sequencing analysis demonstrated that mutations in several genes

IG
Ins/del
Synonymous
Non-synonymous

CPZ CFIX AMK NM DOXY CP AZM TP ENX CPFX

N
um

be
r 

of
 m

ut
at

io
ns

0

5

10

15

20

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

AF

Figure 5 | The number of fixed mutations in resistant strains. Mutations

were identified using Roche FLXþ and Illumina HiSeq 2000 systems and

confirmed by Sanger sequencing (see Methods for details). Blue, red, green

and purple bars represent non-synonymous, synonymous, ins/del and

intergenic mutations, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6792 ARTICLE

NATURE COMMUNICATIONS | 5:5792 | DOI: 10.1038/ncomms6792 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and changes in gene functions were shared among resistant
strains. For example, dozens of mutations were found in genes
related to the multi-drug efflux pump (acrAB), outer membrane
porin protein (ompF), and respiration chain (cyo, nuo and hem
genes), while common changes in the expression of genes related
to these functions were suggested to contribute to the resistance
according to our simple linear model. For some cases, simple
causal relationships between mutations and expression changes
can be derived from the observed data. For example, the acrR
mutations identified in the CP1-, CP2- and CP3-resistant strains
caused an upregulation of acrB expressions, which gave rise to the
observed drug resistances. However, the relationship between
fixed mutations and gene expression changes was not always a
simple one-to-one correspondence; instead, multiple mutations
were suggested to cause similar gene expression changes. For
example, the expression of acrB was commonly upregulated
in resistant strains CP1–4 (Supplementary Fig. 6), whereas
mutations in acrR were only seen in resistant strains CP1–3.
Thus, for the CP4 strain, mutations regulated the acrB expression
indirectly. One candidate for this regulation was the mutation
fixed in lon. A previous study showed that some mutations in lon
stabilize the MarA transcriptional activator, leading to the upre-
gulation of acrB44. It is, therefore, possible that in the CP4 strain,
the lon mutation might contribute to the upregulation of acrB
and CP resistance, unlike in other CP strains where acrR
mutations were responsible.

A similar diversity of mutations was observed in NM-resistant
strains. The expression analysis showed that cyo genes encoding
cytochrome bo oxidase were commonly downregulated in these
strains. In NM1-, NM3-, NM4-resistant strains, mutations were
fixed in cpxA. As described above, mutations in cpxA can activate
the CpxA–CpxR signal transduction pathway to downregulate
cyo genes (Supplementary Fig. 5). However, similar upregulation
of cpxAR genes and downregulation of cyo genes was observed in
the NM2 strain even though no mutation was found in cpxAR

genes. Furthermore, we did not identify any mutations that
directly contributed to the observed upregulation of cpxAR in
NM2, and the mechanism for the upregulation remains unclear,
however, we did identify a mutation upstream of the cyo
operon in NM2, which might contribute to the downregulation
of cyo genes.

A complex relationship between mutations and gene expres-
sion changes was also observed in the downregulation of ompF in
beta-lactam (CPZ and CFIX)-resistant strains. The expression
levels of ompF in CPZ-resistant strains were commonly down-
regulated (Supplementary Fig. 8). In the CPZ1 and CPZ4 strains,
mutations were found in the acrR and marR genes, respectively,
both of which were suggested to regulate the expression of
micF, indicating these mutations contributed to the down-
regulation of ompF and lead to beta-lactam resistance. In
contrast, in CPZ2 and CPZ3 strains, no mutation was found to
directly regulate the expression of ompF. However, we did find in
these strains mutations that were fixed in rfa genes, which are
themselves involved in the lipopolysaccharide biosynthesis path-
way45. Previous studies have demonstrated that mutations in rfa
genes can decrease ompF and ompC expressions, presumably by
changing the permeability of the outer membrane45,46. Thus,
these rfa mutations might contribute to the CPZ resistance,
although the expression level of ompC was unchanged in both
CPZ2 and CPZ3 strains.

