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Abstract
Background: Mesenchymal stem cells (MSC) are pluripotent cells, present in the bone marrow and other tissues that 
can differentiate into cells of all germ layers and may be involved in tissue maintenance and repair in adult organisms. 
Because of their plasticity and accessibility these cells are also prime candidates for regenerative medicine. The 
contribution of stem cell aging to organismal aging is under debate and one theory is that reparative processes 
deteriorate as a consequence of stem cell aging and/or decrease in number. Age has been linked with changes in 
osteogenic and adipogenic potential of MSCs.

Results: Here we report on changes in global gene expression of cultured MSCs isolated from the bone marrow of 
mice at ages 2, 8, and 26-months. Microarray analyses revealed significant changes in the expression of more than 8000 
genes with stage-specific changes of multiple differentiation, cell cycle and growth factor genes. Key markers of 
adipogenesis including lipoprotein lipase, FABP4, and Itm2a displayed age-dependent declines. Expression of the 
master cell cycle regulators p53 and p21 and growth factors HGF and VEGF also declined significantly at 26 months. 
These changes were evident despite multiple cell divisions in vitro after bone marrow isolation.

Conclusions: The results suggest that MSCs are subject to molecular genetic changes during aging that are conserved 
during passage in culture. These changes may affect the physiological functions and the potential of autologous MSCs 
for stem cell therapy.

Background
Mesenchymal stem cells (MSCs) are pluripotent cells that
have been reported to reside in virtually all postnatal
organs and tissues (reviewed in [1-3]). They are defined
by their ability to adhere to plastic, to differentiate into
bone, cartilage and fat, and by expression of specific sets
of cell-surface markers. The apparent plasticity of MSCs
within the bone marrow and their similarity to suben-
dothelial pericytes have lead to suggestions that these two
cell types are closely related and possibly even the same
[3]. Pericytes and actively proliferating MSCs both
express alpha-smooth muscle actin (α-SMA), a marker of
vascular smooth muscle cells, and both cell types reside
within the domain of the microcirculation [3-7]. The
pluripotential nature of MSCs has been demonstrated in
vitro and in vivo. When systemically injected, mouse
MSCs migrate to multiple tissues and differentiate into

parenchymal cells of muscle, cartilage, skin, bone, liver,
heart, brain, intestine and lung [8-19]. In vitro, defined
conditions promote the differentiation of MSCs into skel-
etal muscle, endothelial cells, neurons, and cardiac myo-
cytes in addition to bone, cartilage and fat [20-22]. It has
been proposed that MSCs contribute to tissue and organ
repair and have therapeutic potential in the regeneration
or repair of multiple target tissues [23]. Several clinical
trails have been launched to evaluate MSCs for the treat-
ment of musculoskeletal, neurological and cardiovascular
diseases [24,25].

The process of MSC aging is important from the per-
spective of tissue regeneration and repair because there is
evidence that these beneficial functions may become
handicapped with age. Age-related decline in the number
of MSCs in the bone marrows of rodents, monkeys, and
humans have been reported [26-33]. Most studies to date
focused on the effects of aging on the ability of MSCs to
enter osteogenic, chondrogenic and adipogenic pro-
grams. Some, but not all studies suggest that aging
reduces osteogenesis and chondrogenesis while enhanc-
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ing adipogenic potential [34-40]. These changes could
provide an attractive explanation for the increased adi-
posity of bone marrow that is seen with age, and may be a
factor in senile osteoporosis [41,42]. Other studies
including some on humans suggest that the adipogenic
potential of MSCs increases at mid-age but declines in
old age [43]. Programs of senescence have been exten-
sively studied particularly during passage of human
MSCs, and these may provide clues to the mechanism of
age-related decline of MSCs in the bone marrow [44].
However it is not known how aging affects growth factor,
cell cycle or tumor suppressor genes despite the possible
relevance to senescence and self-renewal. In fact to date
there has been no comprehensive effort to analyze the
effect of age on global gene expression of non-committed
MSCs. In the present study, we harvested bone marrow
from mice aged 2, 8, and 26 months, and obtained
homogenous populations of MSCs from each age group.
Comparisons of the transcription profiles of these MSCs
reveal significant age-related changes in the expression of
more than 8000 genes. We found that marker genes asso-
ciated with adipogenic and osteogenic differentiation dis-
played a generalized decline with age. There were parallel
declines of the cell cycle inhibitors p53 and p21, and the
growth factors VEGF and HGF. These observations sug-
gest that molecular genetic changes accumulate in bone
marrow MSCs during aging that may affect functions,
including differentiation and proliferation of these cells.

