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Robust generation of entangled 
state via ground-state antiblockade 
of Rydberg atoms
Y. J. Zhao1,2, B. Liu1,2, Y. Q. Ji1,2, S. Q. Tang3 & X. Q. Shao1,2

We propose a mechanism of ground-state antiblockade of Rydberg atoms, which is then exploited 
to prepare two-atom entangled state via three different kinds of pulses. First we use the pulses in the 
form of sin2 and cos2 functions and obtain a maximally entangled state at an accurate interaction time. 
Then the method of stimulated Raman adiabatic passage (STIRAP) is adopted for the entanglement 
generation, which is immune to the fluctuations of revelent parameters but requires a long time. 
Finally we capitalize the advantages of the former two methods and employ shortcuts to adiabatic 
passage (STAP) to generate the maximal entanglement. The strictly numerical simulation reveals 
that the current scheme is robust against spontaneous emission of atoms due to the virtual excitation 
of Rydberg states, and all of the above methods favor a high fidelity with the present experimental 
technology.

Quantum entanglement, referring to the non-local and non-classical strong correlations between individual 
quantum objects, such as atoms, ions, superconducting circuits, spins, or photons, is one of the most distinct 
features in quantum mechanics and an important resource in quantum information and quantum metrology. It 
has been widely used in quantum teleportation1–3, quantum cryptography4,5, quantum dense coding6,7, quantum 
secure direct communication8–10 and quantum key distribution11–13 etc. Owing to its importance, the entangled 
states have become a hot research topic in recent decades.

As an attractive system for manipulation of quantum information, neutral atoms are similar to ions, the best 
developed system to date, due to their long-lived hyperfine states that are robust against decoherence, and they 
can be precisely manipulated by optical and other electromagnetic fields. In addition, when the neutral atoms are 
excited to the Rydberg states, it will exhibit large dipole moments resulting in a dipole-dipole interaction which 
is strong enough to shift the atomic energy levels and prevent more than one atom from being excited to the 
Rydberg state14–19, which is related to Rydberg blockade phenomenon. Recently, the blockade between two atoms 
set about 4 μm and 10 μm apart were reported independently by two experimental groups20,21. Subsequently, 
many proposals were presented to prepare entanglement with Rydberg blockade22–28. For example, Saffman et al. 
produced N-particle entangled states using Rydberg blockade interactions and predicted that eight-atom entan-
gled states can be produced with a fidelity of 84% in cold Rb atoms23. Wilk et al. reported the generation of entan-
glement between two individual 87Rb atoms in hyperfine ground states which are held in two optical tweezers 
separated by 4 μm relying on the Rydberg blockade effect24. Maller et al. performed experiments in an array of 
single Cs atom qubits with a site to site spacing of 3.8 μm and created Bell states using the standard protocol with 
a Rydberg-blockade controlled-z gate and single qubit operations27.

In certain configurations, the blockade effect can be overcome and atom pairs can selectively be excited at 
short distance. This so-called antiblockade was initially proposed by Ates et al.29 for a three-level two-photon 
Rydberg excitation scheme and it has been studied and applied for preparation of entanglement theoretically30,31. 
In short, by adjusting the distance between Rydberg atoms in a controllable way, the blockade effect and the anti-
blockade effect can be preferred or suppressed, which is of particular interest for quantum information.
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However, it should be noted that the populations of the excited Rydberg states will decrease the fidelity of 
entangled state due to the spontaneous emission of atoms since the lifetime of Rydberg state is finite. Very 
recently, Shao et al. put forward an efficient scheme of ground-state blockade for N-type Rydberg atoms by virtue 
of Rydberg antiblockade effect and Raman transition32, which averts the spontaneous emission of the excited 
Rydberg state, and keep the nonlinear Rydberg-Rydberg interaction (RRI) at the same time. Inspired by this 
scheme, in this paper, we propose a mechanism of ground-state antiblockade for Rydberg atoms, i.e., the effec-
tively coherent Rabi oscillation between two ground states gg  and ee  can be achieved. As its application, we will 
explore three ways to implement the two-atom maximally entangled state. First, we adopt the pulses in the form 
of sin2 and cos2 functions and obtain a high-fidelity maximally entangled state at an accurate interaction time. The 
second method takes advantage of STIRAP which is insensitive to parameter fluctuations but needs a relatively 
long time. Finally, we use the shortcuts to adiabatic passage which combines the former two methods’ advantages 
to generate entangled state. The prominent advantage of our scheme is that the quantum information is encoded 
into the ground states of Rydberg atoms, and the evolution process of system is robust against atomic decay for 
two-atom entangled state preparation.

