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Metastasis is a complicated process through which tumor cells disseminate to distant
organs and adapt to novel tumor microenvironments. This multi-step cascade relies on
the accumulation of genetic and epigenetic alterations within the tumor cells as well as the
surrounding non-tumor stromal cells. Endothelial cells constitute a major player in
promoting metastasis formation either by inducing the growth of tumor cells or by
directing them towards dissemination in the blood or lymph. In fact, the direct and
indirect interactions between tumor and endothelial cells were shown to activate several
mechanisms allowing cancer cells’ invasion and extravasation. On the other side,
gastrointestinal cancer development was shown to be associated with the disruption of
the gut microbiome. While several proposed mechanisms have been investigated in this
regard, gut and tumor-associated microbiota were shown to impact the gut endothelial
barrier, increasing the dissemination of bacteria through the systemic circulation. This
bacterial dislocation allows the formation of an inflammatory premetastatic niche in the
distant organs promoting the metastatic cascade of primary tumors. In this review, we
discuss the role of the endothelial cells in the metastatic cascade of tumors. We will focus
on the role of the gut vascular barrier in the regulation metastasis. We will also discuss the
interaction between this vascular barrier and the gut microbiota enhancing the process of
metastasis. In addition, we will try to elucidate the different mechanisms through which this
bacterial dislocation prepares the favorable metastatic niche at distant organs allowing the
dissemination and successful deposition of tumor cells in the new microenvironments.
Finally, and given the promising results of the studies combining immune checkpoint
inhibitors with either microbiota alterations or anti-angiogenic therapy in many types of
cancer, we will elaborate in this review the complex interaction between these 3 factors
and their possible therapeutic combination to optimize response to treatment.
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INTRODUCTION

Throughout the course of history, cancer has proven to be a
challenging and enigmatic disease that has burdened the human
species (1). However, in the last three decades, our
understanding of cancer has exponentially evolved regarding
the nature of this malicious disease. Cancer is distinguished by a
constant unregulated cellular proliferation which is mostly due
to the activation of oncogenes and/or the inactivation of tumor
suppressor genes (2). In their pivotal review ‘‘hallmarks of
cancer’’, Hanahan and Weinberg aimed to establish the
intricate nature of cancer into six main hallmarks: immortality,
resistance to apoptosis, sustained angiogenesis, abnormal
growth, tissue invasion and metastasis (3).

Metastasis is an intricate, stepwise process requiring the
separation of tumor cells from the initial tumor site, the
relocation to nearby structures and the migration via
hematogenous spread to distant organs. Following the
colonization of distant organs, cancer cells undergo proliferation
and produce secondary tumors (4). Moreover, metastasis does not
occur randomly; as such, colon cancer usually metastasizes to the
liver, whereas prostate cancer metastasizes to the bones. However,
few organs including the liver, lung and bone are common
metastatic sites (5).

The most common types of gastrointestinal (GI) tumors
are esophageal, gastric, colorectal, pancreatic and liver cancers
(6). Less common types include neuroendocrine, anal,
gallbladder and gastrointestinal stromal tumors (GIST) (7–9).
A major factor implicated in cancer development is the tumor
microenvironment (TME). TME plays a critical role in
carcinogenesis. It incorporates diverse cellular components
including proliferating cancerous, stromal, and endothelial cells
(ECs); as well as fibroblasts and immune cells which are part of
the adaptive immune system, such as lymphocytes, antigen
presenting cells (APC), and B cells. In addition, cells of the
innate immunity have been shown to partake in the TME, this
includes monocytes, neutrophils, and natural killer cells (10–12).
This interaction between cancerous and non-cancerous cells
within the TME correlates with tumorigenesis (13). The non-
cancerous cells have been shown to promote unregulated growth
of tumor cells, whereas cancerous cells of the TME were involved
in tissue invasion and metastasis (14, 15).

Another important factor involved in cancer progression and
metastasis is the pre-metastatic niche (PMN). PMN refers to the
microenvironment that facilitates tumor cell invasion and
colonization of distant organ sites prior to the occurrence of
metastatic spread (16). PMN emergence is a gradual process
deriving from factors produced by tumor cells, including
extracellular vesicles (EVs) and tumor-derived secreted factors
(TDSFs) (17). These factors increase vascular permeability,
modify extracellular matrix (ECM) and stromal cells, and alter
the immune system (18–20).

Moreover, numerous studies have suggested a link between
gut microbiota (GM) and the development of GI tumors (21, 22),
especially concerning colorectal cancer (CRC) in which dysbiosis
was associated with cancer progression (23). In addition, ECs
appeared to play a major role in promoting cancer metastasis
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either by inducing tumor growth or by directing malignant cells
towards blood or lymph for dissemination (24).

