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ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a
molecular pathway of mRBRNA surveillance that
ensures rapid degradation of mRNAs containing
premature translation termination codons (PTCs) in
eukaryotes. NMD has been shown to also regulate
normal gene expression and thus emerged as one
of the key post-transcriptional mechanisms of gene
regulation. Recently, NMD efficiency has been
shown to vary between cell types and individuals
thus implicating NMD as a modulator of genetic
disease severity. We have now specifically analysed
the molecular mechanism of variable NMD effi-
ciency and first established an assay system for
the quantification of NMD efficiency, which is based
on carefully validated cellular NMD target tran-
scripts. In a HeLa cell model system, NMD efficiency
is shown to be remarkably variable and to represent
a stable characteristic of different strains. In one of
these strains, low NMD efficiency is shown to be
functionally related to the reduced abundance of the
exon junction component RNPS1. Furthermore,
restoration of functional RNPS1 expression, but
not of NMD-inactive mutant proteins, also restores
efficient NMD in this model. We conclude that
cellular concentrations of RNPS1 can modify NMD
efficiency and propose that cell type specific
co-factor availability represents a novel principle
that controls NMD.

INTRODUCTION

Nonsense mediated decay (NMD) is a surveillance path-
way by which cells recognize and limit the expression of
mRNAs containing premature stop codons (PTCs) and
thus reduce the expression of potentially harmful trun-
cated proteins (1-4). Originally, NMD was thought to
represent a control mechanism to limit the expression of
faulty transcripts with frameshift or nonsense mutations,
which originate from point mutations or from aberrant
splicing. The finding of NMD being involved in negative
feedback loops regulating normal gene expression fore-
shadowed a wider role of NMD as a basic post-
transcriptional cellular process (5-7). More recently,
microarray analyses of yeast (8,9), Drosophila (10) and
human cells (11-13) have revealed that NMD modulates
the levels of a large number of normal transcripts.
Furthermore, NMD has been suggested to vary in its
efficiency. In Saccharomyces cerevisiae, the degradation of
the pre-mRNA of CYH2 (an endogenous NMD target)
has been reported to vary in different strains (14). In
humans, the expression of dystrophin and JARIDIC
genes carrying identical nonsense mutations has been
reported to differ and to modulate disease severity (15,16).
Moreover, tissue-specific differences of NMD efficiency
for nonsense-mutated collagen X have been suggested in a
patient with Schmid metaphyseal chondrodysplasia (17).
More recently, intertissue and interindividual variations in
NMD efficiency have been proposed in the study of two
fetuses diagnosed with Roberts syndrome and carrying a
homozygous frameshift mutation in the ESCO2 gene (18).
These observations led to the hypothesis that variations of
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NMD efficiency may contribute to the phenotypic
variability of hereditary disorders (19,20). However, it
has so far been difficult to quantify NMD efficiency.

Here, we have developed an assay system that estimates
differences of NMD efficiency based on an internally
controlled measurement of the expression of cellular
NMD targets. Applying this assay in a HeLa cell model
system we demonstrate variable NMD efficiency between
strains. Functionally, these differences are shown to be
caused by a deficiency of RNPSI, a key protein in at least
one of the known NMD pathways (12). We thus propose
that cell type specific co-factor availability represents a
novel principle that controls NMD.

MATERIALS AND METHODS
Cell culture, transfections, RNA isolation and analysis

HeLa cells were grown in DMEM supplemented with
10% fetal calf serum (FCS) and 1% penicillin/streptomy-
cin at 37°C and 5% CO,. HeLa strain A has been used by
our laboratory for many years (21,22). Strain B (ACC 57)
was purchased at the German Repository of Cell lines
(DSMZ). Strain C was kindly provided by Dr Elisa
Izaurralde (EMBL, Heidelberg).