Theoretical Model
As shown in Fig. 1, we consider two identical Rydberg atoms trapped in two separate microscopic dipole traps. The 
states | 〉g  and | 〉e  are the hyperfine states in the ground-state manifold, respectively, and state | 〉r  is the excited Rydberg 
state. One atomic transition | 〉 | 〉 ↔ | 〉g e r( )  is driven by a classical laser field with Rabi frequency Ω Ω′( )1 2 , detuned by ∆1
(−∆2), the other atomic transition | 〉 | 〉 ↔ | 〉g e r( )  is driven by a classical laser field with Rabi frequency Ω′ Ω( )1 2  and the 
corresponding detuning is −∆2(∆1). The Hamiltonian of the whole system can be written as
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where U is the RRI strength which relates to the principal quantum numbers and the distance between the Rydberg 
atoms. To see clearly the roles of the RRI term, we rewrite the full Hamiltonian with the two-atom basis {| 〉gg , | 〉ge , | 〉gr , 
| 〉eg , | 〉ee , | 〉er , | 〉rg , | 〉re , | 〉rr } and move to a rotation frame with respect to − | 〉〈 |iU rr rr texp( ). Then we have
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Now we adjust the classical field and RRI strength to satisfy δ= + ∆ − ∆U ( )2 1 . On account of the large detun-
ing condition ∆ ∆ Ω Ω Ω′ Ω′

( ) ( , , )1 2 1 2 1 2 , we may safely eliminate the high-frequency oscillating terms and obtain
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2  originate from the 
Stark shifts of states | 〉gg , | 〉ee , | 〉rr , respectively. And Ω Ω′ ∆ − Ω Ω′ ∆ δ−e( / / ) i t
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the effective coupling strength between | 〉rr  and | 〉 | 〉ee gg( ). We can further eliminate Stark-shift terms of ground 
states with the help of auxiliary levels. Hence Eq. (3) can be rewritten as
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For simplicity, we have set δΩ ∆ − Ω′ ∆ + Ω ∆ − Ω′ ∆ = ′/ / / /1
2

1 1
2

2 2
2

1 2
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2 , Ω Ω′ ∆ − Ω Ω′ ∆ = Ω/ / a1 1 2 1 1 1  and 
Ω Ω′ ∆ − Ω Ω′ ∆ = Ω/ / b2 2 2 2 2 1 . After a unitary transformation δ= − | 〉〈 |Ŝ i t rr rrexp( ) removing the time-dependent 
terms, Eq. (4) becomes

δ δ′ = Ω | 〉〈 | + Ω | 〉〈 | + . . + ′ + | 〉〈 |.Ĥ rr gg rr ee rr rrH c ( ) (5)ER a b

We can deem Hamiltonian of Eq. (5) an effective Λ-type three-level system with an excited state | 〉rr  and two ground 
states | 〉gg  and | 〉ee  as shown in Fig. 2. For this effective Hamiltonian, the transition | 〉 | 〉 ↔ | 〉gg ee rr( )  is driven by a clas-
sical laser field with Rabi frequency Ω Ω( )a b . (δ δ′ + ) represents the corresponding detuning parameter. By adiabatically 
eliminating the state | 〉rr  under the condition ν δ δ= ′ + Ω Ω { , }a b , we have the final effective Hamiltonian

ν
=

Ω Ω
| 〉〈 | + . .Ĥ gg ee H c , (6)F

a b

where the Stark-shift terms originating from the two-photon transition are disregarded. It should be noted that in 
order to obtain this kind of spin squeezing-like Hamiltonian, six lasers were applied by Bouchoule et al.33, how-
ever, four lasers are enough in our proposal.