In this review, there will be exploration of the interaction
between endothelial cells, gut vascular barrier, and the gut
microbiota in the regulation of metastatic cascade of GI
tumors and their enhancing effects. Moreover, the review will
attempt to explain the different mechanisms through which
bacterial dislocation promotes a favorable metastatic niche in
distant organs allowing for dissemination and successful
deposition of tumor cells in new microenvironments. To
conclude, promising results found in previous studies that
combined immune checkpoint inhibitors with either
microbiota alterations or anti-angiogenic therapy give rise to a
noteworthy discussion about their endothelial interactions and
possible therapeutic combinations that potentially optimize
treatment response in many cancers.
THE PRE-METASTATIC NICHE

Over the years, different theories have been proposed to explain
the possible mechanisms behind metastasis. In 1889, the “seed
and soil’ hypothesis was first introduced by Stephen Paget (25).
The English surgeon noticed a non-random pattern of metastasis
in the cancer of the breast. He also noticed a predominance of
secondary growth in specific organs over others (25). Since then,
Paget’s hypothesis has been challenged by many researchers and
endorsed by others, with many questions remaining unanswered.
In fact, in 1970, Isaiah Fidler demonstrated that despite the role
of blood flow in metastasis, the latter can only occur at specific
organ sites (26). It was also discovered that this organotropism in
metastasis is independent of the vascular anatomy and/or the
rate of blood flow to each organ (27). Moreover, it was
determined that the sites of secondary seeding are majorly
influenced by the microenvironment of the host tissue, in
addition to the characteristics of the malignant cells (28).

The “seed and Soil” hypothesis established a solid ground that
supported the emergence of the metastatic niche concept (29,
30). This concept suggests that circulating tumor cells (CTCs)
from the circulatory system exit the circulation, and invade
secondary organ sites to become disseminated tumor cells
(DTCs) (29) . This new host organ is ca l led “ the
metastatic niche”.

In 2005, a study by Kaplan R. N. et al. presented the first proof
of the existence of PMNs (31). Following injection of specific
malignant cells of known metastatic potential in mice, analysis
was conducted to monitor the fate of specific Bone marrow-
derived cells (BMDCs). Through this study, it was revealed that
BMDCs colonize the future metastatic sites before being invaded
by the tumor cells (31). Hereafter, PMNs are pre-established
microenvironments in distant organs, preconditioned at least in
part by the primary tumors to promote the survival of CTCs
before their arrival at these sites (18).

The formation of PMNs is complex and multifactorial. It is
the net result of different tumor-dependent and tumor-
independent pathological and physiological processes (30, 32).
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Different experimental studies were directed to understand these
mechanisms of interactions. For this purpose, mouse models of
experimental metastasis in organs like the liver, lungs, bone and
lymph nodes were thoroughly investigated (18).

It is now established that the formation of PMNs starts with
local changes: vascular leakiness and hyperpermeability being the
first recognized step. This increase in permeability of blood
vessels occurs in the sites of PMNs, and is induced by different
factors (33, 34). Tumor-secreted factors like EGF receptor
(EGFR) ligand epiregulin, cyclooxygenase 2 (COX2), members
of the matrix metalloproteinase family (MMP) were
demonstrated to play a role in the regulation and dysregulation
of vascular barrier integrity in PMNs (35). Other factors, like
transforming growth factor-b (TGFb) act by inducing the
expression of angiopoietin like 4 (ANGPTL4), consequently
destabilizing ECs in future metastatic sites (36).

Furthermore, other stromal cell types are also affected by the
action of the primary tumor. For example, fibroblasts induce the
remodelling of the extracellular matrix (ECM) of PMNs (37).
This remodelling is partly achieved by fibroblast-secreted
enzymes that alter the existing ECM structure, and on the
other part by the deposition of new ECM components (37). It
was also found that, depending on the tumor cell type, specific
S100 family members prompt the development of pro-
inflammatory microenvironments that contribute to the
formation of PMNs (38). For instance, breast cancer derived
S100A4 cells resulted in the upregulation of Serum Amyloid A
(SAA) proteins, like SAA1 and SAA2, which improved tumor
cell adhesion to fibronectin and the recruitment of BMDCs to
PMNs (39). Additionally, tissue-resident macrophages also play
a role in supporting PMNs (40). Upon their activation by the
primary breast tumor, pulmonary alveolar macrophages exert
their effect by inhibiting the tumoricidal T helper 1 (TH1) cells,
and tackling the proliferation and maturation of antigen-
presenting dendrit ic cel ls , thereby contributing to
immunosuppression and encouraging metastasis (40).

It is also important to further highlight on the role of other
factors in the preparation of PMNs through ECM remodelling.
After their accumulation in pre-metastatic organs such as the
liver and the lungs, fibronectin enables the adhesion of BMDCs
in these sites, hence, providing additional support for future
metastasis (41). Additionally, Periostin, a protein secreted by
stromal fibroblasts with a−smooth muscle actin and vimentin,
leads to PMN formation through different mechanisms (42).
First, it interacts intracellularly with ECM molecules, leading to
the infiltration of metastasis-initiating cells through stimulating
WNT signaling (42). Next, it is deposited outside the cell where it
increases cell motility (42). Moreover, the immunosuppressive
function of myeloid-derived suppressor cells (MDSCs) in the
pre-metastatic lung of breast cancer was found to be affected by
Periostin expression (43). Versican is another important factor
implicated in the evolution of PMNs (44). It is a proteoglycan
that can be derived from tumor cells, causing an emergence of an
inflammatory microenvironment in the pre-metastatic lung (44).
Parallelly, Versican can also be originated from CD11b+Ly6Chi
myeloid cell present in the pre-metastatic lung (45). Finally, it
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was also proposed that the change in physical properties induced
by ECM remodelling has a significant impact on disease
progression (37, 46). As a matter of fact, collagen type I and
type IV crosslinking, induced by a class of ECM-shaping
enzymes, the lysyl oxidase family, was found to enhance the
stiffness of tissues, thereby directly increasing tumor cell seeding,
thus, promoting metastasis (37).
ROLE OF ENDOTHELIAL CELLS
IN METASTASIS

Intravasation and extravasation are two fundamental principles
of the metastasis cascade (47). They depend on the ability of
cancer cells to cross the endothelial barrier, although
approaching it from opposite sides (47). In other words, a
disturbance of the endothelial junctions must occur so that
malignant cells can disseminate into the bloodstream and
invade distant organs. As such, it was proposed that altered
ECs directly influence cancer inflammation and metastasis (48).