For plasmid and siRNA transfections, we used pre-
viously described methods (23). We isolated RNA
according to standard protocols with TRIzol reagent
(Invitrogen, CA, USA) and performed northern blot
analysis as described previously (23) using 2-3pg RNA
per lane. Target sequences of siRNAs for luciferase, UPFI
and UPF2 were described previously (23). For estimations
of mRNA half-life, actinomycinD (5 pg/ml) was added to
the growth medium 48 h after siRNA treatment and RNA
was collected every hour. Transcript abundance was
quantified by quantitative RT-PCR as in the other cases.
The half-life of the FOS transcript was used to monitor
efficient inhibition of transcription.

Complementary RNA preparation and Microarray hybridi-
zation and analysis

We assessed the integrity of total cytoplasmic RNA from
the cultured cells using a Agilent 2100 Bioanalyzer
(Agilent, Palo Alto, CA, USA). We performed prepara-
tion, processing and hybridization of labelled and
fragmented cRNA targets to Affymetrix HG_UI133A
GeneChips™ according to the manufacturer’s protocols
(Affymetrix Inc., Santa Clara, CA, USA). Oligonucleotide
arrays were scanned using a confocal laser scanner
(GeneArray™, Hewlett Packard, Palo Alto, CA, USA).

Statistical analysis of microarray data

Three independent experiments with UPFI siRNA or
Luciferase siRINA as a negative control were analysed. We
used the Affymetrix GeneChip Suite 5.0 software (MAS
5.0) to calculate raw expression values for each of the
22283 probe sets on the Ul33A oligonucleotide array.
Signal intensities were calculated as average intensity
difference (AID) between perfect and mismatch probes.
Approximately 8800 probe sets continuously resulting in
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absent calls were excluded from the analyses. Next, we
used GeneSpring 4.2.1 (Silicon Genetics, Redwood City,
CA, USA) for scaling, normalization and background
correction of all genes and arrays. We performed
Student’s #-test on normalized relative expression ratios
to identify significant differentially expressed genes with a
minimum factor of difference of >2-fold, within the 95%
confidence interval (P <0.05). Full data sets are available
in the Supplementary Data and on the Gene Expression
Omnibus (GEO) repository (GSE7009).

Quantitative Real-Time PCR (LightCycler)

We synthesized first strand c¢cDNA using MuMLV
RNaseH- Reverse Transcriptase (MBI Fermentas) accord-
ing to the manufacturer’s protocol using 4 pug of RNA.
We carried out real-time PCR, using the LightCycler
system (Roche Diagnostics, Mannheim, Germany), as an
independent method to assess differences of gene expres-
sion and to validate the microarray expression data.
We performed expression analyses of selected genes with
single-stranded ¢cDNA and gene-specific primers (primer
sequences are available on request). We used the FastStart
DNA Master SYBR Green kit (Roche Diagnostics) to
quantify the mRNA levels by measuring real-time fluori-
metric intensity of SYBR green I incorporation. The
working concentrations of gene-specific primer, MgCl,,
enzyme and SYBR green as well as cycling parameters
were optimized according to the LightCycler protocol
(LightCycler Operator’s Manual, Version 3.5). For the
experiments done in exclusively in strain A cells, we used
the concentration of glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) to normalize all other genes tested from
identical ¢cDNA samples. For the other experiments
also the ribosomal protein L32 (RPL32), hypoxanthine
phosphoribosyltransferase 1 (HPRTI) and core-binding

factor-beta subunit (CBFB) were included as standard

controls. The ratio of each analysed cDNA was determined
as the mean of 4 or 5 experiments. Melting curves of the
PCR products were performed for quality control. The
primer sequences of SC35 and GAPDH were described
previously (12). For TBL2: gcagtcatttaccacatge/tattgtttctge
ttcttggat, for GADD45B: gagtgagactgactgcaage/tettatta
attcgcaaactgg, for NATY: attgtgctggatgccgaga/acctagegte
gtcactecgta, for RPL32: ttgacaacagggttcgtag/ttcttggaggaa
acattgtg, for HPRTI: gaccagtcaacaggggacat/aacacttcgtgg
ggtecttttc and for CBFB: geccatctttacatacaca/acttcaaattat
tactggctac.