In Fig.  3, we plot the populations of states | 〉gg , | 〉ee , | 〉ge  and | 〉eg  by setting Ω′ Ω = Ω′ Ω =/ /1 0 2 0  
Ω Ω = Ω Ω =/ / 11 0 2 0 , ∆ Ω =/ 201 0 , ∆ Ω =/ 702 0 , δ Ω =/ 10 , δ= ∆ − ∆ +U ( )2 1  governed by the original 
Hamiltonian ĤI. It shows that the ground state | 〉gg  resonantly interacts with the ground state | 〉ee  under the con-
dition of large detuning and there is nearly no population for the states | 〉ge  or | 〉eg . In addition, from the 
Hamiltonian of Eq. (5), we can readily find the dark state is

Figure 1. Schematic view of atomic-level configuration. | 〉g  and | 〉e  are the hyperfine states in the ground-state 
manifold, respectively, and | 〉r  state is excited Rydberg state. ∆rr denotes the RRI strength. Here we adopted four 
pulses Ω1, Ω1, Ω′1, Ω′2.

Figure 2. The atomic level configuration for the effective Hamiltonian, where the effective Rabi frequencies 
Ω = Ω Ω′ ∆ − Ω Ω′ ∆/ /a 1 1 2 1 1 1, Ω = Ω Ω′ ∆ − Ω Ω′ ∆/ /b 2 2 2 2 2 1, and δ′ = Ω ∆ − Ω′ ∆ + Ω ∆ − Ω′ ∆/ / / /1

2
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| 〉 =
Ω
Ω

| 〉 −
Ω
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| 〉D gg ee , (7)
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where Ω = Ω + Ωa b
2 2 . Therefore, we can manipulate the evolution of quantum states with various adiabatic 

passages.

Generation of Entangled States
General adiabatic passage. We first utilize the form of sin2 (cos2) functions34,35 to prepare the maximally 
entangled state φ| 〉 = | 〉 − | 〉gg ee( )/ 2 . The Rabi frequencies Ω t( )1  and Ω t( )2  in the original Hamiltonian ĤI are 
modulated as

δ δ
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where Ω0 is the pulse amplitude, t is the operation time. In Fig. 4(a), we plot the Rabi frequencies Ω Ω/1 0 (Ω Ω/2 0) 
versus the interaction time t within a quarter period. Figure 4(b) illustrates the populations of the states φ| 〉, | 〉ee  
and | 〉gg  as Ω′ Ω = Ω′ Ω =/ / 11 0 2 0 , ∆ Ω =/ 201 0 , ∆ Ω =/ 802 0 , and δ Ω = ./ 0 10 . It is easy to find that we can obtain 
a high population for the state ϕ| 〉 at the time t = T/8 (T is pulse period).

Stimulated Raman adiabatic passage. We choose parameters for the laser pulses suitably to fulfill the 
boundary condition of the STIRAP
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Thus, the Rabi frequencies Ω t( )1  and Ω t( )2  in the original Hamiltonian ĤI are chosen as
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where Ω0 is the peak Rabi frequency, tc is the pulse duration, and τ is the delay between the pulses. The shapes of 
pulses are shown in Fig. 5(a), where the parameters have been chosen as = Ωt 3000 /c 0, = .T t0 2 c, and τ = . t0 04 c. 
Figure  5(b) characterizes the populations of states ϕ| 〉, | 〉ee  and | 〉gg  corresponding Ω =U / 510 , 
Ω′ Ω = Ω′ Ω =/ / 11 0 2 0 , δ Ω =/ 10 , α π= /4, = Ωt 3000 /c 0, and = .T t0 2 c. It turns out that a longer interaction 