Methods
Cell culture and isolation
Mesenchymal stem cells (MSCs) were isolated from
C57BL/6 WT mice aged 2, 8 and 26 months as described
[45]. Briefly, femur and tibia were removed from both
legs, four mice per age group, and the bone marrow
flushed with culture medium using a syringe needle. The
cells were filtered through a 70-micron strainer and cen-
trifuged at 210 g for 10 minutes. Red Blood Cell Lysis Buf-
fer (Sigma) was added, and the cells were plated on
Falcon tissue culture plates in mouse mesenchymal stem
cell basal media with supplements (Stem Cell Technolo-
gies, Va). Non-adherent cells were removed by rinsing
and replacing the media after 48 hours and culture
medium was replaced every 3 days. At 10 days post-har-
vest, the cells were removed with 0.25% Trypsin-EDTA
solution (Gibco) and replated on new culture plates at a
dilution of 1:2 (passage 1). Non-detached cells were dis-
carded. Media was replaced twice weekly and cells were
grown for 10 passages before harvest.

Flow cytometry
Cells were resuspended at a density of 1.5 × 106 cells/mL
in PBS containing 2% fetal bovine serum, 2 mM EDTA,
and 0.1% sodium azide (FACS Buffer) and incubated at
4°C for 20 minutes with APC-or PE-conjugated antibod-

ies against cell surface markers Sca-1, CD44, CD45, and
CD11b (from Pharmingen, SanDiego, CA). Labeled cells
were centrifuged, resuspended in 0.5 ml of FACS buffer,
and analyzed using an LSRS1 flow cytometer and quanti-
fied with CELLQuest software.

RNA isolation
Passage 11 MSCs from each age group were harvested at
the same degree of confluence using identical proce-
dures. RNA was purified using TriReagent (Sigma), and
Qiagen RNeasy columns following the manufacturer's
instructions. RNA integrity and concentration were ana-
lyzed by agarose-gel electrophoresis, UV NanoDrop
spectrophotometry.

Microarray
Equal amounts of RNA from 4 animals per age group
were combined to generate a pooled sample for each
experimental group. The pooled RNA samples were
labeled for hybridization to the Affymetrix Mouse
Genome 430 2.0 GeneChip Array, using standard
Affymetrix protocols. This chip contains roughly 39,000
transcripts. A total of 11 chips were run including tripli-
cates of 2-month samples and quadruplicates of 8 month
and 12 month samples. Arrays were pre-hybridized with
1× Hybridization Buffer for 10 minutes at 45°C. The
labeled samples were added to the GeneChip Arrays and
hybridized for 16 hours at 45°C. The arrays were stained
and washed according to Affymetrix Fluidics Station 450
protocol EukGEWS2v5_450. The intensity values were
collected from the GeneChips by scanning the arrays
with a GeneChip Scanner 3000 7G. The resultant images
were analyzed with the MAS5 algorithm for quality con-
trol checks. Pearson correlation coefficients taken from
plotting signal intensity values of duplicate chips across
all genes validated that triplicate experiments were simi-
lar (typical correlation coefficients for previous double
amplification experiments have been r2 ~.988). Chip
intensity values were calculated using the gcrma algo-
rithm. Chips were normalized with the quantile normal-
ization procedure. Normalized expression values from
the raw data were generated using default settings for the
GC-Robust Multi-array Average (GC-RMA) method that
provides the best balance of accuracy and precision [46]
within GeneSpring (Silicon Genetics, Redwood City, CA).
Subsequent statistical analysis was also performed in
GeneSpring. The cross-gene error model was applied
with replicates. The acceptance criterion for gene array
expression changes was a minimum fold change of 2.0
and a t-test p-value of < 0.05. Venn diagrams and scatter
plots were generated within GeneSpring.