Protein isolation and immunoblot analysis

We prepared protein lysates with an isotonic lysis buffer as
described previously (23). For total extracts, the buffer
composition was 5S0mM Tris-HCI, pH 7.5, 150 mM
NaCl,IimM  EDTA,1% Triton  X-100, 0.5%
Deoxycholate, 0.1% SDS,1x Complete protease inhibitor
(Roche). For the cytoplasmic fraction, the buffer was
50mM Tris-HCI, pH 7.2, 150mM NaCl, 0.5% (v/v)
NP-40, 0.1% Deoxycholate, 5SmM Vanadyl-Ribosyl-
complex, |ImM Dithiothreitol, 0.5mM  PMSF,
I1x Complete protease inhibitor (Roche). We performed
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immunoblot analysis of protein samples using 10—15 pg of
total protein per lane as previously described (22).

Plasmid constructs

Plasmids for the expression of human B-globin WT and
NS39 (22), Y14, RNPS1 and RNPS1A69-121 (12) and the
loading control (23) were described previously.

RESULTS
Identification of hona fide cellular NMD targets

We aimed at developing an assay to estimate differences in
NMD efficiency based on the expression levels of
physiological NMD transcripts. To identify a panel of
endogenous direct NMD targets in human cells, HeLa
cells were treated with siRNA against the NMD-key
factor UPFI (11,23,24) or Luciferase as a negative control.
UPF1-specific immunoblotting showed that this protein
was efficiently depleted to a level of <10% (Figure la).
Functionally, the inhibition of NMD was assessed by
monitoring the expression of (1) transfected nonsense
mutated B-globin mRNA (NS39) (Figure 1b), and (2) of
two known NMD-sensitive splice variants of SC35
[SFRS2, referred to as SC35A and B (5)] (Figure Ic
and d). In UPF1-depleted cells, both the B-globin NS39
reporter and the NMD sensitive SC35 isoforms were up-
modulated ~5- and 15-fold, respectively, demonstrating
the effective inhibition of NMD. RNA isolated from these
cells  was analysed on Affymetrix HG_UI33A
GeneChips™. Of 22283 probe sets, representing
~14500 human genes, 9336 transcripts were expressed
at a level of more than two SDs above background and
were thus included in the analysis. A total of 265 probe
sets (2.8%) representing 227 genes were up-modulated
more than 2-fold, while 248 probe sets (2.6%) representing
202 genes were down-modulated more than 2-fold
(Supplementary Data, Tables 1 and 2). These data
indicate that a substantial number of genes are affected
directly or indirectly by UPF1 activity.

In order to exclude transcripts that are affected
by UPF1 depletion in an NMD-independent, non-
post-transcriptional fashion, we analysed mRNA and
pre-mRNA levels in a subset of 16 transcripts, chosen
because of their strong differential expression in the
microarray analyses. In several independent experiments
performed on UPFI-depleted HeLa cells that showed
efficiently inhibited NMD function (see Figure 1), pre-
mRNA and mRNA levels for the selected 16 transcripts
were quantified by RT-PCR (Figure 2). The microarray
data showing up-regulated mRINA abundance in UPF1-
depleted cells could be confirmed by RT-PCR for all 16
transcripts. However, only in the case of TBL2 the
abundance of the pre-mRNA remained unchanged while
the abundance of the mRNA was up-modulated ~8-fold.
In the case of NATY, these differences were marginal. In
all other 14 RNAs, the abundance of the pre-mRNA and
the mRNA did not differ significantly, although in two
(KCNJI12, SEPWI) the pre-mRNA remained below the
threshold of 2-fold up-regulation, whereas the mRINA was
up-regulated to a level of >2-fold. These data suggest that

