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Abstract: Arthropoda is a phylum of invertebrates that has undergone remarkable evolutionary
radiation, with a wide range of venomous animals. Arthropod venom is a complex mixture of
molecules and a source of new compounds, including antimicrobial peptides (AMPs). Most AMPs
affect membrane integrity and produce lethal pores in microorganisms, including protozoan pathogens,
whereas others act on internal targets or by modulation of the host immune system. Protozoan
parasites cause some serious life-threatening diseases among millions of people worldwide, mostly
affecting the poorest in developing tropical regions. Humans can be infected with protozoan parasites
belonging to the genera Trypanosoma, Leishmania, Plasmodium, and Toxoplasma, responsible for Chagas
disease, human African trypanosomiasis, leishmaniasis, malaria, and toxoplasmosis. There is not yet
any cure or vaccine for these illnesses, and the current antiprotozoal chemotherapeutic compounds are
inefficient and toxic and have been in clinical use for decades, which increases drug resistance. In this
review, we will present an overview of AMPs, the diverse modes of action of AMPs on protozoan
targets, and the prospection of novel AMPs isolated from venomous arthropods with the potential to
become novel clinical agents to treat protozoan-borne diseases.
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1. Introduction

Arthropoda is a phylum of invertebrate animals that have a rigid exoskeleton with several pairs
of articulated appendages whose number varies according to the class [1]. It is a diverse and ancient
group of invertebrate animals, which underwent spectacular evolutionary radiation [2], totaling more
than 5 million different organisms, approximately 80% of all known species on Earth [3–6]. This vast
radiation allowed the occupation of a broad range of ecological niches, with gigantic variations in their
lifestyle and dietary preferences [7–12].

The colonization of new environments probably enforced novel evolutionary challenges and
requirements, improving morphological, biochemical, and behavioral features, enabling the selection
of a series of exceptional adaptations, making them one of the first animal groups adapted to occupying
terrestrial habitats [13,14]. Alongside these adaptations, evolutionary pressures on genes allowed the
development of a highly efficient and rare predatory tool, found in only a few arthropod taxa: venom.
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New specialized organs or even whole venom delivery systems were evolutionarily selected (adapted)
to actively inoculate venom inside the body of their victim, such as fangs or stings [15,16], resulting in
a drastic increase in fitness, predatory success, and predator deterrence.

Venom apparatus is responsible for production of toxins, their storage and delivery through
injection into prey [14,17,18]. Venom usage is so important in the animal kingdom that it evolved
independently at least 19 times in arthropods [19]. Based on this vast radiation, the venom injection
apparatus can be found in different arthropod body parts: in the distal end of the body, in the
antennae, in the palpal chelae, present as modified legs, but most commonly in an adaptation of mouth
parts [14,19]. Besides, venom has more specialized functions, such as preservation of prey for feeding
parasitic larvae and aiding extra-oral digestion of prey [19,20]. The venom of the vast majority of
arthropods is a complex mixture of peptides, proteins, and enzymes with a rich diversity of biological
activities. Other minor components can be found in salt, inorganic ions, carbohydrates, glucose,
and amino acids. [21–23]. Besides these, acypolyamines, biogenic amines, serotonin, histamine, protease
inhibitors, mucopolysaccharides, proteases, hyaluronidase, phospholipases, and phosphoesterases can
be found in the venom of scorpions and spiders [23–25].

Intriguingly, venomous animals belonging to the arthropod group are found in three major classes:
Insecta, Arachnida, and Chilopoda. Recently, venom was described within the crustacean subphylum,
the only species of venomous predator reported so far, the remipede Xibalbanus tulumensis [26].
Within the Insecta class, six orders have venomous representative species: Hemiptera, Neuroptera,
Hymenoptera, Diptera, Lepidoptera, and Coleoptera. Together, these orders possess about 925,000
described species. The best studied order of venomous insects is Hymenoptera, comprising
around 117,000 different species [27]. Regarding the Arachnida and Chilopoda classes, to date,
the number of spiders, scorpions and chilopods described reached approximately 48,300, 2400,
and 3200, respectively [28–30]. It has recently been suggested that ticks should be referred to as
venomous ectoparasites, due to the composition and function of their saliva, and the clear differences
between proteins present in tick saliva and other non-venomous animals. Tick saliva contains features
of other venomous animals, such as proteins capable of inducing paralysis, interfering with normal
host physiological processes [31].

Indeed, several drugs come from research on venomous animals. Captopril, Exenatide,
and Ziconotide are some examples of biomolecules that have become drugs for the management
and treatment of hypertension, diabetes and chronic pain, respectively [32–34]. In this context,
venomous animals are a source of new compounds, arousing great interest from the biotechnology
and pharmaceutical industries, making them apposite leading candidates for the development of
new drugs.

2. AMPs

The majority of multicellular organisms are constantly vulnerable to dangerous pathogens, through
contact and exposure in the environment. For their survival, they have created various mechanisms in
a host defense network to combat this invasion [35–37]. AMPs represent the first-line host defense
mechanism in all invertebrates; they were evolutionarily preserved as an essential component from
the innate immune system, remaining an ancient (archaic), but powerful weapon throughout those
years [38,39]. AMPs are usually small molecules (~10–50 residues long), gene-encoded, cationic, and
amphipathic, with a miscellaneous composition of amino acids [40–43]. Despite their vast structural
diversity, most AMPs kill pathogens microorganisms similarly, through membrane damage, protecting
the host from bacteria, viruses, fungi, and parasites [44–46].

After microbial infection or even by means of stimuli such as stress, AMPs are synthesized in the
fatty body of insects and hemocytes of invertebrates and, consequently, released into the hemolymph
to combat infection [47]. Some genes encoding these peptides are intronless, suggesting that they are
early response genes, facilitating post transcriptional modification and expression, working as a rapidly
induced response to pathogens [48]. Furthermore, arthropod venom is also a vast source of AMPs, and
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it has been suggested that the presence of these biomolecules in venom works both in protecting the
venom gland against microorganisms and in assisting the action of other toxins [49,50]. About 3000
antimicrobial peptides were described and isolated from six kingdoms (bacteria, archaea, protists,
fungi, plants, and from animals) in recent years [51–54]. Antibacterial, antifungal, and antiparasitic
peptides derived from these natural sequences have showed broad-spectrum and enhanced activity
against target microorganisms [55–57].