Discussion
In this study, we performed phenotypic and genotypic analysis of
resistant strains obtained by parallel laboratory evolution to
various antibiotics. We showed that resistance acquisition to one
drug can drastically change the resistance and susceptibility to
other drugs. We also demonstrated using a simple linear model
that changes in resistance and susceptibility can be predicted by
the expression levels of a small number of genes. These same
genes could, therefore, be used to describe the phenotypes
responsible for the drug resistance and susceptibility. Thus,
by significantly reducing the degrees of freedom, we could
quantitatively clarify how cells acquire drug resistance and also
explain unexpected side effects such as cross-resistance and
hyper-susceptibility.

The genes identified frequently selected by the GA trials
(Fig. 3b) included several well-known resistance-related genes,
such as acrB and ompF, and also several less-characterized genes.
For example, among the eight genes used in the example in Figs 3
and 4, the expression of oppA was generally upregulated in
quinolones and beta-lactams (Supplementary Fig. 10). oppA
encodes a peptide binding protein, which is an essential
component of the oligopeptide transporter47. Some previous
studies discussed that the deletion of oppA contributes to
aminoglycoside resistance48. Our discovery may offer some
insight on the mechanism responsible. Furthermore, several
less-characterized genes, which have never been reported to be
related to resistance, such as yhfL and yijD, were also suggested to
relate to the resistance acquisitions, which should be elucidated in
future work.

We found many mutations commonly fixed in the resistant
strains of a given class of antibiotics, suggesting that these
mutations contribute to the resistance acquisition. Such tight
interactions between resistance acquisition and mutation fixation
might suggest that the resistance, susceptibility and cross-
resistance can also be predicted by the genomic sequences, which
is consistent with a recent study21. Genomic-sequence-based
analysis would be complementary to our expression-based
approach. Our expression-based analysis also demonstrated that
the phenotype–genotype maps were complex and included

Table 2 | Representative genes in which non-synonymous
mutations or ins/dels were commonly fixed in the resistant
strains.

Component Gene Strain

Multi-drug efflux pump acrAB CPZ134, DOXY4, CP23, TP234,
ENX24

acrR CPZ1, CP123, AZM23, TP234,
ENX14,CPFX234

marR CPZ4, CFIX4, CP1, AZM23,
ENX4

Outer membrane porin ompF CFIX2, DOXY2, CP34, ENX3,
CPFX124

ompR CFIX23, CP12, ENX2, CPFX3
Electron transfer
system

cyoAB AMK24, NM134

nuoABCEGMN CPZ3, AMK1234, NM1, CPFX1
hemAGH NM234

Two-component
regulatory system

cpxA AMK13, NM134

phoQ AMK1, TP124
Sap transpoter sapACDF AMK123, NM13, DOXY24
DNA gyrase gyrA AZM1, ENX123, CPFX1234
DNA helicase dinG ENX123, CPFX4
Murein synthesis mipA ENX3, CPFX124
RNA polymerase
sigma unit

rpoB AMK2, NM4, CP34, TP23

rpoC ENX2, CPFX13
rpoD CPZ3, TP34
rpoN CP24
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various mutations that caused similar phenotypic changes.
Integrating gene expression and genotype data will provide a
better description of the mechanisms responsible for resistance
acquisition and unveil the relationship between resistance/
susceptibility for several drugs.

Our experimental data indicated that, although different
mutations were fixed in resistant strains to the same drug, the
expression changes among these strains were similar, suggesting
that different mutations can cause a similar antibiotic resistance
through common expression changes. We suspect that investigat-
ing common resistance acquisition mechanisms, such as HGT,
will show similar expression changes for the resistance. Thus, it is
importance to compare precise phenotype–genotype comparisons
when investigating common resistance acquisition mechanisms,
such as HGT.

It should also be noted that the identified mutations
can contribute not only to antibiotic resistance directly,
but also compensate for any fitness cost associated with the
resistance acquisition. In fact, the resistant strains we obtained
generally exhibited lower growth rate under the antibiotic-free
condition (Supplementary Fig. 11). This result might suggest that
mutations that compensate for any observed fitness
cost associated with the resistance can also be selected in
experimental evolution under antibiotics. In future works,
such epistatic interactions among the identified mutations should
be investigated to unveil which mutations can help compensate
for fitness cost.