@) © .. o

~ —«*II—< 23 ;\ P— e
- ¢
siRNA:  Luc. 3§
Ay e o
load: 100 50 20 10 100 % w2 73 i
1 2 3 4 5
P ——— <« UPF1 SC35A
— . 4— tUDUIIN 311 bp.
b) A Pt
siRNA:  Luc. UPF1 [ STC 2 Te[ 8 ]
35B »
) )
c $6 8
S < é\ < 209 bp.
1.2 3 4
P ()
. SC35A+B mRNA
B 8 < globin 5 20
10 43 % ; 10
4.8+0.7 fold 3
SRNA:  Luc. UPF1

Figure 1. UPF1 depletion up-modulates the abundance of transfected
and endogenous NMD reporters. (a) Immunoblot analysis of protein
lysates from HeLa cells transfected with siRNAs against luciferase as a
negative control or UPF1 using a UPFl-specific antibody. Serial
dilutions corresponding to 100, 50, 20 or 10% (lanes 1-4) of the initial
protein amount from luciferase-siRNA transfected cells were loaded to
assess the efficiency of the UPFI siRNA knock-down (lane 5).
Reprobing with a tubulin-specific antibody was performed as a loading
control. (b) HeLa cells were transfected with siRNAs against luciferase
or UPFI1. Thirty hours later, the cells were co-transfected with the
B-globin WT or NS39 reporter constructs and the control plasmid. The
indicated percentages correspond to the abundance levels of NS39
mRNAs compared to WT mRNAs after normalization for transfection
efficiency (ctrl.). The fold up-regulation represents the ratio of NS39
expression levels between UPF1 and Luc siRNA transfected cells.
Values and SEs were calculated from three independent experiments.
(c¢) Gene structure of SC35 (SFRS2). Intron 1 is constitutively spliced,
whereas exons 3 to 8 are subject to extensive alternative splicing. The
position of the ATG and the stop codon are indicated. The exon
composition of the two SC35 splice-variants, SC35A and SC35 B that
are subjected to NMD are shown below. The same pair of primers
(arrows) was used to simultaneously amplify both species.
(d) Quantitative RT-PCR analysis of the NMD-sensitive SC35
(SFRS2) variants in cells transfected with either UPF1 or luciferase
siRNAs using the primers depicted in (c) and normalized against
GAPDH expression. The mean and the SEs were calculated from five
independent experiments.
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Figure 2. Pre-mRNA and mRNA analysis distinguishes direct from
indirect NMD targets in UPFI1-depleted cells. Quantitative RT-PCR
(LightCycler) for 16 UPF 1-sensitive transcripts from cells transfected with
luciferase (negative control) or UPF1 siRNAs. The abundance of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used for nor-
malization. The fold up-modulation of pre-mRNAs and mRNAs by UPF1
depletion (mean + SE) were calculated from 5-7 independent GAPDH
normalized and LUC controlled experiments. Potential direct NMD
targets (arrows) were defined as those mRNAs with a mean up-modulation
>2-fold and with a mean pre-mRNA up-modulation <2-fold.
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Figure 3. UPFI depletion prolongs the half-lives of endogenous NMD targets. Decay rates of endogenous transcripts were measured in HeLa cells
that were transfected with Upfl siRNA (solid line) or Luciferase siRNA (dashed line) as control. 48 hours later, the cells were treated with
actinomycin D (Spg/ml). Samples were taken every hour. mRNA levels were determined by RT-PCR quantification. The results represent the mean
and standard deviation of three independent experiments. (a) The positive control FOS mRNA is stable in the absence of actinomycin D (—act.D)
but it decays rapidly following a block of transcription (+act.D). (b—f) mRNA decay of the selected transcripts.

most of these mRNAs are likely up-modulated transcrip-
tionally and do not represent bona fide NMD targets. By
implication, these data also suggest that a substantial
fraction, likely most of the almost 230 transcripts that are
up-modulated by UPF1 depletion in our microarray data
are indirect NMD targets.