Figure 3. Time evolution of the populations for the states | 〉gg , | 〉ee , | 〉ge  and | 〉eg  by setting Ω′ Ω = Ω′ Ω =/ /1 0 2 0
Ω Ω = Ω Ω =/ / 11 0 2 0 , ∆ Ω =/ 201 0 , ∆ Ω =/ 702 0 , and δ Ω =/ 10  governed by the original Hamiltonian ĤI.
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time is required, i.e. = Ωt 2100 / 0 for achieving the target state, and the population of the target state φ| 〉 remains 
unit when ≥ Ωt 2100 / 0. Compared with the former method, the STIRAP is not restricted to an accurate interac-
tion time but requires a relatively long time.

Shortcuts to adiabatic passage. In order to obtain the state φ| 〉 with STAP, we first consider the case of 
resonant situation in Eq. (5), i.e. ν δ δ= + ′ = 0, then we have

= Ω′ | 〉〈 | + Ω′ | 〉〈 | + . ..Ĥ t t rr gg t rr ee( ) ( ) ( ) H c (11)a bap

For this effective Hamiltonian, its eigenstates are easily obtained

Figure 4. (a) Temporal profile of the Rabi frequencies Ω Ωt( )/1 0 and Ω Ωt( )/2 0. (b) The populations of the states 
| 〉gg , | 〉ee  and φ| 〉 versus the interaction time t. Other parameters: Ω′ Ω = Ω′ Ω =/ / 11 0 2 0 , ∆ Ω =/ 201 0 , 
∆ Ω =/ 802 0 , and δ Ω = ./ 0 10 .

Figure 5. (a) Temporal profile of the Rabi frequencies Ω Ωt( )/1 0 and Ω Ωt( )/2 0. (b) The populations of the states 
| 〉gg , | 〉ee  and φ| 〉 versus the interaction time t. Other parameters: Ω′ Ω = Ω′ Ω =/ / 11 0 2 0 , ∆ Ω =/ 201 0 , 
∆ Ω =/ 702 0 , δ Ω =/ 10 , α π= /4, = Ωt 3000 /c 0, = .T t0 2 c, and τ = . t0 04 c.
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corresponding eigenvalues ε = 00 , ε = ± Ω′± t2 ( ), respectively, where θ = Ω′ Ω′t t t( ) arctan[ ( )/ ( )]a b , and 
Ω′ = Ω′ + Ω′t t t( ) ( ) ( )a b

2 2 . The instantaneous eigenstates | 〉nk  ( = ±k 0, ) for the effective Hamiltonian Ĥ t( )ap  does 
not satisfy the Schrödinger equation ∂ | 〉 = | 〉ˆi n H t n( )t k kap . According to Berrys transitionless tracking algorithm36, 
we can reverse engineer Ĥ t( )cap  which is related to the original Hamiltonian Ĥ t( )ap , and drive the eigenstates 
exactly. From refs37–39, the simplest Hamiltonian Ĥ t( )cap  is derived in the form

∑ θ= |∂ 〉〈 | = | 〉〈 | + . .
= ±

Ĥ t i n t n t i t ee gg( ) ( ) ( ) ( ) H c ,
(13)k

t k kcap
0,

where θ = Ω′ Ω′ − Ω′ Ω′ Ω′  t t t t t t( ) [ ( ) ( ) ( ) ( )]/ ( )a b a b
2. If the detuning ν δ δ= + ′ ≠( 0) is considered as shown in Eq. 

(5), we can adiabatically eliminate the terms of | 〉rr  state under the large detuning condition ν Ω Ω { , }a b , leading 
to the effective Hamiltonian
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Then we choose Ω = Ω = Ω
∼ia b  in order to cancel the first two terms, and the final Hamiltonian becomes
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∼
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2 .