Intravasation is the act during which cancer cells can exit
from the tissues to the circulation (48). It starts with tumor-
induced angiogenesis, where new blood vessels with weak cell-
cell junctions are formed (49). Moreover, different tumor-
generated factors interact with ECs, affecting their function
and promoting malignant dissemination. For example, TGFb
and vascular endothelial growth factor (VEGF) alter the
endothelial barrier by increasing its permeability, and
facilitating cancer cells’ intravasation (50). Also, the membrane
MMP, expressed on breast cancer cells, act by disrupting the
integrity of vessels surrounding the primary tumor, hence
helping in the intravasation of malignant breast cells and
assisting in their metastasis to the lungs (51). Likewise,
invasive ductal carcinoma of the human breast was shown to
express a disintegrin and metalloproteinase 12 (ADAM12) (52).
This protein induces the shedding of ECs specific proteins
(vascular endothelial cadherin and angioprotein 1 receptor
TIE2) which also was suggested to impact the coherence of
endothel ia l junct ions , therefore helping in tumor
intravasation (52).

Extravasation is when cancer cells leave the bloodstream to
establish metastasis in different organ sites (47). The first step is
the attachment and adhesion of disseminated tumor cells to ECs,
and it usually take place in small capillaries (53). To extravasate,
cancer cells must possess ligands and receptors that are
compatible with those of ECs (eg. Integrins, cadherins,
selectins, CD44 and immunoglobulin (Ig) superfamily
receptors etc.) (47). Furthermore, chemokines secreted by
stromal cells of distant organs play a role, not only in
attracting cancer cells, but also in their adhesion and migration
through ECs (54). In fact, an in vitro stimulation of CXC-
chemokine ligand 12 contributed to the adhesion of prostate
cancer cells to ECs, thereby increasing their transendothelial
migration (TEM) (55). It was also proposed that altered
endothelial barrier in the hyperpermeable PMN contribute to
the process of extravasation (33). A study by Roblek et al.
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elaborated on the role of CCL2 in the metastatic process (56).
Evidence was provided that CCL2 stimulation of endothelial cells
altered the VE-cadherin/b-catenin complex, resulting in the
loosening of the vascular endothelial barrier, and hence
facilitating dissemination of cancer cells (56).

On the other hand, depending on their status, ECs may play
an inhibitory or stimulating role in cancer progression. Factors
secreted from quiescent ECs regulate inflammatory signaling and
limit disease aggressiveness, while those released from
dysfunctional ECs induce pro-inflammatory signaling, thus
aggravating invasiveness and inducing metastasis (48). For
example, Interleukin-6 secretion from ECs is increased when
their integrity is disturbed, consequently stimulating metastasis
(57). In contrast, the role of quiescent ECs in controlling
inflammation was noted through balanced pathways of
inhibitions, through IkBa for example, and activations,
through NF-kB P65, leading to the inhibition of cancer
progression and metastasis (57).
GUT MICROBIOTA AND IMPLICATION
IN METASTASIS

While the extent of research discussing the role of the microbiota
in cancer has been exponentially increasing, the exact
relationship between this microbial world and the pathogenesis
of cancer remains not fully understood, in part because of the
dual conflicting role in the promotion and inhibition of
carcinogenesis (58, 59). However, it has been confirmed that
the GM plays an essential role in the pathogenesis of several
gastrointestinal cancers (60, 61). For example,Helicobacter pylori
infection has been directly implicated in the development of
gastric cancer (62). Moreover, Fusobacterium nucleatum was also
associated with the development of colorectal cancer, and their
DNA has been detected in the colorectal tumor cells (63). In fact,
microbial pathogens have been shown to induce alterations in
the host microenvironment that favor the transition of normal
healthy cells into neoplastic cells (64). Several mechanisms have
been proposed in this regard. These include but are not limited to
dysbiosis, direct and indirect interactions with the immune
system, induction of chronic inflammation, and molecular
mimicry (61). Through those multiple mechanisms, the GM
are able to influence the balance between immunosurveillance
and carcinogenesis, favoring the development of neoplasms in
multiple areas of the body, including the gastrointestinal
tract (61).