Western Blotting
Western blots were performed using previously
described protocols [47]. Briefly, equal amounts of pro-
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teins were fractionated on 10% SDS-polyacrylamide gels
and electroblotted to nitrocellulose (BioRad, Hercules,
CA). Blots were stained with Ponceau Red to monitor the
transfer of proteins. Membranes were blocked with 5%
milk and incubated with p53 and actin antibodies (Santa
Cruz Biotechnology, Santa Cruz, CA) overnight at 4°C.
Blots were reacted with horseradish peroxidase-conju-
gated secondary antibodies and visualized by enhanced
chemiluminescence (ECL, Pierce, Rockford, IL).

Quantitative RT-PCR
RNA was reverse-transcribed using an RT2 PCR Array
First Strand Kit (SuperArray, Frederick, MD) with ran-
dom hexamers according to the manufacturer's instruc-
tions. Power SYBR Green PCR Master Mix (Applied
Biosystems, Foster City, Ca) was used according to manu-
facturer's instructions. The reaction mixtures were run in
96-well RT2 ProfileTM PCR arrays (Mouse Cancer Path-
way Finder and Mouse Osteogenic Pathway Finder, also
from SuperArray) each containing primers for 90 genes.
Detection was performed using an ABI Prism 7900HT
FAST Sequence Detector System, and data analysis was
carried out using the software provided. Cycle thresholds
for each transcript (Ct) were related to the relative stan-
dard curve. Ct values were compared from different age
groups and the mean and standard errors were calculated
from two separate RNA extractions run in duplicate. Sta-
tistical analysis was carried out using a standard T-test.

Differentiation assays
Osteogenesis: confluent monolayers of each cell group
were incubated in osteoblast differentiation media con-
taining DMEM-low glucose (Gibco), 10% heat-inacti-
vated FBS, 1% penicillin-streptomycin, 10 mM beta-
glycerophospate, 0.1 μM dexamethasone, and 0.2 mM
ascorbic acid 2-phosphate [48]. The culture media was
replaced every 3 days and after 14 days the cells were
fixed with 4% paraformaldehyde and stained with Aliza-
rin Red S (Sigma). Adipogenesis: confluent monolayers of
each cell group were incubated in adipogenic induction
medium consisting of DMEM-low glucose (Gibco) sup-
plemented with 10% heat-inactivated fetal bovine serum
(FBS), 1% penicillin-streptomycin, 1 μM dexamethasone,
0.5 mM IBMX, 100 μM indomethacin, and 10 Mg/mL
insulin. After 6-days the medium was switched to adipo-
genesis maintenance media consisting of basal media 10%
heat-inactive FBS, 1% penicillin-streptomycin, and insu-
lin. Cultures were alternated weekly between induction
media and maintenance media for 2 more weeks and then
fixed in 4% paraformaldehyde and stained with Oil-Red-
O (Sigma). Control plates were incubated in parallel with
DMEM-low glucose supplemented with 10% heat inacti-
vated FBS and 1% penicillin-streptomycin and subjected
to the same fixing and staining procedures.

Results
Characterization of Bone Marrow Mesenchymal Stem Cells
In agreement with previous reports [44], early passage
cultures were heterogeneous with cells displaying spin-
dle-shaped, flat, and fibroblast-like morphologies (Figure
1(A-C)). During passage, cells with a flattened morphol-
ogy were retained and were visually predominant by pas-
sage 11 (Figure 1(D-F). Passage 11 cells were
characterized by FACS analysis for the expression of Sca-
1, CD44, CD11b and CD45 (Figure 2). Sca-1 and CD44
are cell surface markers previously assigned to mouse
MSCs. CD11b is a marker for granulocytes, monocytes,
and natural killer cells and CD45 for hematopoietic lin-
eage cells. Consistent with an MSC phenotype, all cells
were Sca-1 and CD44 positive (>99% and ~80% respec-
tively) and negative for CD11b and CD45 (both <2.0%).
To confirm FACS cells were fixed stained with fluores-
cent lagged Sca-1 and CD44 antibodies. MSC from all
ages were positive for these markers (Figure 3(A-F)).