The acquisition of drug resistance is a phenomenon that
involves changes in various components, including the genome,
transcripts and metabolites, meaning a complex interaction
network is involved. One possible strategy to understanding such
complex dynamics is to analyse large-scale data for each
hierarchical layer and then to integrate the separate analyzes to
extract the essential components for the drug resistance. Our
study is one of the first to show detailed comparisons of drug
resistance and susceptibility with the transcriptome and whole-
genome sequence, and we succeeded to extract gene expression
changes responsible for drug resistance. These results suggest that
resistant acquisition to various drugs can be predicted by the
expression levels of a small number of genes, which might suggest
that there are several dominant ‘pathways’ in expression changes
to acquire antibiotic resistance. If so, the prevention of antibiotic-
resistant strain may be achievable by inhibiting phenotypic
changes, for which complex phenotype–genotype mapping will be
necessary.

Methods
Bacterial strain and culture conditions. The IS elements-free Escherichia coli
strain MDS42 (ref. 49) was purchased from Scarab Genomics and used throughout
this study. Bacterial cells were cultured in 200 ml modified M9 medium50 in 96-well
microplates (Corning Inc. 3595) with shaking at 900 strokes per minute on a
microplate shaker (TITRAMAX1000, Heidolph Instruments) at 34 �C. All the
antibiotics used in this study were purchased from Wako Pure Chemical Industries,
Ltd. Antibiotic stock solutions were made by dissolving powder stocks in specified
solvents by the manufacturer’s instruction. All antibiotic stocks dissolved in water
were 0.2 mm filter-sterilized and stored at � 80 �C before use.

Experimental evolution of antibiotic resistance. Four independent cultures for
each antibiotic were propagated in parallel with serial diluted antibiotics that were
slightly lower than MICs. The range of antibiotic concentrations used for the
evolution experiments were in doubling dilution steps up and down from
1 mg ml� 1 with three quartile concentrations according to the MICs of each
evolving culture line. At a daily transfer, cell growth was monitored by measuring
the OD600 nm of each well using the microplate reader 1420 ARVO (PerkinElmer
Inc.). We defined a well whose OD600 nm was 40.03 as a well in which cells could
grow. Cells calculated to yield an initial OD600 nm of 3� 10� 5 were transferred
from the well with the highest drug concentration in which cells could grow to new
plates with fresh medium and various concentrations of antibiotics. Cells during

and after the evolution experiments were stored as glycerol stocks at � 80 �C and
used for further analysis.

MIC measurement. Serial dilutions of each antibiotic were made in 96-well
microplates using modified M9 medium and stored at � 80 �C before use. The
range of antibiotic concentrations used for determining MICs were based on
doubling dilution steps up and down from 1 mg ml� 1 as required depending on the
antibiotic. We prepared precultures by shaking glycerol-stocked strains in 200 ml of
modified M9 medium in 96-well microplates for 23 h at 34 �C with (evolved
resistant strains) or without (parent strain) the antibiotics used for the evolution
experiments. The precultured cells, calculated to yield an initial OD600 nm of
3� 10� 5, were inoculated into each well in freshly thawed MIC plates to a final
volume of 200 ml. After 23 h incubation with shaking, the microplates were read at
600 nm using 1420 ARVO (PerkinElmer). The MICs were defined as the lowest
concentration of antibiotic that reduced the growth to an OD600 nmo0.03.

Total RNA isolation. We prepared precultures by shaking � 80 �C glycerol-
stocked parent and evolved resistant strains in 200 ml of modified M9 medium in
96-well microplates for 23 h at 34 �C without antibiotic. The cells precultured were
diluted to an OD600 nm of 1� 10� 4 into 200 ml of fresh modified M9 medium in
96-well microplates. Then, cultures were grown with shaking at 34 �C to an
OD600 nm in the 0.072–0.135 range (equivalent of 10 generations). One hundred
and eighty microlitres of exponential cultures were withdrawn rapidly, and cells
were killed immediately by the addition of an equal volume of ice-cold ethanol that
contained 10% (w/v) phenol. The cells were collected by centrifugation at 20,000 g
at 4 �C for 5 min, and the pelleted cells were stored at � 80 �C before RNA
extraction. Total RNA was isolated and purified from cells using an RNeasy micro
Kit with on-column DNA digestion (Qiagen) in accordance with the manu-
facturer’s instructions. The quantity of the purified RNA was determined by the
absorbance at 260 nm using NanoDrop ND-2000 (Thermo Fisher Scientific Inc.).
The quality of the purified RNA was evaluated using Agilent 2100 Bioanalyzer with
an RNA 6000 Nano Kit (Agilent Technologies). Because the quality of the purified
RNA was important for accurate estimation of the gene expression level, two to
three independent purifications and qualifications of total RNA were performed for
each condition. We utilized only purified RNAs that had an RIN (RNA integrity
number) of 9.0 or more. The purified RNAs were stored at � 80 �C before
transcriptome analysis.