Despite the vast diversity of sequences and sources of AMPs, they can be classified, according to
structural features, into three main groups—α-Helical, β-sheet, and extended/flexible peptides [58–60].
The α-helical is the most common AMP structure, abundantly found in the extracellular fluids of
insects, frogs, mammals, and other vertebrates. These molecules are free of cysteine residues and
usually unstructured in aqueous solution but adopt the helical conformation upon contact with
membranes [60,61]. β-sheet peptides are a diverse group of molecules, containing six to eight cysteine
residues, responsible for formation of two or more disulfide bonds that will stabilize the β-sheet
structure. They also present a well-defined number of β-strands, amphipathically organized, with
distinguishable hydrophobic and hydrophilic surfaces [62–64]. The last subgroup of AMPs includes
peptides that are linear without cysteine residues and possesses a unique extended coil structure.
These AMPs have been less characterized, but they contain a high proportion of proline, arginine,
tryptophan, glycine, and histidine [63,65–67].

Currently, over 10 AMPs have entered clinical trials or started the pre-clinical development
stages [68,69]. The natural lipopeptide antibiotic approved by the Food and Drug Administration in
2003, named Daptomycin, and the glycopeptide Vancomycin are some examples of AMPs routinely
used to treat drug-resistant Gram-positive bacteria. They are labeled “last resort” antibiotics, used only
when clinical and commonly used drugs are not sufficient to stop the infection [70–73]. Additional
efforts are necessary to extend these findings in the path to drug development and to prospect further
the antiparasitic potential of AMPs from animal venoms.

3. Differences between Plasma Membranes of Protozoan and Mammalian Cells

The plasma membrane of mammalian cells contains over one hundred different lipids,
carrying little net charge and possessing an even lower outer membrane charge, mainly because
of the most common non-polar lipid cholesterol and the four major phospholipids present in
this structure: zwitterionic phospholipids enriched with phosphatidylcholine and sphingomyelin,
phosphatidylethanolamine, and phosphatidylserine [74–77]. These phospholipids are distributed
irregularly between the inner and outer membrane bilayers. Negatively charged lipids are mostly
confined to the inner leaflet of the mammalian cytoplasmatic membrane, and the charges are not
exposed, which could explain why AMPs do not target mammalian cells. Added to this, possible
electrostatic interaction between AMPs and mammalian membrane cells is not stable and, if it happens,
it will not affect the integrity of the lipidic bilayer [62,76,78,79].

On the other hand, the surface of the protozoan membrane is very conserved among individuals
of this group, including the presence of glycosylphosphatidylinositol (GPI)-anchored glycoproteins,
a covering that surrounds the cell membranes and forms the glycocalyx, a boundary between the
parasite and the external environment, which also helps to form a negative net charge membrane.
The glycocalyx mediates cell attachment, protects against harmful molecular and cellular agents,
like AMPs, preventing their action on the membrane and/or affecting other vital functions [80,81].

In Leishmania, some free GPIs are also phosphoglycosylated to form lipophosphoglycan, the most
common surface glycoconjugate of promastigote forms and a highly anionic GPI anchored component
that, together with ergosterol, constitutes the principal molecules responsible for the negatively charged
membrane of this parasite. Enzymes such as the metalloprotease Gp63 decrease the charge of the
membrane, displaying a protective effect against AMPs through peptide cleavage, and are found in
all developmental forms of the parasite, especially the promastigote form [82–87]. The toxicity of
bombinin H2 and H4 peptides when tested against Leishmania promastigotes was considerably higher
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than treated amastigotes. These contrasting results are probably connected with the differences in
glycocalyx complexity of these two different developmental forms. Intracellular amastigotes present
an elementary organization, where glycocalyx is almost nonexistent, surrounded only by an endocytic
vacuole of the phagocyte cell [70,88–91].

The glycocalyx surface of T. cruzi is mostly covered by mucin-like glycoproteins attached by
GPI-anchored proteins. Free GPIs aggregate to form a densely filled glycocalyx beneath the mucin
cover. The trans-sialidase family of glycoproteins is another molecule found in the cell surface of
T. cruzi, playing a pivotal role in escaping from host immune surveillance [84,92–95].

T. brucei membrane surface coats are composed mainly of the variant surface glycoproteins (VSG)
and are anchored to the outer membrane by a GPI-anchor [84]. T. brucei is an extracellular parasite in
all developmental forms; consequently, these surface molecules are not used in cell attachment [96], but
the VSG layer acts as a molecular sieve for particles over 20 kDa [97], besides protecting it from host
complement via the alternative pathway. The parasite avoids the immune system thanks to its ability
to express different VSGs and replaces them periodically, a phenomenon known as antigenic variation,
allowing that T. brucei trypomastigotes persist for long periods in the human bloodstream [98,99].

During the intracellular life stage, P. falciparum–infected red blood cells (PfRBC) diverge from
healthy red blood cells (RBC), mainly by an increase in phosphatidylinositol and phosphatidic acid and
a decrease in sphingomyelin in the outer membrane [100]. These changes in RBC glycocalyx seem to
be related to an electrostatic change in the outer membrane of PfRBC, explaining in part why cationic
AMPs preferentially interact with cationic PfRBC glycocalyx and barely affect healthy RBC [101,102].

Tachyzoites is the motile, fast-growing, and intracellular stage of T. gondii. During this
developmental form, it expresses a huge amount of GPI and free GPI in its glycocalyx. The free GPI has
a glucose α1-4GalNAcβ1-4 disaccharide side chain, and when released from the parasite, generates a
high immune response, activating macrophages and inducing the production of IgM antibody by the
human host [103,104].

4. Mode of Action of Antiprotozoal AMPs

Since protozoan membranes are composed basically of negatively charged lipids and AMPs are
cationic and amphipathic, electrostatic interactions between membrane and peptide must be related
in the disruption mechanism of the surface-membranes. Conventional AMPs most likely target the
cytoplasmic membrane, acting through permeabilization of the plasma membrane, disorganizing the
electrochemical gradient, and consequently disrupting the cellular homeostasis of parasite cells [83].
Researchers believed that membrane targeting was AMPs’ only mode of action, but the mechanisms
of action of these biotoxins have been considerably studied since their discovery [63]. Although
investigations focus mainly on bacteria and fungi, targets and effects of AMPs against protozoa were
elucidated, especially in Leishmania and trypanosomatidae parasites [61,70,105].

The mode of action of AMPs can be divided into two major groups—direct microbial action in
protozoan parasites (direct killing) and immune modulation of the host. In turn, direct action can be
subdivided into AMPs targeting membrane and internal targets (Figure 1) [61,63,70,83,106,107].
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Figure 1. Mode of action of antiprotozoal AMPs. (left): Direct microbial action and possible
membrane/internal targets of AMPs. (right): Modulation caused by AMPs in different types of cells,
molecules and processes in mammals’ immune system.

4.1. Direct Killing

In the classical models of targeting membrane, the AMPs lying on the membrane must
reach a critical concentration, capable of triggering the mechanism of membrane disarrangement.
The interaction between the AMP and the parasite membrane does not involve receptor-specific
interaction in most cases [108]. AMPs can have one or multiple microbial targets simultaneously,
presenting a broad range of action against bacteria, viruses, parasites, and also anticancer activity [109].
Moreover, AMPs can show toxicity against different life cycles of the protozoa and sometimes even
divergent mode of action for distinct developmental forms of the same organism [61].