In addition, the GM has been shown to directly and indirectly
influence the ECs function and the process of angiogenesis and
consequently facilitate the spread of neoplastic cells (65). They
are known to release multiple metabolites that can promote
angiogenesis (Figure 1). To start with, lipopolysaccharides (LPS)
released by the gut microbial pathogens are able to induce the
upregulation and activation of the VEGF (65). A study on
pancreatic cancer has shown that the expression of VEGF and
Toll-like receptor 4 (TLR-4) has been positively correlated with
the micro-vessel density and the pro-angiogenic activity within
Frontiers in Oncology | www.frontiersin.org 4
the tumor microenvironment (TME), a process involving the
activation of the PI3K/AKT pathway (66). In addition,
vacuolating toxin A, one of the oncologic virulence factors
produced by H. pylori, was shown to induce vacuolization and
autophagy of gastric epithelial cells through several mechanisms,
including the induction of VEGF secretion leading to
angiogenesis and consequently carcinogenesis (67, 68). In fact,
VEGF is well known to induce angiogenesis by exerting multiple
effects on ECs (69, 70). First of all, VEGF has been shown to
induce in-vitro ECs to invade the underlying matrix and form
capillary-like tubules (70). Moreover, it was involved in
induction of anti-apoptotic signals in ECs, allowing the
survival of immature fragile vasculature (71). In addition,
VEGF plays an essential role in the establishment of a vascular
extracellular matrix allowing the growth of ECs (72). This is
possible through the VEGF-induced increase in vascular
permeability, allowing the leakage of proteins and other
metabolites involved in the establishment of a nourishing
extracellular matrix (72). Add to that the ability of VEGF to
induce chemotaxis as well as the expression of collagenases and
tissue plasminogen activator by ECs (70). As such, by inducing
VEGF production, and through the mechanisms mentioned
above, microbial metabolites including LPS and vacuolating
toxin A will contribute to the increased formation and
permeability of the vessels around the tumor cells favoring
their metastatic dislocation.

In addition, lipoteichoic acid (LCA), another bacterial
metabolite, has been shown to stimulate angiogenesis in
colorectal cancer cells lines favoring their metastatic spread
(73). This is possible through the simultaneous activation of
extracellular signal-regulated kinases (ERK) 1/2 and the
inhibition of the phosphorylation of the Signal transducer and
activator of transcription (STAT) 3, increasing the expression of
interleukin (IL) 8 (73). IL-8 is a potent pro-angiogenic
chemokine and known to be highly expressed in colorectal
cancer (74). Binding of IL-8 to CXCR-1 and CXCR-2 on ECs
directly enhances ECs proliferation, MMP production, and
consequently angiogenesis (75). In particular, by binding to
CXCR-2 on human intestinal microvascular ECs, IL-8
increased their proliferation, chemotaxis and rapid stress fiber
production (74). IL-8 was also shown to be elevated in gastric
cancer, and its levels were higher in H. pylori infected as
compared to non-infected samples (76). As such, targeting
microbiota can potentially influence the angiogenic and
metastatic activity of intestinal cancers, including colorectal
cancer in particular. This is possible by decreasing the
production of some bacterial metabolites such as LCA that can
favor the metastasis of neoplastic cells through the mechanisms
mentioned above.

COX-2 is another pro-inflammatory angiogenic marker that
has been extensively studied in gastric cancer (77, 78). H. pylori
has been shown to activate COX-2 by inducing DNA
methylation/demethylation events, allowing tumor invasion
and lymph node metastasis (77). Cytotoxin-associated genes
(cag) were also associated with H. Pylori induced metastasis
(79). In fact, it was shown that biliary cells expression of a5b1
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integrin, a promotor of metastasis, was associated with the
combined expression of cagA, cagL and cag pathogenicity
island (cagPAI) (80, 81). Other studies also concluded that
H. pylori can increase the fragility of ECs within the gastric
cancer vessels through the secretion of biologically active
proteins, including heat shock protein (HSP) 70 inhibitors
(78). By doing so, H. pylori indirectly facilitates the spread
of gastric cancer cells by increasing the fragility of the
surrounding vasculature.

Moreover, in vitro studies have also proved the ability of GM
to induce the activation of ECs leading to a specific angiogenic
response in the gut (82). For instance, in a study by Schirbel et al,
bacterial toxins specific for TLR-2/6 and 4 as well as nucleotide-
binding oligomerization domain NOD 1 and 2 were able to
induce proliferation, migration and tube formation by human
intestinal microvascular ECs (HIMEC) (82). Although not yet
demonstrated in vivo, those mechanisms may also be allowing
direct influence of the GM on the tumor-associated vasculature
that constitute an essential player in the metastatic spread
of tumors.
Frontiers in Oncology | www.frontiersin.org 5
On the other side, not all microbial metabolites were
demonstrated to exacerbate the metastatic profile of cancers
through a direct influence on the permeability, formation and
proliferations of vessels. In fact, specific microbes were shown to
have inhibitory effects on ECs’ proliferation, decreasing
consequently angiogenesis and gastrointestinal cancers’
progression. The probiotic Prohep, made of a mixture of
Lactobacillus rhamnosus GG, E. coli Nissle 1917, and heat
inactivated VSL#3 (probiotic medical food [1:1:1]), was proven
to decrease the extent of angiogenesis and inflammation in
hepatocellular carcinoma (83). It allowed a shifting of the gut
microbial population to specific species, including Prevotella and
Oscillibacter (83). This leads to downregulation of Th17,
decreasing therefore the production of IL-17, an angiogenic
factor (83). In addition, enterotoxigenic E. coli (ETEC)
produces a heat stable enterotoxin, that in turn activates a
cGMP-dependent signaling pathway, leading to a decrease
in VEGF and vascular cell adhesion molecule-1 (VCAM-1),
both of which being closely related to angiogenesis and
metastasis (84–86). Additional in vitro studies have also
FIGURE 1 | Role of gut microbiota in promoting angiogenesis. Gut microbiota secretes several molecules and chemokines in turn can induce the production of pro-
angiogenic factors, allowing increased tumor angiogenesis and consequently tumor growth and metastasis. LPS, Lipopolysaccharide; VAC Toxin A, Vacuolating
Toxin A; COX-2, Cyclooxygenase 2; LTA, Lipoteichoic Acid; IL-8, Interleukin 8.
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emphasized the inhibitory influence of microbes on
angiogenesis. Pseudomonas aeruginosa secretes azurin and a
corresponding peptide P28 that can penetrate human umbilical
veins ECs (HUVECS), leading to the inhibition of VEGF- and
basic fibroblast growth factor (FGF)-induced migration, tube
formation and neo angiogenesis in several xenograft models (87).
Bacillus anthracis was also involved in the inhibition of
angiogenesis by blocking several pro-angiogenic pathways,
including downregulation of VEGF and IL-8 (88, 89). As such,
and through their inhibitory effects on some angiogenic
molecules, some GM-associated metabolites can decrease the
permeability and proliferation of blood vessels around the
tumors decreasing their metastatic potential.