We will show below the numerical analysis of the creating the two-atom Bell state governed by the STAP. Here 
the Rabi frequencies Ω′ t( )a  and Ω ′t( )b  in the Hamiltonian Ĥap are chosen as
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where Ω0 is the pulse amplitude. The forms of above pulses just correspond to Ω = Ω = − Ω
∼t i t( ) ( ) 281 2  for the 

original Hamiltonian ĤI  of Eq. (1). In Fig. 6(a), we plot the pulses with the operation time = Ωt 1000 /c 0, 
= .T t0 12 c and τ = . t0 1 c. Figure 6(b) shows the populations of state ϕ| 〉, | 〉ee  and | 〉gg  corresponding Ω =U / 510 , 

Ω′ Ω = Ω′ Ω =/ / 11 0 2 0 , δ Ω =/ 10 , = Ωt 1000 /c 0, and = .T t0 12 c, τ = . t0 1 c. Compared with the former two meth-
ods, this STAP-based entanglement generation requires neither a long time nor an acurate interaction time.

Discussion
We have illustrated how to prepare the maximally entangled state | 〉 − | 〉gg ee( )/ 2  in the ideal situation by 
manipulating pulses in different ways. However, the actual system will interact with the environment inevitably, 
which affects the availability of these methods. Thus it is necessary to investigate the influence of spontaneous 
emission of atoms on our proposal. When the dissipation is considered, the evolution of the system can be mod-
eled by a master equation in Lindblad form40,41

     ∑ρ ρ ρ ρ ρ= − − 

 − + 




=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
i H[ , ] 1

2
2 ,

(18)I
n

n n n n n n
1

4

where ρ is the density matrix of the whole system and  γ= | 〉 〈 |ˆ g r/21 1 ,  γ= | 〉 〈 |ˆ e r/22 1 ,  γ= | 〉 〈 |ˆ g r/23 2 , 
and  γ= | 〉 〈 |ˆ e r/24 2  are Lindblad operators describing the dissipative processes, and γ denotes the atomic decay 
rate. For the sake of convenience, we have assumed the Rydberg state | 〉r  can decay towards the two ground states 
| 〉g  and | 〉e  with equal spontaneous emission rate. The state φ| 〉 can act as the ideally final state to check the perfor-
mance of our scheme, thus we adopt the definition of population to assess the fidelity φ ρ φ= = 〈 | | 〉ˆF P t( ) . In 
Fig. 7, we plot the fidelity of the target state as a function of γ Ω/ 0 and the interaction time t with Ω′ Ω =/ 11 0 , 
Ω′ Ω =/ 12 0 , ∆ Ω =/ 201 0 , δ= ∆ − ∆ +U 2 1 .

In Fig. 7(a), we can see that the fidelity is immune to the spontaneous emission of atoms, and when we choose 
δ Ω = ./ 0 10 , ∆ Ω =/ 802 0  and γ Ω = ./ 0 010 , the fidelity remains 98.5%. Since the population of the state | 〉rr  is 
near to zero all the time, the spontaneous emission has little influence on the fidelity. Figure 7(b) shows a high 
fidelity 97.5% with δ Ω =/ 10 , α π= /4, ∆ Ω =/ 702 0  and γ Ω = ./ 0 010 . In addition, in Fig. 7(c), a high fidelity 
97.3% can be obtained when the parameters are chosen as δ Ω =/ 10 , ∆ Ω =/ 682 0 , and γ Ω = ./ 0 010 .
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In experiments, the ground-state antiblockade model can be realized in 87Rb atoms which are trapped in two 
tightly focused dipole traps21,42. The ground state | 〉g  corresponds to | = = 〉S F M5 , 1, 2F1/2  and the ground state 
| 〉e  corresponds to | = = 〉S F M5 , 2, 2F1/2 , the Rydberg state corresponds to | 〉 ≡ | = = 〉r D F M58 , 3, 3F3/2 , 
respectively. The atoms are excited to the Rydberg state by a two-photon transition, and the resulting order of 
magnitude of Rabi frequency Ω

′2  for atom 1 and the Rabi frequency Ω
′1  for atom 2 is about πΩ = × .2 6 80  MHz. 

The spontaneous emission rate from the Rydberg state is γ π= × .2 4 8 kHz. By substituting these values into the 
master equation, we find the fidelities of generating two-atom entanglement with the above three methods are all 
beyond 99%.