Age-related decline of MSC osteogenic differentiation
Cultures from each age group were exposed to osteogenic
differentiation as described in Methods. Figure 4 shows
representative plates of cells stained with Alizarin Red S
after differentiation treatments. All differentiated cul-
tures stained positive (A-C) whereas no stain was
detected in the controls (D-F). Microscopic visualization
identified >95% of cells from each age as positive for Aliz-

Figure 1 Isolation of Bone Marrow Stem Cells.  Bone marrow was 
aspirated from tibia and fibula of mice (4 per group) at age 2m, 8m, and 
26m.  1(A-C) shows cells at the first passage from 2m, 8m, and 26m 
ages respectively.  Morphologies of the cells was heterogenous at this 
stage. 1(D-F) shows cells after 10 passages again a 2, 8 and 26m respec-
tively, cells at this passage were homogeneous with a flattened mor-
phology.
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arin Red S after 14 days exposure to differentiation
medium (data not shown). These results indicate that
cells from all age groups were competent for osteogenic
differentiation. To quantify osteogenic differentiation we
measured secreted alkaline phosphates 10-days after
exposure to differentiation medium as described in
Methods. As shown in Figure 5 there was a progressive
decline in alkaline phosphatase secreted, with 26-mo cells
secreting ~25% compared with 2-mo cells. These results
suggest that the potential for osteogenic differentiation
declines with age. To determine whether the cells were
competent for adipogenesis MSCs from each age group
were exposed to adipogenic differentiation medium for
21 days, stained with Oil-Red-O and examined micro-
scopically for cytoplasmic lipid droplets. Consistent with
previous work in murine as well as human MSCs, we
found that adipogenic differentiation decreased with pas-

sage number [48-51]. Clusters of cells with lipid droplets,
positive for Oil-Red-O were found in MSCs of all age
groups at passage number 7 or less (Figure 6). However
adipogenic potential was lost with increasing passage;
when MSCs from each age group were subjected to adi-
pogenic differentiation conditions at passage > 14, only
MSCs from 8-month old mice differentiated (see Figure
6). Interestingly MSCs from 8-month old mice also
expressed the highest levels of adipogenic markers (see
below).

Distinct non-overlapping trends in gene expression during 
phases of aging
Results of microarray analyses using the Affymetrix
Mouse Genome 430 2.0 are shown in Figures 3 and 4 and
Tables 1, 2, and 3 (see Additional files 1, 2, 3). Hierarchi-
cal clustering of mRNAs from each set of time points

Figure 2 FACS analyses indicate similar cell surface antigen profiles of MSC from different age groups. Cells were labeled with fluorescent an-
tibodies for Sca-1, CD44, CD11b, and CD45 and analyzed by FACS.  Consistent with a mesenchymal phenotype, all cells were positive for the markers 
Sca-1 and CD44 (>99% and 98% respectively).  Cells were negative for the monocyte marker CD11b and the hematopoietic lineage marker CD45 
(<2%).
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indicated excellent reproducibility between samples (Fig-
ure 7). Venn diagrams of differentially expressed genes
using a threshold of 2-fold are shown in Figure 8. 2111
transcripts declined between 2 and 8 months and 2547
transcripts between 8 and 26 months. Eighty-six tran-
scripts corresponding to 71 genes were common to both
groups. 1487 transcripts were elevated in the 2- to 8-
month group and 2402 in the 8- to 26-month group; there
was no overlap between these groups. The low degree of
overlap between groups indicates that transcripts that
change significantly during 2-8 months do not continue
to change in the same direction during 8-26 months, but
rather remain at the 8-month level, whereas different sets
of transcripts change during 8-26 months. Scatter plots
indicating up and down-regulated genes are shown in
Figure 9.