The relationship between bacteria and their human host can
be pathogenic, neutral or beneficial (90). It may affect nutrients
metabolism, protect from pathogen colonization, and
manipulate immune response of host (91–93). A spectrum of
diseases including cancer and immune disorders have been
associated with gut microbiome disruption (94, 95). The
intercellular communication between bacteria and their host is
done through soluble products and membrane vesicles, known as
bacterial extracellular vesicles (BEV) (96, 97). These vesicles
carry enzymes, nucleic acids and toxins to be disseminated
into the extracellular environment (98, 99). BEV are
heterogeneous with different subtypes that vary based on their
parent bacterium, structure, size, biological content, function,
and formation paths and environmental growth conditions.
Gram-negative and Gram-positive bacteria have different BEV
structure and function as they follow different vesicle route
formation. Gram-positive bacteria produce cytoplasmic
membrane vesicles through bubbling cell death triggered by
endolysin (100, 101). Gram-negative bacteria form different
types of membrane vesicles that include outer membrane
vesicles (OMV), outer-inner membrane vesicles (OIMV) and
explosive outer membrane vesicles (EOMV). The formation of
these vesicles happens through 2 pathways: the blebbing of outer
membrane and the explosive cell lysis (97, 100).

BEV production rate and preference pathway are influenced
by many factors including environmental composition, oxygen
availability, temperature, chemical induced gene mutation and
antibiotics exposure (100, 102). The membrane of gram negative
and gram-positive BEVmirrors the membrane of parent bacteria
from which it derived. The former contains lipopolysaccharides
that engage with TLR4, and the latter shows surface lipoteichoic
acids that interact with TLR2. OIMV, EOMV and CMV subtypes
contain cytoplasmic (virulence factors, RNA and DNA) and
membrane component (97, 100, 101).

BEVs are able to interact with host cells through engaging
their microbe associated molecular pattern (MAMPs) or
pathogen associated molecular patterns (PAMPs) with the host
pattern recognition receptors (PRR) present on epithelial cells of
mucosal surfaces and immune cells (103). The interaction
between MAMPs/PAMPs and PRR can promote protective
immunity, immune tolerance or even promote host pathology.
It all depends on the parental bacterium from which the BEV was
derived. For example, BEV originating from non-commensal
Frontiers in Oncology | www.frontiersin.org 6
bacteria may contribute to a worsening infection and may as well
lead to sepsis (104–106). On the other hand, BEV originating
from commensal bacteria may induce immunologic tolerance,
hence provide protection from severe infections (107, 108).

Recently there has been a growing interest and consensus on
the ability of BEV present in the gut lumen and derived from GM
to bypass the epithelium and interact with macrophages,
neutrophils and dendritic cells. Consequently, these
interactions may encourage the access of BEV into the
systemic circulation, leading to bacterial translocation and
possible dissemination to the liver, lung and even to the brain
(97, 109, 110). Additionally, the presence of BEV in the systemic
circulation may also provoke different metabolic and
immunologic responses in these organs (97, 109, 110). Several
mechanisms have been described concerning BEV access to the
systemic circulation. This access can occur through
compromised integrity and function of intestinal epithelial
barrier that changes its permeability by the action of different
factors like diabetes, infection, inflammation, diet and caloric
restriction (111). It can also be the result of active Trans-cellular
migration through the non-compromised integrity of gut
epithelium, or by the aid of dendritic cells and M-cells (112–114).

Tulkens et al. conducted a study where they were able to show
the presence of circulating BEV probably originating from the
gut or form microbial niches in other sites (111). This was done
through detecting elevated levels of lipopolysaccharides positive
BEVs in the plasma of patients with intestinal mucositis,
inflammatory bowel disease and HIV who have compromised
gut epithelial integrity due to gut microbiome disruption, known
as microbial dysbiosis, compared to healthy individuals (111).
The levels of circulating BEV positively correlated with plasma
Zonulin level. The latter is responsible for the disassembly of the
tight junction between gut epithelial cells by inducing
phosphorylation of zonula occludens proteins, leading to an
increase in intestinal barrier permeability, causing BEV
translocation (111).