Several models were suggested to explain the process induced by AMPs targeting membrane.
The classical models of membrane disruption include the carpet model (detergent-like), the barrel-stave
and the toroidal pore [70,83,110]. The carpet model proposes that electrostatic interactions cause
peptide coating on the surface of the membrane and formation of a carpet structure, changing the
fluidity and properties of the membrane, which will destabilize the bilayer through solubilization into
micellar structures [108,111]. In the barrel-stave model, peptides self-aggregate and spontaneously
insert themselves into the membrane, forming different sized pores, which grow in diameters according
to the addition of new peptides [108,112]. The toroidal pore pattern shares common features with
the barrel-stave, forming a membrane pore, but in this mechanism, peptides interact with the
membrane, and transient pores are formed with peptides and lipids alternated in the arrangement.
AMPs have been shown to translocate through the open pores, suggesting that this mechanism may
be associated with potential intracellular targets [108,113]. Other modes of action models that try
to describe targeting membrane were suggested, like molecular electroporation [110], sinking-raft
model [114], Shai-Huang-Matsazuki model [115], the interfacial activity model [115], targeting of
oxidized phospholipids [116], and anion carrier [117].

Several internal targets were described for different parasiticidal AMPs, aiming at key cellular
molecules and processes including DNA, RNA, and protein synthesis [118–122], protein degradation
by proteasome [123], lysosomal bilayer [78], disrupting key enzymatic activities [124], organelles
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related with calcium storage (acidocalcisomes, glycosomes and/or endoplasmic reticulum) [125–127],
and mitochondria (Figure 2) [79,128].Toxins 2019, 11, x FOR PEER REVIEW 6 of 27 

 

 
Figure 2. Schematic overview of a protozoan cell with various internal targets (highlighted in red) of 
AMPs. 

4.2. Immune Modulatory Effects 

Several AMPs also are able to modulate the host immune system, displaying specificity toward 
a variety of immune responses: activation, chemotaxis, and differentiation of leukocytes, macrophage 
activation, degranulation of mast cells, changes in dendritic cell and adaptive immune responses, 
angiogenesis, cell proliferation, suppressing lactic acid formation, wound healing, controlling 
reactive oxygen, and nitrogen compounds and repressing inflammation through down-regulation of 
proinflammatory chemokines and pathogen antigens [107,129,130–139]. Generally, studies involving 
immune modulation of mammals by AMPs are done with bacteria. However, in view of some 
similarities in immune system responses against microorganisms, mammals’ immune modulation 
against protozoan parasites may present great similarities or in some cases even be identical to the 
bacterial model [140]. 

Most AMPs act through upregulation and activation of human immune system; however some 
AMPs work in a totally opposite way, inhibiting the inflammatory response through suppression of 
pro-inflammatory cytokines [132,140,141]. Innate defense regulators (IDR) are synthetic versions of 
natural AMPs, like IDR-1018. These peptides could be potential new drugs for treatment of severe 
malaria, since they decrease the harmful neural inflammation caused by Plasmodium infection, which 
is related to malaria patients’ mortality [132,141]. Phospholipase A2 from Bothrops marajoensis and 
Apis mellifera venom has shown antiparasiticial and immunomodulatory activities on L. infantum, T. 
cruzi, T. brucei, and P. falciparum. Besides that, temporins, magainin 2, and indolicidin can improve 
the efficiency of these venom enzymes through modulation of hydrolytic activity [137,142–145]. 
Because of that, some AMPs such as temporin and IDR-1018 may act as adjuvants, improving the 
effects and acting synergistically with other molecules, including AMPs [146]. 

5. Protozoonosis 

5.1. Chagas Disease 

T. cruzi is a parasitic protozoan and the causative agent of American trypanosomiasis, also 
known as Chagas disease (CD). CD is a vector-borne illness transmitted to animals and people 
predominantly by blood-sucking bugs (kissing bugs), mediated via infected insect’s feces, released 
during blood meals (Figure 3) [147–149]. The most important insects responsible for transmission of 

Figure 2. Schematic overview of a protozoan cell with various internal targets (highlighted in red)
of AMPs.

4.2. Immune Modulatory Effects

Several AMPs also are able to modulate the host immune system, displaying specificity toward a
variety of immune responses: activation, chemotaxis, and differentiation of leukocytes, macrophage
activation, degranulation of mast cells, changes in dendritic cell and adaptive immune responses,
angiogenesis, cell proliferation, suppressing lactic acid formation, wound healing, controlling
reactive oxygen, and nitrogen compounds and repressing inflammation through down-regulation
of proinflammatory chemokines and pathogen antigens [107,129–139]. Generally, studies involving
immune modulation of mammals by AMPs are done with bacteria. However, in view of some
similarities in immune system responses against microorganisms, mammals’ immune modulation
against protozoan parasites may present great similarities or in some cases even be identical to the
bacterial model [140].

Most AMPs act through upregulation and activation of human immune system; however some
AMPs work in a totally opposite way, inhibiting the inflammatory response through suppression of
pro-inflammatory cytokines [132,140,141]. Innate defense regulators (IDR) are synthetic versions of
natural AMPs, like IDR-1018. These peptides could be potential new drugs for treatment of severe
malaria, since they decrease the harmful neural inflammation caused by Plasmodium infection, which is
related to malaria patients’ mortality [132,141]. Phospholipase A2 from Bothrops marajoensis and Apis
mellifera venom has shown antiparasiticial and immunomodulatory activities on L. infantum, T. cruzi,
T. brucei, and P. falciparum. Besides that, temporins, magainin 2, and indolicidin can improve the
efficiency of these venom enzymes through modulation of hydrolytic activity [137,142–145]. Because
of that, some AMPs such as temporin and IDR-1018 may act as adjuvants, improving the effects and
acting synergistically with other molecules, including AMPs [146].
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5. Protozoonosis

5.1. Chagas Disease

T. cruzi is a parasitic protozoan and the causative agent of American trypanosomiasis, also known
as Chagas disease (CD). CD is a vector-borne illness transmitted to animals and people predominantly
by blood-sucking bugs (kissing bugs), mediated via infected insect’s feces, released during blood meals
(Figure 3) [147–149]. The most important insects responsible for transmission of T. cruzi are members
of Rhodnius, Triatoma, and Panstrongylus genera, which belong to the Triatominae subfamily [150].
Only two drugs are currently used in the clinical treatment of CD—benznidazole and nifurtimox.
In spite of the fact that they are highly toxic, and their efficacy profile is far from ideal, both medicaments
have been the frontline treatment for T. cruzi for nearly 50 years. Although both drugs are classified as
essential by the WHO, they are not yet registered in Europe [148,150,151]. The use of benznidazole is
approved by the FDA, but the need of high administered doses, the long period of treatment, the high
incidence of side effects and the marked adverse reactions are some problems reported in its use.
On the other hand, Nifurtimox is not currently FDA-approved [148,152,153]. Alongside this, T. cruzi
strains resistant to these drugs were reported [154]. Therefore, there is a great need for new and safe
parasitic drugs, especially due to the lack of efficiency of the main drugs on the market.
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Anti-Chagas diseaseAMPs

The AMPs that exhibited toxicity and anti-Trypanosoma cruzi activity are summarized in Table 1,
and the activity of the listed AMPs on specific stages of the life cycles is highlighted in Figure 3.