Transcripts that are targeted by NMD are expected to
be stabilized by an inhibition of this pathway. We thus
analysed the decay rates of the KCNJI12, NATY9, SEPW1

and TBL2 mRNAs. We also included the GADD45B
transcript, which has previously been suggested to
represent an endogenous NMD target by in silico analysis
(25) and is experimentally shown to be up-modulated by
UPF1 depletion here (see below). Actinomycin D was
added to cells pre-treated with siRNA against UPFI or
Luciferase. The short-lived FOS transcript was used as a
positive control to assess the block of transcription
(Figure 3a). Prolonged half-lives in UPFI1-depleted cells
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Figure 4. UPF1 and UPF2 depletion cause similar degrees of
up-modulation of cellular NMD substrates. (a) Immunoblot analysis
of protein lysates from HeLa cells transfected with siRNAs against
luciferase as a negative control or UPF2 using a UPF2-specific
antibody. Serial dilutions corresponding to 100, 50, 20 or 10% (lanes
1-4) of the initial protein amount from luciferase-siRNA transfected
cells were loaded to assess the efficiency of the UPF2 siRNA depletion
(lane 5). Reprobing with a tubulin-specific antibody was performed as a
loading control. (b) Quantitative RT-PCR analysis of SC35 NMD-
sensitive variants, TBL2, GADD45B and NAT9 in cells transfected
with UPF1 or UPF2 siRNAs. The UPF1 and UPF2 siRNA treatments
were controlled by luciferase siRNA and normalised against GAPDH.
Mean and SEs were calculated from three independent experiments.

were detected for GADD45B, TBL2 and NATY confirming
that UPF1 depletion increases the abundance of these
transcripts by reducing degradation (Figure 3b-d). It is
interesting to note that the degradation curve of the
GADD45B transcript appears to be biphasic while those of
the TBL2 and NATY transcripts appear to be monophasic.
A biphasic decay curve for NMD substrates has been
described previously (11,26,27) and can potentially be
attributed to degradation of the nonsense-mutated mRNA
during the first round of translation. Those mRNAs that
escape degradation at that point are thought to be
unaffected thereafter by NMD (28). The stability of
SEPWI and KCNJI2 did not show any effect on UPFI
depletion (Figure 3e—f). Because of this and because of the
only marginal difference between pre-mRNA and mRNA
levels (Figure 2), we excluded these transcripts from
further analysis.

The role of NMD in directly modulating the abundance
of the TBL2, NAT9 and GADD45B transcripts was
further analysed by depleting UPF2, which interacts
with UPF1 in the NMD pathway (29,30). The efficient
depletion of UPF2 to ~10% was confirmed by immuno-
blotting (Figure 4a) and, as a functional control, we
assessed the abundance of SC35(A) and SC35(B) isoforms
(referred to in the subsequent discussion as SC35). The
degree of up-modulation in UPFI-depleted and UPF2-
depleted cells was not significantly different for all four
analysed transcripts (Figure 4b). Taken together, these
results indicate that SC35, TBL2, NAT9 and GADD45B

are bona fide NMD targets that depend on both UPF1 and
UPF2. Analysis of the structure of these transcripts using
sequence databases show that SC35 (A and B), TBL2 and
GADD45B possess a termination codon located more
than 55 bases from the last exon—exon junction, while
NATO9 contains an upstream open reading frame (uUORF)
(Supplementary Figure 1). These structural features are
typical for cellular NMD targets (11,31), which may
explain the sensitivity of these endogenous mRNAs to
cellular NMD activity.

Different HeLa strains display remarkable variations
in NMD efficiency

Unpublished observations in our laboratory have pre-
viously suggested that different strains of HeLa cells may
differ in their NMD capacity. We have now used these
HeLa strains as a model system to quantify subtle
differences in NMD efficiency and to gain mechanistic
insight into this variability.