Age-related trends in differentiation, growth factor and cell 
cycle genes by cluster analysis
Differentially expressed genes between 2 and 8 months
A series of osteogenic, homeobox, and integrin gene
transcripts decreased significantly between 2 and 8-
months, see Table 1 (Additional File 1). The osteogenic
markers included, osteoadherin (20-fold), periostin
osteoblast specific factor (20-fold), osteoglycin (7-fold),
osteonectin (4-fold), osteonitogen (4-fold), and osteoblast
stimulating factor (2-fold). Down-regulated integrins
included, integrin α-4 (62-fold by RT-PCR), α-6 (5-fold),
α-8 (10-fold), α-10 (5-fold), and β-1 (3-fold by RT-PCR);
integrin linked kinase (ilk) and Adams-5 also decreased
by 3-fold. Adams are transmembrane proteins that have
metalloprotease, integrin-binding, intracellular signaling
and cell adhesion activities [52]. Down-regulated homeo-
box genes included homeobox msh-like (50-fold),
homeobox B2 (30-fold), paired-related homeobox (30-
fold), homeobox B6 (25-fold), homeobox 5 (10-fold), and
HoxB9 (15-fold). The levels of TGFβ signaling pathway
transcripts TGF-β2 and the receptor endoglin increased.
Endoglin is an accessory receptor for several growth fac-
tors of the TGFβ family that is expressed in adult bone
marrow hematopoietic stem cells [53,54]. IGF-1BP3 and
IGF-2BP4 transcripts were also increased between 2 and
8 months. There were increases of lipoprotein lipase (Lpl)
and collagen type-VIIa (Col7a). Lpl is a marker of adipo-
genesis; Col7a is a component of the epidermal basement
membrane [55].
Differentially expressed genes between 8 and 26 months
Table 2 (Additional File 2) shows the top 80 down-regu-
lated transcripts in the aging (8-26 mo) group. These
include 3 glutathione-S-transferase genes and glutathione
peroxidase, suggesting possible down-regulation of this
anti-oxidant pathway. There were also 3 separate hits for
serine (or cysteine) proteinase inhibitor (clades A, B and
E), calcium-activated chloride channels, and solute car-
rier family-38 genes. The osteogenic and homeobox
markers, that declined between 2-8 months remained
depressed at 26 and the levels of two key adipogenesis
marker genes Lpl and FABP4 decreased markedly
between 8 and 26-months. Gene transcripts that were
significantly increased between 8 and 26 months
included H-cadherin, Col7a, and several bone morpho-
genic protein (BMP) gene family transcripts including
BMP2 (3.8-fold), BMP3 (2.5-fold), BMP4 (6.5-fold), Bmp
receptor 1b (3-fold), BMP2 inducible kinase (3-fold),
BMP activation membrane bound inhibitor (Bambi, 20-
fold), and BMP-binding endothelial receptor (Bmper, 10-
fold).
Cell cycle regulators and apoptosis
Microarray analysis revealed significant declines in the
transcripts encoding cell cycle regulators Trp53 (p53),
Cdkn1a (p21), CHEK2 and retinoblastoma gene product

Figure 3 Expression of stem cell markers.  Immunofluoresence of 
isolated bone marrow stem cells.  Isolated MSC passage 11 were fixed 
and stained with anti-Sca-1 and CD44 antibodies.  All cells were posi-
tive for these stem cell markers. 

Figure 4 Osteogenic Differentiation. MSC, passage 11 from each 
age were grown to confluence and exposed to osteogenic induction 
medium for 14 days and stained with Alizarin Red. Cells from each age 
group were positive after 14 days (A-C; 2mo, 8mo, 26mo) whereas no 
staining was seen in cells treated with control medium (D,E, F; 2mo, 
8mo, 26mo).
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(Rb1), and multiple apoptosis genes over the entire 2-26
month period. These trends were confirmed by rtPCR
using a cancer pathway SuperArray, (Figure 10 and Table
3 (Additional file 3)). P53 and p21 transcript levels
decreased by 26 and 50-fold respectively. CHEK2 tran-
scripts decreased by 2-fold and Rb1 by 4-fold. Fas
decreased by 2-fold and Bax, Bad, Caspase 8, and Apaf1

by 2-4-fold. When the same SuperArray was used to
compare transcripts from hearts of 2-month versus 24-
month mice only minor age-related changes were
observed in these transcript (data not shown). Western
analyses were implemented to determine whether the
changes in p53 were reflected at the protein level. As
shown in Figure 11, p53 was reduced at 8-months com-

Figure 5 Age-related Decline of Alkaline phosphatase (AP) activity. Osteogenic differentiation involves increased secretion of AP.  Alkaline phos-
phataes was measured in the media of differentiating cell at day 10 as described in Methods.  Significantly less  AP was secreted from cells taken from 
mice at age 26 mo (n=4; p<0.01).