Melittin is an AMP from the western honeybee, A. mellifera, and the most abundant compound
found in this insect venom. It is a 26-residue highly hydrophobic peptide, with 2.85 kDa molecular
weight, presenting a small hydrophilic C-terminus, due to the presence of lysine and arginine amino
acids. These features suggest that the peptide exerts its initial action at the parasitic membrane,
and thanks to its amphipathic nature, the α-helical peptide binds to the membrane, causing
destabilization. Melittin-treated epimastigote and amastigote cells presented changes in growth,
viability and morphology, suggesting a predominantly autophagic death pathway. In addition, melittin
exerts a calcium influx and does not disrupt the membrane permeability of T. cruzi bloodstream form,
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possibly involving apoptosis-like cell death, through an electrogenic process in a receptor-independent
way. These results show that the same compound can induce different cell death mechanisms.
The hemolytic effect of melittin does not make it so attractive to the pharmaceutical industry, but
the use of hybrid AMPs, such as the hybrid of cecropin/melittin, substantially lessens this unwanted
effect [155–159].

Apidaecin 14 is another AMP isolated from western honeybee venom. This insect toxin is
heat-stable, 18 residues long, with 2.1 kDa, belonging to the proline-rich family of apidaecins, and
differently from melittin, it is not an α-helical peptide, but a linear peptide with C-terminal amidation.
It was bioassayed against T. cruzi epimastigotes with an innovative approach. In 2010, Fieck and
co-workers used paratransgenesis to control T. cruzi in the vector Rhodnius prolixus. For this, they
heterologously expressed different AMPs, using the symbiont microorganism Rhodococcus rhodnii,
present in the same niche as the T. cruzi parasite: the insect’s gut. Apidaecin 14 showed lethality
to T. cruzi with low toxicity to R. rhodnii. Surprisingly, the synergistic treatment of apidaecin with
other AMPs (cecropin, magainin 2, or melittin) demonstrated high efficiency with half maximal
inhibitory concentration values on the nanomolar scale [160]. The mode of action of apidaecin 14
seems to be related to the interaction and inactivation of the heat shock protein DnaK, an essential
chaperone in several cytoplasmic cellular processes, including folding of nascent polypeptide chains,
avoiding aggregation of partially folded proteins, remodeling folding pathways, and regulating
activity [161,162].

Table 1. AMPs isolated from different venomous arthropods with activity against T. cruzi.

Source AMP Parasite Stage Inhibition Activity a Reference

Insect

Apis mellifera Melittin Epimastigote
Trypomastigote Amastigote

IC50 = 2.44 µg/mL
IC50 = 0.14 µg/mL
IC50 = 0.22 µg/mL

[155]

A. mellifera Apiadecin 14 Epimastigote LD100 = 199 µM [160]

Polybia paulista Mastoparan Epimastigote
Trypomastigote Amastigote

IC50 = 61.4 µM
IC50 = 5.31 µM b [124]

Dinoponera quadriceps M-PONTX-Dq3a Epimastigote
Trypomastigote Amastigote

IC50 = 4.7 µM
IC50 = 0.32 µM b [163]

D. quadriceps M-PONTX-Dq3b Epimastigote
Trypomastigote

IC50 = 48.8 µM
IC50 = 7.4 µM [163]

D. quadriceps M-PONTX-Dq3c Trypomastigote IC50 = 34.8 µM [163]

D. quadriceps M-PONTX-Dq4e Epimastigote
Trypomastigote Amastigote

IC50 = 23.5 µM
IC50 = 4.7 µM b [163]

Scorpion

Tityus stigmurus Stigmurin Epimastigote
Trypomastigote

GI = 90% (25µM)
GI = 100% (25µM) [164]

Spider

Cupiennius salei Cupiennin 1a Amastigote IC50 = 0.92 µM [165]

IC50: Half maximal inhibitory concentration. LD100: Absolute lethal dose. GI: growth inhibition. a 24 h of treatment.
b Exhibited inhibition, but IC50 was not calculated.

Mastoparan is 14 amino acids in length and amidated in the C-terminus, isolated from Polybia
paulista wasp venom with a molecular weight of 1.66k Da. The peptide is rich in hydrophobic and basic
residues, which enable the formation of the secondary α-helical structure of the peptide. Unlike other
AMPs, mastoparan exerts its toxicity by a unique mechanism. It inhibits glyceraldehyde-3-phosphate
dehydrogenase from T. cruzi (TcGAPDH), a key enzyme in the glycolytic pathway. In addition,
this peptide is related to ROS induction and mitochondrial disruption in all T. cruzi morphological
forms, leading the cells to energy collapse [124].

Four different biotoxins active against T. cruzi were isolated from the venom of the New World
giant ant D. quadriceps: M-PONTX-Dq3a, M-PONTX-Dq3b, M-PONTX-Dq3c, and M-PONTX-Dq4e.
M-PONTX-Dq3b (13-residue peptide) and M-PONTX-Dq3c (11-residue peptide) are fragments of
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M-PONTX-Dq3a (23-residue peptide), with molecular weights of 1.5 kDa, 1.32 kDa, and 2.56 kDa,
respectively. M-PONTX-Dq4e is the longest dinoponeratoxin, with 30 amino acids in length and
3.35 kDa. The four toxins present amidation at their C-terminus by post-translation modifications
and the α-helical secondary structure. Among these, M-PONTX-Dq3a represents the most promising
peptide from D. quadriceps, since it inhibits all T. cruzi developmental forms, including intracellular
amastigotes. M-PONTX-Dq3a toxin has a high molecular weight and net charge, when compared to
other dinoponeratoxins. This could be correlated with the high susceptibility of trypomastigote against
this peptide, since this developmental form shows overexpression of sialic acid and mucin glycoproteins,
negatively charged components of the parasitic plasmatic membrane. Against epimastigotes,
M-PONTX-Dq3a showed inhibition rates 45 times lower than benznidazole, the first-line treatment
for CD. Biochemical and morphological evidences suggest necrosis as the major death pathway of
this AMP. These results against the developmental forms of T. cruzi are in agreement with the WHO
guidelines for prospection of new drugs [163,166].