The panel of five validated cellular NMD target
transcripts (SC35 A+ B, TBL2, NAT9 and GADD45B)
was used to systematically analyse the NMD efficiency
of three different HeLa cell strains (referred to as A, B
and C). To avoid a potential bias of quantification against
a single housekeeping gene, we selected four different
transcripts (HPRT1, CBFB, GAPDH and RPL32) for
normalisation purposes (32,33). This group of control
transcripts was selected because (1) they showed <10%
variability in all of our microarray experiments (data not
shown); (2) they were expressed at different steady-state
levels and (3) they belong to different metabolic pathways
and are thus unlikely to be co-regulated. The comparison
of the degree of up-modulation following UPF1 depletion
showed similar results for all transcripts that were used for
normalisation (Supplementary Figure 2), which indicated
that all of these housckeeping genes can be used as
standards.

Quantification of the five endogenous NMD targets
(SC35 A+ B combined, GADD45B, NAT9 and TBL2)
against the four standards in these strains gave reprodu-
cible results in four independent experiments (Figure 5a).
All the transcripts were ~2- to 3-fold significantly more
abundant in strains B and C in comparison with strain A.
Strain C showed a trend towards lower mean expression
levels for the NMD targets than strain B, although these
differences were not statistically significant. When the data
from the individual NMD targets were combined, the
same differences existed, which indicates the similar
behaviour for all the tested mRNAs and suggests a
stronger NMD capacity in cells of strain A (Figure 5b).

To validate our analysis, we estimated NMD efficiency
by a direct comparison of the down-modulation of
transfected, nonsense mutated B-globin (NS39) reporter
in four independent experiments (Figure 5c¢ and d). The
down-modulation of the NS39 reporter differed repro-
ducibly and significantly between strains. In strain A
NMD efficiency was ~2.5-fold stronger than in the strains
B and C, while strain C tended to be ~1.5-fold stronger
than B. Thus, the quantification of NMD efficiency by
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analysis of cellular NMD target transcripts was confirmed
by the independent analysis of the NS39 reporter.

These data demonstrate that differences of NMD
efficiency between human cell lines can be estimated by
measuring the abundance of transfected NMD-sensitive
reporters and by analysing the abundance of a carefully
validated panel of cellular NMD target transcripts.

RNPS1 abundance modulates NMD efficiency

Subsequently, we aimed at gaining insight into the
mechanism of variable NMD efficiency in these HelLa
strains. As a starting point, we analysed the abundance of
the key NMD proteins UPF1, UPF2 and UPF3b and of
the functionally critical exon junction complex compo-
nents Y14, Magoh and RNPS1 by immunoblotting in
both, total and cytoplasmic lysates (Figure 6a). The
abundance of the UPF proteins, Y14 and Magoh did not
differ between the three strains. In contrast, RNPSI is
shown to be less abundant in cells of strain B (Figure 6a).
To estimate this difference semi-quantitatively, we

compared the abundance of RNPSI in lysates of cells of
strain B relative to dilutions of similar lysates of cells of
strain A and C. These results indicate that RNPSI is
~50% less abundant in the cytoplasmic fraction in cells of
strain B (Figure 6b, left panel). In total lysates, the
abundance of RNPS1 in strain B is ~30% of that in
strains A or C (Figure 6b, right panel).

We next functionally analysed if RNPS1 might be the
limiting factor for NMD in these cells and over-expressed
functional RNPS1 (12) in cells that were transfected with
B-globin reporter genes. We confirmed that the transfec-
tion of pCI-NEO-Flag has no effect on the abundance of
endogenous RNPS1 in any strain (Figure 7a, lower
western blot) and that the pCI-NEO-RNPSI is expressed
at similar levels in the all three cell lines (Figure 7a, upper
western blot). Increasing amounts of RNPS1 decreased
the steady-state levels of the B-globin NS39 reporter up to
4-fold in cells of strain B but had no effect in cells of
strains A and C (Figure 7a). This effect is specific for
RNPS1, because over-expression of RNPS1A69-121
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Reprobing with a tubulin-specific antibody was performed as a loading control. (b) Serial dilutions corresponding to 100, 75, 50 or 20% of the initial
protein amount from cells of strain A and C were loaded to estimate the quantitative differences of RNPS1 abundance in cytoplasmic (cyto) or whole

lysates of HeLa cells strain B.