On the other hand, Jones et al. demonstrated that this
translocation can as well happen in healthy individuals with
intact epithelial barrier (115). The study described oral
administration of fluorescent labeled BEV to mice, and a close
follow-up to BEV distribution throughout the body. Most of
orally ingested labeled BEV were found in the Gastrointestinal
(GI) tract, whereas the rest were able to access the blood and
lymphatic circulation, and reach different organ sites such as the
liver, the heart and the lungs. This study was proof that BEV may
cross cellular barriers in healthy individuals with intact
epithelium, possibly by active trans-cellular migration to get
access to distant organs (115). Furthermore, other studies
reported the presence of nucleic acid from bacteria in the brain
(116). This led to a speculation that these findings may be related
to the presence of BEV in the systemic circulation and its ability
to cross any host barrier including the blood brain barrier. Also,
it was proposed that these bacterial nucleic acids may have been
produced by brain resident bacteria (116).

Although the disruption of the gut microbiome was
demonstrated to play a role in the GI tract oncogenesis and
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tumor progression, further studies are needed to better
understand the mechanism behind it, how BEV affects
different organs in healthy and sick individuals, and how it
could influence the disease response to chemotherapy and
immunotherapy (105, 117, 118).
DISCUSSION

Complex Interaction Between GM,
Checkpoints Inhibitors, and ECs and Their
Possible Combination for Treatment
GM and CPIs
Immunotherapy, mainly through CPIs, constitutes a major
advancement in the world of oncology (119). They mainly
target the immune checkpoints like the programmed cell death
1 (PD-1), PD ligand 1 (PD-L1), and cytotoxic T-cell lymphocyte-
associated protein (CTLA-4) (120). Their function lies in strictly
controlling the T-cell immune system by manipulating the
stimulatory and inhibitory proteins (121). Consequently, they
contribute to the regulation of different systems including the
activation of the cytotoxic T-lymphocyte, self-tolerance
maintenance and autoimmunity prevention, as well as fine-
tuning the duration and the intensity of the immune response
to be able to avoid damaging the tissues in the period of
inflammation (122–124). Cancerous cells tend to manipulate
these checkpoints to be able to overcome the immune system and
spread through the body (125). Multiple CPIs have been FDA
approved throughout the time and play an important role,
compared with chemotherapy, in prolonging the overall
survival (OS) of patients with different malignancies within an
accepted safety profile (122). With all the promising results of the
CPIs, their success rate is only limited to a small population,
which makes it a domain of interest to investigate the factors
influencing the response in-order to be able to select the patients
that could benefit from this treatment and consequently
maximize its effects (125, 126).

One component identified is the high tumor burden (TMB), a
crucial biomarker that could indicate enhanced response rate to
CPIs (127). Adding to it the development in the genetic field
where the identification of the defective DNA repair mechanism
as well as the microsatellite instability burden (MSI) can increase
the likelihood of benefit from immunotherapy (128).
Frontiers in Oncology | www.frontiersin.org 7
Furthermore, the tumor microenvironment can also contribute
to the response to CPIs therapy, and that is by its ability to
interfere with the specific and innate immune response,
consequently influencing the growth of the tumor cells (129).
The continuous changes in the energy metabolism, induced by
cancer cells, affect immune cells in the TME. At some point,
cancer cells consume the nutrients in the media and thus prevent
effector T-cells activation. On the contrary, they can stimulate
the regulatory immune cells through limiting their nutrition and
thus resulting in CPIs resistance (130, 131). Other factors can
include smoking, gender, BMI where all of these can alter the OS
and progression free survival (PFS) of cancer patients (132–134).
Recently, the GM has been emerging as an important element to
study in evaluating the response to CPIs (135). With its role in
immunosurveillance, the GM can positively influence the efficacy
of CPIs (136–138). Multiple studies went on in the aim of
proving this relationship between GM and CPIs (Table 1).

Based on the provided evidence, it is now established that GM
alter the response to CPIs, with the majority of studies
confirming that the more diverse the GM the better the
response. Nonetheless, it is important to establish a profound
standardized profile to follow in this domain.

How is a local intestinal immune response initiated? Well, it
usually starts by the recognition of the PAMPS through PRR like
TLRs and Nucleoside-binding oligomeric domain proteins (NODs)
(142). These PAMPs, through their interaction with PRRs, induce
the growth of dendritic cells (DCs). Consequently, lymphocytes
become activated and recruited to the site, augmenting the
competence of antigen presentation (142). Bifidobacteria can
perform the same job of promoting the growth of DCs
maturation, but this requires a small concentration of antigens
with higher sensitivity (143). DCs in their turn tend to boost the
IFN-g levels and consequently leads to the multiplication of specific
CD8+ T cells boosting the antitumor effects with CPIs (144, 145).
Furthermore, the efficacy of anti-CTLA-4 is enhanced through B.
fragilis which tends to activate Th1 cells and their cross reactivity
with bacterial antigens and new tumor antigens (146). It was also
noted that the presence of B. fragilis and B. cepacia helped in
decreasing the side effects of anti-CTLA-4 monoclonal Antibodies
(147). This is explained by the capacity of B. Fragilis to enhance the
proliferation of Treg as well as their ability to induce the conversion
of CD4+ T cells to Tregs (148). In addition, Akkermansia
muciniphila and Enterococcus hirae are linked to the presence of
TABLE 1 | Studies evaluating the relationship between GM and CPIs.