The α-helical peptide stigmurin, isolated from venom of the scorpion T. stigmurus, showed high
antiparasitic activity on trypomastigote and epimastigote forms. This cationic peptide is formed by
17 amino acid residues and has 1.79 kDa molecular weight, with low hemolytic activity. Total growth
inhibition of trypomastigote was achieved with a concentration of 25 µM of the toxin. Bioassays
against epimastigotes with the same peptide concentration were able to inhibit 90% of parasite growth.
Interestingly, rational designed peptides (StigA6, StigA16, StigA25, and StigA31) with higher net
charge, increase in α-helix percentage and hydrophobic moment were able to inhibit the parasites with
lower concentrations, when compared to native stigmurin. The analog peptides StigA6 and StigA16
presented 100% growth inhibition with a tenfold smaller dose, showing that rational design could be a
promising tool to obtain effective new drugs. Stigmurin and the analogue peptides probably cause
parasite death through interaction and destabilization of the cell membrane [164,167].

5.2. Human African Trypanosomiasis

T. brucei is a microscopic parasite and the disease-causing agent of Human African trypanosomiasis
(HAT), also known as sleeping sickness, an illness spread via the bite of infected blood-feeding tsetse fly
(genus Glossina) (Figure 4). Two different forms of the disease are known, depending of the subspecies
of the parasite involved—West African trypanosomiasis (Gambian sleeping sickness) caused by T. brucei
gambiense is responsible for the slow-progressing form. T. brucei rhodesiense is, in turn, behind the
faster-progressing form, East African trypanosomiasis (Rhodesian sleeping sickness). Each subspecies
of T. brucei is transmitted by different species or subspecies of Glossina [105,148,168]. Gambian sleeping
sickness is doubtless the most common and widespread form of HAT, representing 98% of reported
cases. In contrast, Rhodesian sleeping sickness is a zoonotic pathogen, affecting humans sporadically
and responsible for only 2% of reported cases [168–170].

Sleeping sickness is curable with the right diagnostic approach and treatment but is lethal if
untreated. The treatment in most cases needs much effort, mainly because of the logistic difficulties of
drug delivery and access by professionals in rural areas for diagnosis and therapy administration.

The selection of therapy depends on both disease stage and the subspecies of the parasite.
Currently, there are five first-line drugs routinely used against HAT. Pentamidine and suramin are
used to treat first stage of Gambian and Rhodesian sleeping sickness, respectively. The second stage
of T. brucei gambiense is treated with a combination of nifurtimox-eflornithine, which presents high
trypanocidal efficiency, but the need for daily intravenous infusion and multiple administrations
make this therapy regime difficult. For more than 70 years, the only treatment against East HAT has
been Merlarsoprol, an arsenic-derived drug that presents many adverse reactions and highly toxicity,
including encephalopathic reaction with mortality rate of approximately 10% of treated individuals.
A new and revolutionary oral treatment, fexinidazole, was developed in 2018, and is able to cure both
late and first stages of Gambian sleeping sickness. This pill-based therapy has received a positive
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scientific opinion from the European Medicines Agency and is already registered in the country with
the highest incidence of cases, Congo [105,168,171].
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Anti-Human African Trypanosomiasis AMPs

The only described AMP isolated from a venomous arthropod and active against T. brucei is the
α-helical spider toxin Cupiennin 1a, a 35-residue cytolytic peptide isolated from the venom of the tiger
wandering spider Cupiennius salei (Figure 4). This 3.5 kDa peptide exhibits broad activity against the
parasites T. brucei rhodesiense, T. cruzi, and P. falciparum, with growth inhibition values at the nanomolar
scale against T. brucei rhodesiense bloodstream forms. On the other hand, it also shows high cytolytic
activity against negatively charged mammalian cells, mediated especially by sialic acid present in cell
membranes, contributing to toxin-membrane interaction [165].

5.3. Leishmaniasis

Leishmaniasis is a vector-borne disease that is caused by obligate intracellular protozoan of
the Leishmania genus [172,173]. Dipterans from the Phlebotomus genus are responsible for parasite
transmission in the new world, while Lutzomyia genus causes transmission in the old world [173,174].
Leishmania are a complex group of unicellular parasites that alternately infect insects (intermediate host)
and mammals (definitive host). About 70 different animal species are considered natural reservoir
hosts of Leishmania parasites and more than 20 Leishmania species related to human infection [175,176].
There are several clinical presentation forms of leishmaniasis in humans. The three most common
forms are cutaneous leishmaniasis (CL), visceral leishmaniasis (VL), and mucocutaneous leishmaniasis
(MC). The Leishmania parasite, differently from other protozoan parasites, has a simple life cycle with
only two digenic forms during the whole life cycle (Figure 5) [177,178].

Leishmanial treatment is conditioned by several factors, comprising type of disease, concomitant
pathologies, parasite species and geographic location [173]. A huge number of drugs for the treatment
of each leishmaniasis form are available, but pentavalent antimonials (stibogluconate and meglumine
antimoniate) have been the first line and most used compounds in the treatment of all leishmaniasis
forms for decades [179,180]. Pentavalent antimony administration is done parenterally for 28 days,
making monitoring by health professionals necessary. In addition, these medicaments present high
toxicity, adverse effects and an increase in parasite drug resistance [181–183]. For CL, other drugs
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like pentamidine and miltefosine are used, despite the excessive price, high toxicity and possible
teratogenic side effects [181,184]. In India, miltefosine was used also to treat VL through oral
administration [185], but a long treatment period increases the possibility of developing drug
resistance [186]. The use of Amphotericin B has increased worldwide for VL treatment, but it
causes significant nephrotoxicity [175,187,188].
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Antileishmanial AMPs

The AMPs that exhibited toxicity and anti-Leishmania activity are summarized in Table 2, and the
activity of the listed AMPs on specific stages of the life cycles is highlighted in Figure 5.

Gomesin was the first AMP isolated from a spider with toxicity against protozoan parasites.
This defensin-type peptide was isolated from Acanthoscurria gomesiana hemocytes, possessing 18
amino acid residues and 2.27 kDa with four cysteine residues that form two internal disulfide bridges,
contributing to stability and also responsible for the β-sheet structure of the peptide. Gomesin causes
in vitro inhibition growth of L. amazonensis and L. major promastigotes at micromolar concentrations,
which could be related to the high presence of anionic phospholipids and ergosterol in the plasma
membrane of these parasites, causing a more negative net charge when compared with mammalian
cells. This will allow the peptide to interact with the membrane, causing rupture and loss of cellular
homeostasis [189,190].