(a truncated version of RNPSI1 known to be non-
functional in NMD (12)) does not affect the down-
modulation of the NS39 reporter (Figure 7b).
Furthermore, the over-expression of Y14—a critical EJC
component for NMD function (23)—does not augment
NMD efficiency in this strain of HeLa cells (Figure 7c).
Based on the differences of RNPS1 abundance, the
reconstitution of NMD efficiency by over-expression of
a functional protein but not of a non-functional mutant
and finally the lack of an effect of over-expressing another
critical NMD protein, we conclude that the abundance of
RNPSI is limiting for NMD efficiency in HeLa strain B.

DISCUSSION

NMD has recently emerged as one of the critical post-
transcriptional processes that regulate gene expression by
targeting transcripts with truncated reading frames (9).
While the phenomenon of variable NMD efficiency has
been observed by many groups studying NMD (15-18,34),
we document here that NMD efficiency can be system-
atically analysed by quantifying bona fide cellular NMD
targets. Such cellular NMD targets have previously been
thought to represent ~1-10% of the total transcriptome
of human cells and yeast (9,11). However, our simulta-
neous analysis of pre-mRNA and mRNA abundance and

of mRNA stability of selected transcripts (Figures 2 and 3)
suggests that only a minority of UPFI-dependent
transcripts are up-modulated directly by an inactivation
of NMD. This apparently transcriptional effect of UPF1
depletion may be caused by influencing the expression of
transcription factors either in an NMD-dependent fashion
or in a fashion that is related to the non-NMD functions
of UPF1 (35,36). This would indirectly affect the synthesis
and the pre-mRNA abundance of target genes.
Alternatively, the UPFI1 depletion may stimulate the
transcription of the up-modulated genes directly.

The five cellular NMD target mRNAs that were
analysed (SC35A, SC35B and the identified TBL2,
GADD45B and NAT9) here were also shown to be
UPF2-sensitive (Figure 4) and to contain structural
features (alternative splicing isoforms with premature
stop codons and uORFs) (Supplementary Figure 1) that
explain their NMD sensitivity. Interestingly, the quanti-
fication of this small set of carefully validated cellular
NMD targets reflected subtle differences of NMD
efficiency in different strains of the same cell line thus
demonstrating that NMD efficiency can be measured
semi-quantitatively. Such measurements may help to
analyse NMD efficiency in more complex systems such
as in tissues or even in entire organisms. However, the
heterogeneity of the composition of such material will
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have to be controlled as a likely confounding factor of
such measurements.

NMD variability has previously been studied system-
atically only in yeast (14). The analysis of the yeast NMD
substrate CYH2 pre-mRNA in strain crosses suggested
that the variable efficiency of NMD is pleiotropic in this
organism. Although we cannot discard a multi-gene effect
to also be important in human cells, the findings reported
here document that the abundance and functional
availability of a single NMD co-factor can be limiting
for NMD efficiency.

NMD is thought to require the interaction of the exon
junction complex (EJC) with the SURF complex that is
recruited to the ribosome at the site of translation
termination (30). The EJC is recruited to the RNA by
the spliccosome and is remodelled during nucleo-
cytoplasmic export (37). Structural analyses have shown
that the EJC is anchored to the RNA by a core that
consists of the proteins eIF4AIIl and MNL51 (BTZ) and
the Y14/Magoh heterodimer (38,39). At the periphery of
the complex, a number of other proteins are thought to
establish the interaction of the EJC with other protein
networks and different cellular functions (40,41). The
protein RNPSI1 is one of these peripheral EJC proteins
that have previously been shown to activate the NMD
pathway following tethering to a NMD competent
position of the mRNA (23,42) and to be an important
component of one of two pathways implicated in NMD
(12). Interestingly, the data reported here now functionally
link the reduced abundance of this protein in one of the
cell lines to low NMD efficiency, thus for the first time
implicating the natural abundance of an EJC protein to
the efficiency of NMD.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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