Figure 6 Adipogenic differentiation. MSCs from 2, 8, or 26-month old mice were grown to confluence and exposed to adipogenic induction me-
dium (D) or culture medium (UD) as described in Methods.  Cell from each age group were Oli-Red positive and displayed intracellular fat droplettes.

2-month P-4 (D) 8-mo nth P18 (D) 26-month P7 (D) 8-month P18 (UD)
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pared with 2-months and was almost undetectable at 26
months. In contrast there was no change of p53 expres-
sion in the spleen of 2 month versus 24-month mice (Fig-
ure 12).
Growth factors
Microarray analysis identified five pro-angiogenic growth
factor genes with decreased expression during aging,
HGF, IGF-1, VEGF-A and C and angiopoietin-1 (ang-1).
These changes were confirmed by rtPCR (Figure 13 and
14). E2F1 and the VEGF receptor Flt1 were elevated in
26-month cells (E2F1, 2-fold; Flt1, 9-fold by RT-PCR). It
is noteworthy that all of the gene expression changes
detected by the microarray analysis that were represented
in the RT-PCR arrays were confirmed, and quantification
of individual transcripts was usually within the same
range. To confirm mRNA transcript results we measured
VEGF protein levels by ELISA (Figure 14). VEGF secre-
tion by 26-month MSCs was significantly reduced in 8-
and 26-month cells.

Discussion
We compared global gene transcriptional profiles of
uncommitted bone marrow derived mesenchymal stem
cells from mice at 3 different ages and across 2 intervals
of the murine lifespan. Changes of gene expression occur-
ring between 2 and 8 months have little in common with
those between 8 and 26 months. The small overlap of
down-regulated transcripts (87/2111) and no overlap of
up-regulated genes (0/2547), is consistent with the bio-
logically distinct stages represented by these time periods
that correspond roughly to young, mature, and aged. An
important and novel aspect of this study is that distinc-
tive patterns of gene expression were apparent between
the cells despite 11 passages and culture for 6-weeks in
defined MSC proliferation medium. The cells were cul-
tured in parallel under identical conditions, harvested at
the same degree of confluence and displayed homogene-
ity as reflected by similar cell-surface markers at the time
of RNA isolation. Therefore, it seems likely that the dif-
ferences in transcript profiles are age-related and reflect

Figure 7 Heirarchical Clustering of MSC mRNA.  Clustering was implemented as described in Methods. Pearson correlation coefficients taken from 
plotting signal intensity values of duplicate chips across all genes validated that triplicate experiments were similar (typical correlation coefficients for 
previous double amplification experiments have been r2 ~ .988).  
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molecular genetic modifications that are retained during
cell division.

Despite reciprocal changes in the transcript levels of
multiple genes including those associated with TGF-β
and IGF-1 signaling pathways over the 2-8 month and 8-
26 month periods, there was an overall trend of
decreased osteogenic and adipogenic marker expression
over the entire 2- to 26-month period of aging. The
increase of Lpl transcripts apparent between 2 and 8
months was lost at 26 months in parallel with a dramatic
decline of FABP4 transcripts. The osteogenic and homeo-
box markers that declined between 2 and 8 months
remained depressed at 26 month. Several bone morpho-
genic protein (BMP) family transcripts including BMP-2,
-3 and -4, Bmp receptor-1b, and BMP activation mem-
brane bound inhibitor were elevated at 26 months. How-
ever multiple other osteogenic markers that declined in
the 2-8 month age group did not recover. Integrins and
smooth muscle-related transcripts (α-SMC and γ-SMC)
decreased during 2-8 months and increased again at 26
months, whereas transcripts of Sfrp1, a key component of
Wnt signaling, and a possible modulator of osteogenic
versus adipogenic differentiation [56] decreased progres-
sively. These results are consistent with declines in osteo-
genic and perhaps adipogenic potential with age,
although passage number may be more important than
age for the latter. The results are also consistent with pre-
vious reports that osteogenesis and adipogenesis decline
with age and passage of murine MSCs [48-51]. The situa-
tion may be different in humans where MSCs from aged
subjects display more rapid senescence in culture, but do

not appear to have reduced osteogenic or adipogenic dif-
ferentiation potentials at least at early passage in culture
[57-59].