Solitary wasp venoms can be a rich source of linear cationic α-helical peptides, killing parasites
through membrane targeting. Decoralin (1.25 kDa), isolated from the venom of the solitary eumenine
wasp Oreumene decorates, together with anoplin (1.15 kDa) from Anoplius samariensis, were bioassayed
against L. major promastigotes. These peptides present some structural similarity, although decoralin has
a linear chain length of 11 amino acid residues, one more residue than anoplin. Both peptides exhibited
inhibition of promastigotes, despite a slightly high peptide concentration, but their hemolytic effect was
quite low. The native peptide decoralin was synthesized with a C-terminal amidation (decoralin-NH2),
and the analogous peptide demonstrated a sixfold reduction in the peptide concentration to exert the
same growth inhibition as native decoralin, with no changes in hemolysis, possibly because C-terminal
amidation stabilizes the α-helical conformation. All these features make the use of these toxins
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advantageous for chemical structure modifications and the improvement of biological properties [191].
A similar study carried out by Rangel and co-workers isolated four new linear cationic α-helical insect
toxins from another two species of solitary wasps: two mastoparan peptides were isolated from Eumenes
rubrofemoratus, the toxins eumenitin-R and eumenine mastoparan-ER (EMP-ER), and other two from E.
fraterculus, eumenitin-F and eumenine mastoparan-EF (EMP-EF). Additionally, other two previously
reported peptides were tested against L. major promastigotes, eumenitin from E. rubronotatus [192],
and eumenine mastoparan-AF (EMP-AF) from Anterhynchium flavomarginatum micado [193]. All these
six peptides showed some physicochemical and biological similarities: antileishmanial activity, short
linear length (14 to 15 amino acids long), small molecular weight (1.48 to 1.65 kDa), polycationic
features, and α-helical configuration after electrostatic interaction with anionic membrane. Among
these peptides, EMP-ER, EMP-EF, EMP-AF present a C-terminal amidation, which may explain why
EMP-ER demonstrates greater inhibitory effect against the promastigote form of the parasite [194].
Melittin showed robust inhibitory activity against L. major promastigotes, despite also exhibiting toxic
effects on human dendritic cells [195]. A hybrid synthetic peptide using part of the melittin sequence
and Cecropin A exhibited an enhancement in leishmanicidal activity and a decrease in host immune
cell toxicity [196].

Table 2. AMPs isolated from different venomous arthropods with activity against Leishmania.

Source AMP Activity against Parasite Stage Inhibition Activity a Reference

Insect

Apis mellifera Melittin L. major
L. panamensis Promastigote EC50 = 74.01 µg/mL

EC50 ≥ 100 µg /mL [195]

Anoplius samariensis Anoplin L. major Promastigote IC50 ≥ 87 µM [191]

Oreumenes decoratus Decoralin L. major Promastigote IC50 = 72 µM [191]

Eumenes rubronotatus Eumenitin L. major Promastigote IC50 = 35 µM [191]

Eumenes fraterculus Eumenitin-F L. major Promastigote IC50 = 52 µM [194]

E. fraterculus
Eumenine

mastoparan-EF
(EMP-EF)

L. major Promastigote IC50 = 40 µM [194]

E. rubrofemoratus eumenitin-R L. major Promastigote IC50 ≥ 62 µM [194]

E. rubrofemoratus
Eumenine

mastoparan-ER
(EMP-AR)

L. major Promastigote IC50 = 20 µM [194]

Anterhynchium
flavomarginatum micado

Eumenine
mastoparan-AF

(EMP-AF)
L. major Promastigote IC50 = 35 µM [194]

Tetramorium bicarinatum Bicarinalin L. infantum Amastigote IC50 = 1.5 µM [197]

Spider

Acanthoscurria gomesiana Gomesin * L. amazonensis
L. major Promastigote IC50 = ~5.0 µM

IC50 = ~2.5 µM [189,190]

* Peptides isolated from venomous animals, but not from venom glands. EC50: Half maximal effective concentration.
IC50: Half maximal inhibitory concentration. a 24 h of treatment.

Bicarinalin is a recently characterized α-helical peptide and the first isolated from ants’ venom
(Tetramorium bicarinatum) with trypanocidal activity. This biotoxin is a cystein-free polycationic peptide,
with amidated C-terminal, 20 residues in length and 2.21 kDa, presenting very low hemolytic activity
against human erythrocytes. Bicarinalin showed a broad spectrum of antimicrobial activities, a
relatively long half-life stability for blood proteases (about 15 h) and slight cytotoxicity on human
lymphocytes; in vitro bioassays against L. infantum intracellular amastigotes indicated parasiticidal
activity at low concentrations. Thus, the membrane targeting bicarinalin shows signs of being a
possible candidate for the development of a new leishmanicidal drug [197].

Promising studies showed the crude venom of Tityus discrepans, a medically important Venezuelan
scorpion, inhibited the growth of L. mexicana, L. braziliensis, and L. chagasi promastigote forms, leading
to drastic morphological alterations and consequently parasite death [198]. A preliminary study with
crude venom of D. quadriceps giant ant displayed inhibition of promastigote forms of L. amazonensis.
Flow cytometry and confocal microscopy analyses suggested involvement of necrotic and apoptotic
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pathways [199]. Interestingly, hybrid AMPs present notable in vitro antileishmanial activity with
enhanced activity on the parental peptides and less hemolytic effects, in both life forms of Leishmania,
intracellular amastigotes and extracellular promastigotes, besides a broad spectrum against different
varieties of Leishmania [159,196,200].

5.4. Malaria

There are five possible protozoa that may be related to malaria, all belonging to the Plasmodium
genus: P. vivax, P. falciparum, P. malariae, P. ovale, and P. knowlesi [201]. Transmission occurs through the
bite of female mosquitoes of the genus Anopheles carrying the protozoan (Figure 6) [202]. The chosen
treatment depends on the type of Plasmodium, the severity of the disease and the locality in which the
disease was acquired [148]. This identification is important to determine the resistance probability
of the organism to a particular drug. Among the antimalarial drugs used, the first-line drugs are
chloroquine, atovaquone-lumefantrine (Malarone), artemether-lumefantrine (Coartem), doxycycline,
primaquine, and tafenoquine [203–205].Toxins 2019, 11, x FOR PEER REVIEW 13 of 27 
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Antimalarial AMPs

The AMPs that exhibited toxicity and anti-malaria activity are summarized in Table 3, and the
activity of the listed AMPs on specific stages of the life cycles is highlighted in Figure 6.