Study Cancer type GM status Response to CPIs

Frankel et al.
(138)

Metastatic melanoma Presence of Bacteroides caccae Increased response

Chaput et al.
(139)

Enriched with Faecalibacterium and other Fimicutes Increased OS and PFS

Salgia et al. (140) Enhanced with Ruminococcus obeum and Roseburia intestinalis Poor response
Non-small-cell lung cancer
(NSCLC)

Presence of Lactobacilli and Clostridia Increase in the time to
treatment failure

Matson et al.
(141)

Enriched with Alistipes putredinis, Bifidobacterium Longum and Prevotella
copri

Response to PD-1 blockade

Enriched with Ruminococcus species Attenuated response
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CD4+ central memory T cells (TCMs) in tumors which express C-X-
C motif chemokine receptor 3 (CXCR3)/C-C motif chemokine
receptor 9 (CCR9) (137, 149). The presence of these chemokines
caused a prolongation of PFS and OS in advanced malignancies
(150). Thus, through the activation of CD4+ T and CD8+ T in
response to cross-reactivity of bacterial antigens, T cell employ anti-
tumor effects (151). Moreover, intestinal Faecalibacterium also
managed to induce DC maturation and consequently causing
proliferation of CD4+ or CD8+ T cells enhancing the blockage of
PD-1 (152).

GM and ECs
The endothelium is very important in the maintenance of
homeostasis of the cardiovascular system as well as the
functioning of the whole body (153, 154). It is protective
against elevated blood pressures as well as atherosclerosis and
it plays a crucial role in supporting the blood vessel as a barrier
protecting the surrounding tissues from leukocytic infiltration
and inflammatory processes (153, 154). The ECs are important
in maintaining the physiological condition of the human system
and that is by the production and release of different
antiregulatory and anti-aggregatory mediators (153, 154).

The GM is made of different bacteria, protozoa, archaea, viruses
and fungi, and it functions through a system of symbiosis among
each other and with the human body (155). It is crucial for different
human physiological conditions including digestion,
immunomodulation, as well as cardiovascular system
performance. Similarly, it influences different pathological
conditions (155).

Gram-positive Firmicutes, Gram-negative Bacteroidetes, and
Gram-positive Actinobacteria constitutes the healthy GM and
their dysregulation, known as dysbiosis, is what leads to different
gastrointestinal diseases like inflammatory bowel disease (IBD) and
colorectal cancer (156). Dysbiosis can also contribute to different
conditions like obesity, allergies, diabetes mellitus, and
cardiovascular diseases (CVD) (157–159). After studying GM in
CVD patients, it was noticed that patients with CVD have reduction
in the beneficial bacterial diversity suggesting a direct link between
both (160). GM contributes to the modulation of the immune
system by altering the functionality of the neutrophils as well as T-
cell differentiation into Th1, Th2, and Th17 or Treg (161).
Moreover, through the fermentation of complex carbohydrates,
GM secretes short-chain fatty acids (SCFAs) that cross the intestinal
epithelium and alter the immune response (162). Thus, the balance
between the GM institution and their metabolism was an approach
to study in-order to reverse diet- and environment-induced vascular
dysfunction (159).

GM is involved in the formation of different metabolites:

1. Trimethylamine N oxide (TMAO), a result of the oxidation
of the trimethylamine (TMA), is released from the digestion
of dietary TMA (163). TMAO is pro-atherogenic, it increases
platelets aggregation and consequently increases the risk of
thrombosis and strokes (164).

2. Uremic toxins are the results of amino acid breakdown by the
GM. In addition, toxins as indoxyl sulfate, indoxyl
Frontiers in Oncology | www.frontiersin.org 8
glucuronide, indoleacetic acid, p-cresyl sulfate, p-cresyl
glucuronide, phenyl sulfate , phenyl glucuronide,
phenylacetic acid, and hippuric acid form through aromatic
amino acid breakdown by the GM (165). In ECs, indoxyl
sulfate activates NF-kB signaling pathway, upregulating
ICAM-1 and monocyte chemotactic protein-1 (MCP-1)
(166). In addition, indoxyl sulfate inhibits Nitric oxide
synthesis and up-regulates reactive oxygen species (ROS),
thereby contributing to endothelial dysfunction and
atherosclerosis (167).

3. SCFA are results of bacterial, mainly Lactobacillus and
Bifidobacterium, fermentation of carbohydrates (168). They
are known for their role in increasing blood pressure. A
byproduct of SCFA synthesis is butyric acid, produced
through two different mechanisms: A- using the enzymes
phosphotransbutyrylase and butyrate kinase (e.g.,
Coprococcus species) in order to convert butyryl-CoA into
butyrate, B- butyryl-CoA/acetate CoA-transferase (e.g.,
Faecalibacterium, Eubacterium, and Roseburia) tend to
convert butyryl-CoA into butyric acid (169–171). Sodium
butyrate is also investigated for its influence on angiogenesis
(172). Low levels of sodium butyrate stimulate angiogenesis
and it stimulate up regulation of VEGFR and consequently
the post receptor signaling pathway (172, 173). Thus,
regulation of SCFA metabolites, such as butyrate and
propionate, alter the host immune system through inducing
the differentiation of Tregs (Figure 2) (174). VEGFR hence
stimulate the angiogenesis of tumoral cells as well and here
comes the role of anti-VEGFR in enhancing the immune
system through the up regulation of CD8 (Figure 2) (174).