Expression profiling of genes by microarray experiments. Microarray experi-
ments were performed using the custom-designed Agilent 8� 60 K array for E. coli
W3110, in which 12 probes were prepared for each gene. One hundred nanograms
of purified total RNAs were labelled using the Low Input Quick Amp WT Labeling
Kit (Agilent Technologies) with Cyanine3 (Cy3) in accordance with the manu-
facturer’s instructions. After confirmation of yields (4825 ng) and specific activ-
ities (415 pmolmg� 1) of the Cy3-labelled cRNAs using NanoDrop ND-2000,
labelled cRNAs (600 ng) were fragmented and then hybridized on the microarray
for 17 h while rotating at a speed of 10 r.p.m. at 65 �C in an hybridization oven
(Agilent Technologies). Washing and scanning of microarrays were performed in
accordance with the manufacturer’s instructions. Microarray image analysis was
performed using Feature Extraction version 10.7.3.1 (Agilent Technologies). The
background corrected intensity values were normalized using the quantile nor-
malization method. The normalized data of microarrays have been deposited in
GEO under the accession code GSE59408 and are presented in Supplementary
Data 1. In that table, we also present the biological duplicated data of the parent
strain, that is, expression data obtained from different cultures of the parent strain.
Comparisons of the biological duplication data demonstrated that 99% of the
expression ratios were within the range 1/1.35 to 1.35.

Predicting antibiotic resistance by gene expression levels. Data for the
expression levels of genes in the same operon are generally highly correlated, which
can disrupt the convergence of the gene selection presented below. Therefore, in
each operon, we selected a gene with the highest average expression level among
samples to use for the fitting, and discarded the other genes. To use only quanti-
tatively reliable data, genes with low expression levels (o300 a.u. in any strain)
were excluded from the following analysis. Furthermore, we excluded data with
relatively small expression changes among the resistant and parent strains, since
the expression changes of such relatively unchanged genes dominated the experi-
mental errors. These selection criteria left 330 genes for the analysis. The log10-
transformed expression levels of the screened genes were standardized to zero
mean and unit variance. Using the standardized gene expression data and MIC
data of the resistant strains, the fitting parameters ak

i and bk in equation (1) were
obtained. In this analysis, we used a fourfold cross-validation method. That is, the
resistant strains were randomly partitioned into four equally sized subgroups; one
subgroup was used as the test data set for validation and the remaining three
subgroups were used for the fitting. The fitting was performed using the multiple
regression implemented in R statistical language.

N genes used for the fitting were selected by a genetic algorithm (GA), in which
the correlation coefficient between the predicted and observed MICs of the training
data sets was used as the fitness function. As an initial population, 1,000 sets of N
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genes were randomly selected, and the fitness of the sets was calculated. Then, gene
sets with fitness in the top 5% were selected as the parent sets of the next generation
from which mutant sets were generated randomly by replacing a single gene
without changing N. We iterated 300 cycles of mutant sets and selected gene sets
with the highest fitness to obtain sets of N genes whose expression levels could
represent changes in drug resistances and susceptibility. We repeated the selection
of gene sets using 10,000 different training data sets prepared randomly by
partitioning the total data set to obtain the frequency of genes selected after the GA,
as shown in Fig. 3b. To obtain the results presented in Fig. 3a, we performed
GA screenings (300 cycles for each) by changing N from 2 to 18.