Scorpine, an AMP from Pandinus imperator scorpion venom, has 75 amino acids in length,
a molecular mass of 8.3 kDa and three disulfide bridges, and it presents anti-bacterial and anti-malarial
activities. The results showed that the peptide was active in the sexual stages of the parasite. Scorpine
inhibited ookinete and gamete development. When compared with shiva-3, a synthetic analog of
cecropin peptide with antiparasitic activity, scorpine exhibited more potent toxicity in gametes and
ookinetes than shiva-3 [206].

Meucin-24 and Meucin-25 are Mesobuthus eupeus scorpion venom AMPs, discovered through
investigation of the cDNA venom gland library. Meucin-24 has 24 amino acids, 2.75 kDa and a high
sequence identity with antimicrobial and K+-channel blocker toxins, also possessing N-terminus
homology with melittin. Meucin-25 has 25 amino acids, 3.1 kDa, but no sequence identity with
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antimicrobial toxins described. They exhibited activity against P. berghei, P. falciparum, and also dipteran
cells, making them potentially attractive for use with double action as a disease vector control tool
and also as an antimalarial molecule. In water, meucin-24 showed a random coil conformation and
meucin-25 a β-sheet structure. In TFE, both showed an α-helical formation [207].

MeuTXKβ1, a Mesobuthus eupeus venom toxin, did not show an effect on Nav and Kv channels
tested at concentration of 1 µM, and presented low antibacterial action, with a lethal concentration of
21 µM. However, activity against P. berghei development was stronger than the activity presented by
other synthetic peptides, like shiva-3 [208]. In water, meuTXKβ1 showed 17% of α-Helix and 21% of
β-sheet conformation and, in 50% of TFE, it showed 55% of α-Helix and 17% of β-sheets [209].

Psalmopeotoxin I and psalmopeotoxin II are AMPs isolated from Psalmopoeus cambridgei,
the Trinidad chevron tarantula, also known as Psalmopoeus cambridgei Falciparum killer (PcFK). Both
psalmopeotoxin I (PcFK1) and psalmopeotoxin II (PcFK2) peptides present three disulfide bridges,
differing in the number and composition of amino acids in their structure. PcFK1 is a 33-residue
peptide with 3.63 kDA, while PcFK2 is shorter, with a length of 28 amino acids and 2.96 kDa [210].

Gomesin showed activity against some bacteria and fungi and recently was compared to another
five peptides with the same structure, in order to comprise the interconnection between the structural
properties and the antimicrobial activity, deducing that high amphipathicity and low hydrophobicity
of AMPs are related to more toxicity activity [211]. Moreira and co-workers tested gomesin against
P. berghei and P. falciparum, besides analyzing the effect on the mosquito, aiming for antimalarial activity
on the vector. The results showed an inhibition of gamete development and also of ookinete formation
in P. berghei. In addition, the spider peptide displayed inhibition against the intraerythrocytic stage
of P. falciparum. Gomesin manifested activity against oocysts in vivo for both parasite species, in the
vector A. stephensi, and did not affect the mosquito’s development [212].

Table 3. AMPs isolated from different venomous arthropods with activity against Plasmodium.

Source AMP Activity against Parasite Stage Inhibition Activity Reference

Insect

Apis mellifera Melittin P. berghei
P. falciparum Ookinete GI = 100% (50 µM)

GI = 60% (50 µM) [213]

Anoplius samariensis Anoplin P. berghei Ookinete GI = 100% (100 µM) [213]

Vespula lewisii Mastoparan X P. berghei
P. falciparum Ookinete GI = 100% (100 µM) [213]

Scorpion

Pandinus imperator Scorpine P. berghei Gametocyte
Ookinete

ED50 = 10 µM
ED50 = 0.7 µM [206]

Mesobuthus eupeus Meucin-24 P. berghei
P. falciparum

Ookinete
Trophozoite

GI = 40% (20 µM)
GI = 100% (10 µM) [207]

M. eupeus Meucin-25 P. berghei
P. falciparum

Ookinete
Trophozoite

GI = 50% (20 µM)
GI = 100% (10 µM) [207]

M. eupeus MeuTXKβ1 P. berghei Ookinete GI = 89–98.8% (10-20 µM) [209]

Spider

Psalmopoeus cambridgei Psalmopeotoxin I
(PcFK1) P. falciparum Trophozoite IC50

c = 1.59 µM [210]

P. cambridgei Psalmopeotoxin II
(PcFK2) P. falciparum Trophozoite IC50 = 1.15 µM [210]

Acanthoscurria gomesiana Gomesin * P. berghei
P. falciparum

Trophozoite
Ookinete
Oocysts

IC50 = 46.8 µM
GI = 100% (50 µM)
GI = 86% (100 µM)

[212]

A. gomesiana Gomesin * P. falciparum Oocysts GI = 100% (100 µM) [212]

Cupiennius salei Cupiennin 1a P. falciparum Trophozoite IC50 = 0.032 µM [165]

Tick

Ixodes ricinus DefMT2 * P. falciparum Trophozoite GI = 70% (50 µM) [214]

I. ricinus DefMT3 * P. falciparum Trophozoite GI = 50% (50 µM) [214]

I. ricinus DefMT5 * P. falciparum Trophozoite GI = 100% (50 µM) [214]

I. ricinus DefMT7 * P. falciparum Trophozoite GI = 30% (50 µM) [214]

* Peptides isolated from venomous animals, but not from venom glands. GI: growth inhibition. ED50: Median
effective dose. IC50: Half maximal inhibitory concentration.
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Cupiennin 1a displayed a non-stereospecific cytolytic activity against cancer cells, human blood,
bacteria, trypanosomes and Plasmodium. This toxin was bioassayed against P. falciparum showing very
low IC50 values, but a high hemolytic activity [165].

I. ricinus is a European tick that encodes antimicrobial peptides with action on pathogens such as
bacteria and fungi. Cabezas-Cruz and co-workers studied the defensin peptides DefMT2, DefMT3,
DefMT5, DefMT6 and DefMT7 against the malaria parasite. The results showed that the most
effective peptide against P. falciparum was DefMT5. In contrast, DefMT6 did not show activity against
P. falciparum, despite the similarity of these peptides. Regarding antibacterial and antifungal actions,
DefMT3, DefMT5, and DefMT6 showed activity against both microorganisms, but DefMT2 and DefMT7
were not able to inhibit these pathogens [214]. All peptides have α-helix (N-terminus) and antiparallel
β strand (C-terminus). Only DefMT7 does not present a β strand at the C-terminus [215].

Carter and co-workers tested several Hymenopteran AMPs that could show toxic effects on
Plasmodium development (P. berghei and P. falciparium), namely melittin, anoplin, and mastoparan
X isolated from A. mellifera [216], A. samariensis [217], and V. lewisii [218], respectively. Synergistic
effects were also observed in treatments with two different peptides. Higher inhibition effect on the
development of Plasmodium was observed when instead of using a single peptide (50 µM), two different
peptides were administered together (25 µM each). For example, anoplin (25 µM) and mastoparan X
(25 µM) showed a better inhibition effect than only mastoparan X (50 µM) [213].