In summary, we have put forward an efficient scheme for the ground-state antiblockade of Rydberg atoms and 
prepare two-atom entangled state. Three kinds of pulses are exploited to obtain the maximally entangled state, 
and a high fidelity is achievable with the current experimental parameters. Most interestingly, this process is 
robust against the decoherence induced by spontaneous emission of atoms. We hope that our scheme could find 
some applications in the near future.

Methods
Calculation of effective coupling strength. From Eqs (1) to (2), the effective coupling strength calcu-
lated by the 2nd-order perturbation theory are:

Figure 7. The fidelity for the state φ| 〉 as a function of γ Ω/ 0 and interaction time t with Ω′ Ω =/ 11 0 , Ω′ Ω =/ 12 0 , 
∆ Ω =/ 201 0 , δ= ∆ − ∆ +U 2 1 , governed by the original Hamiltonian ĤI. (a) The parameters are chosen as 
δ Ω = ./ 0 10  and ∆ Ω =/ 802 0 . (b) The parameters are chosen as δ Ω =/ 10 , ∆ Ω =/ 702 0 , α π= /4, 

= Ωt 3000 /c c, = .T t0 2 c, and τ = . t0 04 c. (c) The parameters are chosen as δ Ω =/ 10 , ∆ Ω =/ 682 0 , 
= Ωt 3000 /c c, = .T t0 2 c, and τ = . t0 04 c.

Figure 6. (a) Temporal profile of the Rabi frequencies Ω Ωt( )/1 0 and Ω Ωt( )/2 0. (b) The populations of the states 
| 〉gg , | 〉ee  and φ| 〉 versus the interaction time t. Other parameters: Ω′ Ω = Ω′ Ω =/ / 11 0 2 0 , ∆ Ω =/ 201 0 , 
∆ Ω =/ 682 0 , = Ωt 1000 /c 0, = .T t0 12 c, and τ = . t0 1 c.
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Figure 8. Schematic view of eliminating the Stark shifts of the states | 〉gg  and | 〉ee  by introducing two auxiliary 
levels | 〉f1  and | 〉f2 .

Figure 9. Schematic view of atomic-level configuration for the generation of antisymmetric Bell state. | 〉r  is the 
Rydberg state, while | 〉g  and | 〉e  are two ground states. ∆rr denotes the RRI strength. For atom 1, the transition 
| 〉 ↔ | 〉g r  is driven by a classical laser field with Rabi frequency Ω1 and the transition | 〉 ↔ | 〉e r  is driven by a 
classical laser field with Rabi frequency Ω′2. For atom 2, the transition | 〉 ↔ | 〉g r  is driven by a classical laser field 
with Rabi frequency Ω2 and the transition | 〉 ↔ | 〉e r  is driven by a classical laser field with Rabi frequency Ω′1. 
∆1(2) represents the corresponding detuning parameter.
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Cancellation of ground-state Stark shifts. From Eqs (3) to (4), the Stark shifts of states | 〉gg  and | 〉ee  can 
be eliminated by introducing two auxiliary levels | 〉f1  and | 〉f2 , as shown in Fig. 8. The transition | 〉 | 〉 ↔ | 〉gg ee rr( )  
is driven by a another classical laser field with the Rabi frequency Ω Ω( )a b  with the detuning δ δ− + ′( ), thus, lead-
ing to the Stark shifts of states | 〉gg  and | 〉ee  are − Ω′ ∆ − Ω ∆( / / )1

2
2 1

2
1  and − Ω′ ∆ − Ω ∆( / / )2

2
2 2

2
1 , respectively. 

Therefore, the whole Stark shifts of states | 〉gg  and | 〉ee  can be eliminated.

Generation of antisymmetric Bell state. When we consider two identical atoms as shown in Fig. 9, the 
effective Hamiltonian can be obtained as
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Thus, we can also use this effective Hamiltonian to prepare the entangled state | 〉 − | 〉ge eg( )/ 2 .
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