To evaluate the prediction accuracy in Fig. 3 and Supplementary Fig. 3, we
calculated the coefficient of determination, which is defined as

R2 ¼ 1�
P

iðyi � fiÞ2P
iðyi ��yÞ2

;

where yi is ith observed data, fi is ith estimated value, and �y is the average of the
observed data. The summation was over all the data obtained by the fitting.

Genomic DNA preparation. We prepared precultures by shaking stocked strains
in 200ml of modified M9 medium in 96-well microplates for 23 h at 34 �C with
(evolved resistant strains) or without (parent strain and two independent cultures
under the antibiotic-free condition) the antibiotics used for the evolution experi-
ments. The precultured cells were diluted to an OD600 nm of 3� 10� 5 in 10 ml of
fresh modified M9 medium in test tubes with or without antibiotic. Cell culture was
performed at 34 �C for 23 h with shaking at 150 strokes per minute using water
bath shakers (Personal-11, Taitec Co.). After the transfer of 200 ml cultures to
microplates, we confirmed that the OD600 nm values of cultures grown in test tubes
reached more than 0.2. Rifampicin (final concentration 300mg ml� 1) was subse-
quently added, and the culture was continued for a further 3 h to block the
initiation of DNA replication. The cells were collected by centrifugation at 25 �C
and 20,000 g for 5 min, and the pelleted cells were stored at � 80 �C before genomic
DNA purification. Genomic DNA was isolated and purified using a Wizard
Genomic DNA Purification Kit (Promega) in accordance with the manufacturer’s
instructions. To improve the purity of genomic DNA, additional phenol extractions
were performed before and after the RNase treatment step. The quantity and purity
of the genomic DNA were determined by the absorbance at 260 nm and the ratio
of the absorbance at 260 and 280 nm (A260/280) using NanoDrop ND-2000,
respectively. As a result, we confirmed that A260/280 values of all the samples
were 41.7. The purified genomic DNAs were stored at � 30 �C before use.

Genome sequence analyses using high-throughput sequencers. Genome
sequence analyses were performed with the Roche Genome Sequencer (GS) FLXþ
System and Illumina HiSeq System by Takara Bio, Inc. For GS-FLXþ sequencing,
a whole-genome shotgun library was prepared according to the manufacturer’s
protocol. In this analysis, four DNA samples with different barcodes were applied
on a half slide and then sequenced, that is, eight samples were sequenced in a single
run, resulting in about 16-fold coverage on average.

An 800 bp paired-end library was automatically generated by the Agilent Bravo
Liquid Handling Platform (Agilent technologies) according to the Illumina
protocol and sequenced in Illumina HiSeq 2000. In this study, 24 samples with
different barcodes were mixed and then sequenced, resulting in about 310-fold
coverage on average. The raw sequence data from both Roche FLXþ and Illumina
Hiseq systems are available in the DDBJ Sequence Read Archive under accession
number PRJDB2980.

In the re-sequencing analysis, we extracted genomic DNA samples from the cell
population at the end point of the 90 days experimental evolution without single-
colony isolation, since single-colony isolation can fix mutations in a minority of
cells and we aimed to identify genotype changes that were fixed in the majority of
resistant cells to analyse the phenotype–genotype mapping.

Alignment of reads and variant call. For the FLXþ data set, we used GS
Reference Mapper version 2.6 to align the reads to the reference genome and to
generate primary variant calls using default parameters. For nucleotide differences,
including point mutations and small ins/del, point mutation and small ins/del calls
defined as ‘High-Confidence’ with low total variation percentage (point muta-
tion:o75%, small ins/del:o50%) were removed, as were those defined as ‘All-diffs’
with low coverage (o3) or low total variation percent (o100%). Small ins/dels
found in more than four base homopolymer regions were discarded. For structural
variations, no candidates were removed at this step.