As noted above, only 86 gene transcripts were down
regulated over the entire 2-26 month period. Importantly,
these down-regulated transcripts included multiple cell
cycle and growth factor genes. VEGF, HGF and IGF-1
were all significantly decreased in MSCs from 26-month
old mice relative to cells from either 2 or 8-months (Fig-
ure 12). RT-PCR confirmed 4- and 3-fold decreases of
VEGF-A and -C respectively, 272-fold decrease of HGF,
and 22-fold decrease of IGF-1 transcripts over 2-26
months (Figure 13). ELISA further confirmed the
decrease of VEGF secretion of cells from aged mice (Fig-
ure 14. The extensive decrease of HGF transcripts sug-
gests that basal expression of the HGF gene is largely
extinguished in cells from aged mice. Such changes may
adversely affect both the survival and angiogenic poten-
tial of MSCs from aged bone marrow. This in turn might
negatively influence the repair functions as well as the
therapeutic potential of these cells, particular as they
relate to wound healing and treatment of cardiovascular
disease where neo-angiogenesis is essential.

The decreased expression of the p53/p21 cell cycle
checkpoint pathway in 26-month MSCs was confirmed
by RT-PCR and western blot. P53 is normally stabilized
when cells are exposed to conditions that promote DNA
damage when it translocates to the nucleus and activates
the transcription of p21 (cyclin-dependent kinase inhibi-
tor-1a) [60]. P21 inhibits the cyclin-dependent kinase 2
(CDK2) causing cell cycle arrest in G1. If DNA is success-

Figure 8 Comparisons of down and up-regulated transcripts.  Venn Diagram illustrating fold gene expression differences between 2m, 8m, and 
26m (t-test <2-fold, p<0.01) of 40,359 transcripts. Expression levels of 2111 transcripts decreased from 2m to 8m and 2547 transcripts decreased from 
8m to 26m.  Only 86 transcripts commonly decreased over both age groups. Analysis of up-regulated genes in the same manner revealed 1487 tran-
scripts that were increased from 2m to 8m and 2402 increased from 8m to 26m.  There was no overlap.

A� B
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fully repaired, p53 is degraded and cell division can be
restarted. In somatic cells the p53/p21 pathway is pro-
gressively activated during aging as telomeres are lost and
cells accumulate DNA damage, eventually promoting
senescence [61]. Conversely, the p53-pathway is inactive
in >50% of oncogenically transformed cells accounting at
least in part for the resistance of these cell to senescence
[62]. In embryonic stem cells (ESC) p53 is expressed at
low levels and does not induce p21 because translocation
to the nucleus is blocked (reviewed in 63). Therefore
ESCs also evade p53-mediated senescence. Genome
integrity in ESCs is maintained by enhanced telomerase

activity, efficient DNA repair, and highly active p53-inde-
pendent apoptosis [64]. Our observations that aged MSC
lost expression of p53 and p21, as well CHEK2, may
explain how these cells avoid age-related senescence. Loss
of Rb1 may also contribute to this; Rb, p21 and p53 are all
required for replicative senescence of primary somatic
cells [65,66]. These results may also be quite relevant to
oncogenesis; an age-related loss of p53 may predispose
these cells to oncogenic transformation, perhaps generat-
ing cancer stem cells [67]. Aging is a well-established risk
factor for oncogenesis [68,69]. The relevance of Flt1
induction is not clear, however it has been reported that

Figure 9 Scatter Plot Analysis Indicating up and down regulated genes from microarray.  This figure indicates the global changes in gene ex-
pression during two phases of aging and growth.  While the two figures look similar, the identification of the genes reveals two different gene sets.  
Some of the genes that undergo some of the largest changes are indicated.
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bone marrow derived hematopoietic progenitor cells that
express high levels of Flt1 have an enhanced potential to
home to tissues that express VEGF [70].