5.5. Toxoplasmosis

T. gondii is a protozoan that causes toxoplasmosis [219]. More than 40 million people worldwide
have the parasite, although few have symptoms. Therefore, this disease is considered one of the
neglected parasite infections (Figure 7) [148]. A few drugs for the treatment of toxoplasmosis are
available, such as pyrimethamine and sulfadiazine [220], but studies using AMPs in this area are
promising. So far, anti-Toxoplasma peptides were isolated from spider and tick, namely Lycosin-I [221]
and Longicin [222], respectively.
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Anti-Toxoplasma AMPs

The AMPs that exhibited toxicity and anti-toxoplasmosis activity are summarized in Table 4, and
the activity of the listed AMPs on specific stages of the life cycles are highlighted in Figure 7.

Table 4. AMPs isolated from different venomous arthropods with activity against T. gondii.

Source AMP Activity Against Parasite Stage Inhibition Activity a Reference

Spider

Lycosa singoriensis Lycosin-I T. gondii Tachyzoite IC50
b = 28 µM

IC50
c = 10.08 µM

[221]

Tick
Haemaphysalis longicornis Longicin * T. gondii Tachyzoite - d [222]

* Peptides isolated from venomous animals, but not from venom glands. a 24 h of treatment. b Inhibitory effects
on proliferation of intracellular tachyzoites. c Inhibitory effects on invasion of parasite into host cells. d Exhibited
inhibition, but IC50 was not calculated.

Lycosin-I, from L. singoriensis, is a linear α-helical peptide with 24 amino acids and molecular
weight of 2.89 kDa that inhibited T. gondii proliferation and invasion. The peptide was able to cause
morphological changes in the parasite, causing damage to organelles, and vacuolization, signs of
apoptosis-like death, but further studies are necessary to elucidate the death pathway caused by this
spider toxin [221]. Longicin is a H. longicornis defensin peptide with β-sheet at the C terminus [223]
that showed antibacterial and antiparasitic activities. The peptide precursor is formed by a 74-amino
acids signal peptide, and the mature toxin is 52 residues in length, with 5.82 kDa. Tanaka and
co-workers studied the peptide’s effect against T. gondii during the tachyzoite stage. The results showed
morphological cell changes in cytoplasm and nuclei, consequently growth inhibition and parasite
death, but the death pathway related to this peptide is still unclear [222].

6. Future Prospects

Several studies have been developed over the years, involving a wide variety of venomous
animal AMPs tested against pathogenic protozoa, resulting in a bank with over 100 active molecules
and potential agents for the development of novel peptide-based antiprotozoal chemotherapies [54].
Nevertheless, the need for new antiparasitic drugs is still urgent, making the prospection of new sources
of bioactive molecules very attractive. Among the venomous arthropods, the centipedes (Chilopoda)
comprise over 3000 species and are amongst the most remarkable sources of venom peptides. Several
studies showed a significant antibacterial activity with over 30 AMPs isolated from these venomous
animals; they are therefore a possible source of new compounds against protozoonosis [224,225].

Bioengineering tools to circumvent cytotoxicity and hemolysis problems, as well to enhance
parasiticidal activity, were explored to overcome the drawbacks of therapeutic natural peptides.
Structural analogs of natural AMPs and hybrid peptide formulations performed well in improving
biological activity, including the analogs of stigmurin, stigA6, and stigA16, or CM11 and
Oct-CA(1–7)M(2–9), melittin/cecropin A hybrids [164,167,196]. Moreover, C-terminal amidation
of decoralin significantly decreased the values of IC50 when compared with the native peptide [191].
In order to make the net charge of the peptide more negative, amino acid substitutions could be another
strategy to improve the biological activity. AMPs also demonstrated the potential for technological
innovation due to synergistic interactions exhibited when used in combination with conventional
antibiotics and other AMPs, drastically decreasing antimicrobial resistance [160,226].

The use of synthetic AMPs is still limited by the high production price when compared to
conventional organic molecule drugs, and isolation from natural sources is not a viable solution.
Studies have been carried out in the development of recombinant DNA methods to successfully
synthesize and purify AMPs for cost-effective therapeutic application, but the commercial viability of
these methods has yet to be evaluated [227–229]. In addition, since ribosome-synthesized AMPs are
expressed by unique genes, they can be considered for use in gene therapy for introduction directly into
infected tissue [61], possibly promoting a reduction in the cost associated with large-scale production
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and purification of AMPs. Application of new computational and experimental strategies aimed at
downsizing, stabilization and other druggability issues are likely to reduce prices in the near future.

Nevertheless, it is known that a long test period is required before AMPs are available on the
pharmaceutical market, as some adverse effects have yet to be overcome, such as hemolytic activity
and cytotoxicity. Until now, no AMPs from venomous arthropods have become available for the
treatment of parasitic diseases, but despite all the challenges involved in making AMPs a real treatment
for protozoan diseases, at least six AMPs are currently undergoing clinical development in various
therapeutic areas [63]. Pexiganan, the synthetic magainin analog, has reached phase III clinical trials.
This arginine-rich variant peptide is capable of inducing apoptosis in Leishmania [230–232]. Clinical
assays of the synthetic cecropin/melittin hybrid Oct-CA(1–7)M(2–9) were performed against naturally
acquired leishmaniasis in dogs. The effectiveness of the peptide was confirmed with the cure of canine
leishmaniasis after intravenous injection therapy, without observing side effects, even after six months
of treatment [200].

7. Conclusions

Due to poor sanitation, difficult access to safe water, and scarcity of basic care policies, protozoan
parasites still cause debilitating human diseases across the globe. In addition, there is a lack of interest
from the pharmaceutical market in chemotherapy treatments, lack of research for more effective
vaccines, and adverse effects of long-term parenteral treatments that cause toxicity in patients. Recently,
the WHO brought to the public a new prevention weapon and hope in the fight against malaria, the
first vaccine against P. falciparum. RTS, S/AS01 is the name of the vaccine that will provide partial
protection against malaria in young children, especially in Africa, through routine immunization
programs [233]. However, there is still a need for innovative treatments and tools to treat those
who cannot benefit from this immunization. Compared to other drugs developed for chronic and
noninfectious diseases, the use of protozoan-directed AMPs is still in its initial phase, although it
indicates attractive pharmaceutical action to combat parasitic diseases [234]. Although their application
is taking place very gradually, the new discoveries and research into medicinal peptides are proving to
be a reality for the treatment of protozoonosis. It is hoped that this compilation will develop prospects
for new strategies and paradigms in the application of AMPs, and AMP-based drugs should become a
reality in upcoming years.
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