For the Illumina HiSeq data set, we identified genetic variations according to the
computational pipeline developed by the previous study51 with slight modification.
Briefly, we used paired-end information and mapped HiSeq sequence reads only to
best match the MDS42 reference genome sequence using SSAHA2 version 2.5.4
(ref. 52) with default parameters. In this mapping, the quality value of each
sequence reads was ignored. For nucleotide differences, including point mutations
and small ins/del, point mutation and small ins/del calls with low total variation
percentage (point mutation: o75%, small ins/del: o70%) were removed. For
potential small ins/del, sequence reads that covered the site were extracted and
verified by manually inspecting multiple alignments generated by T-Coffee version

9.03 (ref. 53). The potential nucleotide differences were also validated with breseq
version 0.24 (ref. 54). To identify large ins/del, previously reported method51 was
used. Briefly, reads were processed by Quake55, and de novo assembly was
performed by using Soapdenovo56. Then, assembled contigs were mapped on the
genome using BLAST57, by which candidates for ins/dels were screened. The de
novo assembly neighbouring candidate sites were aligned to the genome by
T-Coffee53. The presence of an ins/del was confirmed visually.

Finally, we integrated potential mutations obtained from both platforms
and confirmed them using Sanger sequencing of the PCR products. PCR products
were checked by agarose gel electrophoresis and purified using the QIAquick
PCR Purification Kit (Qiagen). Sanger sequence analyses were performed by
Greiner Japan.

In the re-sequencing analysis of the 40 resistant strains and the two culture lines
under the antibiotic-free condition mentioned above, we identified 441 and 425
SNP/INDELs in total by Illumina Hiseq and Roche FLXþ analysis, respectively.
Among these mutations, 421 were identified by both systems. The 441 and 425
mutations were verified by Sanger sequencing (Supplementary Fig. 12). The results
of Sanger sequencing demonstrated that all identified mutations by Illumina Hiseq
or Roche FLXþ were true positive, except for one candidate identified by Roche
FLXþ only.

Since we sequenced the entire cell population at the end point without
single-colony isolation and sequence reads calling minor genomic alterations
were ignored, we cannot exclude the possibility that the sample of resistant strains
contained minor populations with different mutations that exhibit similar
resistances to the major population. However, the existence of such minor
populations does not change the results and interpretations of our study, since
the present study focused on phenotype–genotype relationships in the major
population of resistant strains.

Markerless allele replacements and MIC measurements. To construct deletion
strains of the acrB gene, ompF gene and cyoC operon, and single-nucleotide sub-
stitution strains of the acrB gene, we introduced mutations into the parent strain by
the markerless gene replacement method33. Briefly, to construct DNA fragments
that had deleted coding regions, upper flanking regions of the start codon were
amplified by PCR using genomic DNA of the parent strain as templates with
forward primers containing the EcoRI site and reverse primers containing overlaps
with lower flanking regions of the stop codon. The lower flanking regions were
amplified by PCR with forward primers containing overlaps with the upper
flanking regions and reverse primers containing the KpnI site. After purification by
the MinElute PCR Purification Kit (Qiagen), the PCR products were combined by
overlap extension PCR. To construct DNA fragments that introduce single-
nucleotide substitutions of the acrB gene, DNA fragments were amplified by PCR
using genomic DNA of each resistant strain, in which a mutation in the acrB gene
was identified, with primers containing appropriate restriction sites. Each DNA
fragment was purified by the MinElute PCR Purification Kit and then cloned into
the suicide plasmid pST76-K33 (which was a kind gift from Dr Gyorgy Pósfai,
Biological Research Centre of the Hungarian Academy of Sciences, Hungary). After
confirmation of DNA fragment sequences by Sanger method, transformation,
integration into the parent strain genome, replacement stimulated by double-
strand break, and plasmid curing were performed in accordance with a previous
method33. After construction of mutant strains, corresponding genomic regions
were amplified by PCR and then confirmed by Sanger sequencing of the PCR
products directly. To evaluate the effects of the mutations on antibiotic resistance,
the MICs of these mutants were measured. Briefly, glycerol stocks of the mutants
were precultured by shaking in 200 ml of modified M9 medium in 96-well
microplates for 23 h at 34 �C without antibiotic. For the deletion strains, the MICs
for 25 antibiotics were measured using the same method as mentioned above (see
MIC measurement in this section). For the single-nucleotide substitution strains,
MICs for cefoperazon, doxycycline, chloramphenicol and trimethoprim were
measured three times independently. The step size of the antibiotic concentrations
was 0.1 log2-transformed on the basis of 1 mg ml� 1 as required depending on each
antibiotic.
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