4. Gaseous metabolites include:
4.1- Hydrogen Sulfide (H2S): Multiple studies have proven
the role of H2S in the regulation of the circulatory system
(175). In our gut, the dominant bacteria as Desulfovibrio (D.
piger, D. desulfuricans), Desulfobacter, Desulfobulbus, and
Desulfotomaculum function as sulfate reducing agents. They
produce H2S through a non-enzymatic course by using two
substrates: a sulfate and an electron donor for the sulfate
reduction (175). Other enzymatic reactions can occur
through cysteine desulfhydrase causing the conversion of
cysteine into H2S, pyruvate, and ammonia through several
anaerobic bacterial strains (E. coli, Salmonella enterica,
Clostridia, and Enterobacter aerogenes) (175). A 3rd

technique in H2S production is through the sulfite
reduction that can take place in the presence of E. coli,
Sa lmone l l a , Ente robac t e r , Kleb s i e l l a , Bac i l l u s ,
Staphylococcus, Corynebacterium, and Rhodococcus (175).
H2S highly contributes to the vasodilation of the vessels,
therefore to the decrease of blood pressure and maintenance
of homeostasis (176).
4.2- Nitric oxide (NO): GM bacteria like Lactobacillus and
Bifidobacterium help in the production of NO. Other bacteria
like Desulfovibrio vulgaris converts it into nitrates. NO is
important in vasodilation, but elevated concentrations of NO,
produced from induction of the inducible isoform iNOS, can
react with oxygen radicals, consequently causing further
May 2022 | Volume 12 | Article 804983
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deterioration in infection-related conditions such as in septic
shock or hypotension (177).
4.3- Carbone monoxide (CO): Produced through the
breakdown of heme with the help of the enzyme heme
oxygenase (HO) into biliverdin, ferrous iron, and CO. We
have two types of HO, one mainly expressed by the Gut
mucosa, which is the inducible HO (HO-1) and the second
known as constitutive HO (HO-2) (178). Similarly, CO exerts
a vasodilative effect on ECs leading to cardiac protection (179).

5. Xenobiotic metabolites: GM contributes to the xenobiotic
transformation. Polyphenols are diet components that
represent examples of xenobiotic. They are mainly found in
plants and algae, and used in cardiac medications. In the human
body, they are metabolized by Actinobacterium eggerthella lenta
that is responsible for its buffering, maintaining the safety of the
body (180). Anthocyanins and phytoestrogens are two examples
of xenobiotic metabolites. They both have protective effects
against different pathological conditions, especially CVD and
malignancies (181). Anthocyanins can positively alter the GM
profiles, either through inducing the proliferation of good
bacteria such as Bifidobaterium and Lactobacillus, or by
inhibiting the growth of harmful bacteria like Clostridium
histolyticum (182).
GM and Angiogenesis and CPIs
As discussed above, GM profiles became a key modulator of CPI
responses. Moreover, GM also provides to the angiogenesis process
as well to the vasculature development (183). For instance, VEGF
was shown to be activated by bacterial polysaccharides, therefore
enhancing the angiogenesis process (66). In addition, the bacteria
present in tumor cells alter the vascular barrier of the gut, thus
permitting the transfer of the GM into the circulation (66). This
transfer or dislocation of the microbiota or the tumor bacteria
contributes to the formation of the required environment and
Frontiers in Oncology | www.frontiersin.org 9
consequently enhancing metastasis (184). Tumors manage to
grow through stimulating the budding of vessels from the
surrounding vasculature (185). Different substrates are recognized
as pro-angiogenic, specifically the VEGF-A, which helped in
understanding the mechanisms that support tumor growth (186).
Accordingly, the vasculature of the tumor is considered a target in
the management of malignancies, and the most commonly used
pathway is the anti-VEGF or the blockage of its receptors (187).
Multiple trials have provided to the idea that anti-angiogenic
treatment can stimulate the tumor immune response and at same
time, the immune system can promote angiogenesis (187, 188).
Here came the idea of combining CPI with anti-VEGF therapy to
promote vascular normalization, where the immunosuppressive
niche of the TME can be transformed into an immune
stimulatory media supporting the entrance of the immune effector
cells and their accumulation, leading to an enhanced anti-tumor
activity by promoting hypoxia and inhibiting the function of the
suppressive cells (Figure 2) (189).

Furthermore, angiogenesis was reported as an element
influencing the response to CPIs. In fact, the combination of
PDL-1 inhibitors and anti-VEGF showed an increase in PFS and
OS in unrespectable HCC hepatocellular carcinoma and
metastatic renal cell carcinoma (190, 191). This proves the
complex relationship between the three, GM, angiogenesis and
CPI response. Therefore, the combination of CPIs and anti-
angiogenic therapy with manipulation of GM can be a
therapeutic approach in the future holding promising results
and augmenting CPIs response.
CONCLUSION

In conclusion, Human microbiome, GM specifically, is a key
effector in the process of metastasis. Through bacterial
FIGURE 2 | Interaction between microbiota, CPIs and anti-VEGFR.
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translocation, cancer cells from the initial tumor site exit the
tissues to the systemic circulation, to disseminate to distant sites
and invade different organs. Moreover, GM were shown to
influence cancer progression through different mechanisms by
exerting changes on the vasculature conformation, leading to an
either accelerated or controlled metastatic process. Additionally,
the alteration of GM has been proven to influence the response to
CPIs, which is why it is crucial to further investigate the complex
therapy combining GM alteration, in addition to anti-angiogenic
therapy and CPIs for the ultimate goal of limiting cancer
progression and metastasis early in the disease.
Frontiers in Oncology | www.frontiersin.org 10
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