There have been conflicting reports on the effect of age
on the adipogenic potential of MSC (reviewed in [1-3]).
Muraglia et al [35] isolated 185 clones of human MSCs
and showed that 184 of these differentiated along an
osteogenic lineage, whereas fewer clones showed chon-
drogenic or adipogenic potential, and the potentials of
the latter decreased with passage number. MSC from
human adipose were also reported to become more
osteogenic at late passage [38]. Other studies suggest that
age affects senescence but not differentiation potential of
human MSCs [57-59]. MSC from rats rapidly loose chon-
drogenic potential during aging from immature to mature
or old, and this is paralleled by lower basal expression of
related genes [37]. There is also evidence that mesenchy-
mal stem cells committed to an adipogenic program can
be induced to trans-differentiate to the osteogenic path-
way and vice versa [71]. Moreman et al [36] reported
recently that freshly isolated bone marrow of 26-month
old mice contains significantly greater numbers of cells
committed to the adipogenic lineage than does the bone
marrow of 8-month mice. These changes were paralleled
by increased adipogenic and decreased osteogenic

marker gene transcripts. These studies do not necessarily
conflict with our findings because Moreman et al studied
freshly isolated cells whereas we used passaged cells. Cul-
ture in vitro may eliminate or reverse the programming of
cells that are committed at the time of isolation [71]. We
found that transcript levels of osteogenic markers
decreased between 8 and 26 months whereas adipogenic
markers increased at 8-months but decreased at 26-
months. Differentiation studies were consistent with a
biological consequence of these changes (Figure 2). These
trends are reminiscent of the aging process in humans
where adiposity tends to increase at mid-age while both
adiposity and osteogenicity decrease during old age
[72,73]. Of note mice aged 8-months are equivalent to a
human age between 30-40 whereas a 26-month old
mouse is equivalent to >70 human years [74].

Conclusions
Our studies indicate dramatic changes in the expression
of multiple genes during aging with some of the greatest
fluctuations represented by adipogenic and osteogenic
markers, growth factors and cell cycle regulator genes.
Major trends included higher adipogenic gene markers
and lower osteogenic markers at 8-months compared
with 2-months, loss of adipogenic markers at 26-months,

Figure 10 RT-PCR confirmation of age-related changes of cell cycle and apoptosis genes.  A RT-PCR (cancer) SuperArray of 84 cell cycle and 
apoptosis genes was used to compare mRNA from 2m and 26m mouse MSCs.  The analysis confirms 2-fold and 50-fold decrease of p53 and p21 re-
spectively and significant decrease of apoptosis transcripts with age.
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and globally decreased transcripts for growth factors and
cell cycle regulators p53 and p21 over the entire aging
period. The results suggest that maturation and aging of
the bone marrow define distinctive gene expression pat-

terns that effect both tissue-specific and housekeeping
genes. The loss of growth factor, survival, and cell cycle
control genes implies that aged MSCs may loose some of
their migration and repair properties while avoiding age-
induced senescence. The retention of age-determined
expression profiles of tissue specific genes during passage
in vitro suggests that certain gene sets may be irreversibly
affected by aging in vivo, such that they are refractive to
reprogramming signals after isolation.

Additional material

Additional file 1 Table 1. Fold change of individual transcript levels are 
from microarray.

Additional file 2 Table 2. Eighty most down-regulated transcripts 8-26 
months.
Additional file 3 Table 3. Changes of cell cycle and growth factor gene 
transcripts over 2-26 months.

Figure 11 Western blot of p53 expression.  (a) Cell lysates from each age group were analyzed by western blot as described in Methods.  Consistent 
with microarray and RT-PCR analysis, MSCs derived from 26-month mice did not express the p53 protein.  (B) Spleen lysates from progressively aged 
mice showed no change of p53 protein. 

a

b

Figure 12 Microarray profiles of pro-angiogenic cytokines and 
growth factor genes.  Expression levels of IGF-1, VEGF-A, VEGF-B, 
VEGF-C and HGF were from microarray.

http://www.biomedcentral.com/content/supplementary/1471-2164-11-229-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-229-S2.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-229-S3.DOC
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