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Abstract: Thanks to clinically newly introduced inhibitors of the mesenchymal–epithelial transition
(MET) receptor tyrosine-kinase, MET-gene copy number gain/amplification (MET-GCNG/GA)
and increased expression of the MET protein are considered very promising therapeutic targets
in lung cancer and other malignancies. However, to which extent these MET alterations occur
in malignant mesothelioma (MM) remains unclear. Thus, we investigated by well-established
immunohistochemistry and fluorescence in situ hybridization methods, the frequency of these
alterations in specimens from 155 consecutive MMs of different subtypes obtained from pleural or
peritoneal biopsies and pleurectomies. Thirty-three benign reactive mesothelial proliferations (RMPs)
were used as controls. MET-protein upregulation was observed in 35% of all MM-cases, though
restricted to predominantly epithelioid MMs. We detected low-/intermediate-level MET-GCNG/GA
in 22.2% of MET-overexpressing MMs (7.8% of whole MM-cohort) and no MET-GCNG/GA in the
other 77.8%, suggesting other upregulating mechanisms. In contrast, 100% of RMPs exhibited no
MET-upregulation or MET-GCNG/-GA. Neither MET exon 14 skipping mutations nor MET-fusions
were detected as mechanisms of MET overexpression in MM using RNA next-generation sequencing.
Finally, in two cohorts of 30 MM patients with or without MET overexpression (MET-positive/-
negative) that were matched for several variables and received the same standard chemotherapy,
the MET-positive cases showed a significantly lower response rate, but no significant difference
in progression-free or overall survival. Our results imply that MET overexpression occurs in a
substantial fraction of predominantly epithelioid MMs, but correlates poorly with MET-amplification
status, and may impact the likelihood of response to mesothelioma standard chemotherapy. The
predictive significance of MET-IHC and -FISH for possible MET-targeted therapy of MM remains to
be elucidated.

Keywords: MET; overexpression; gene amplification; malignant mesothelioma; immunohistochem-
istry; fluorescence in situ hybridization; patient outcome

1. Introduction

The transmembrane mesenchymal–epithelial transition (MET) receptor tyrosine-kinase
(RTK) is the receptor for hepatocyte growth factor (HGF), is encoded by the MET proto-
oncogene located on chromosome 7q21-31, and is normally expressed in several epithelial
and mesenchymal cell types. MET can activate several signaling pathways, including the
PI-3K/AKT, RAS-Rac/Rho, RAS-MAPK, JAK-STAT3, and phospholipase C pathways [1,2].
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Thereby, MET regulates cell proliferation, survival, differentiation, and motility during
processes such as morphogenesis, angiogenesis, cell proliferation, migration, invasiveness,
and metastasis development [1,2]. MET signaling has been found to be deregulated in a
variety of cancers through different mechanisms, such as overexpression of HGF or MET
protein and activating point mutations in the TK domain or affecting the splicing site
donor and acceptor regions near exon 14 of the MET gene (so-called “exon 14 skipping
mutations”). The latter results in alternative splicing, skipping of exon 14 and inhibition
of MET-protein degradation, ultimately leading to accumulation of catalytically active
MET. Additional mechanisms of constitutive activation of MET signaling in cancer cells are
MET gene fusions and MET-gene copy number gain/amplification (MET-GCNG/GA) [1,2].
Consequently, dysregulated MET represents an attractive potential therapeutic target in
several cancers.

The best example until now has been non-small-cell lung cancer (NSCLC), in which
MET exon 14 skipping mutations affecting the corresponding splicing sites and MET-
GCNG/GA occur in 3–5% and 1–6% of cases, respectively [2–5]. Overexpression of MET
protein has been reported in 25 to 75% of cases, depending on the antibody and cutoff value
used in the implemented immunohistochemistry (IHC) assays as well as the histological
NSCLC subtypes analyzed [2–5]. MET overexpression, MET-GCNG/GA, and MET exon 14
skipping mutations are considered negative prognostic markers in NSCLC [3–5]. Inhibition
of MET signaling is currently achievable in NSCLC patients using the MET/ALK/ROS
tyrosine-kinase inhibitor (TKI) Crizotinib or selective MET-TKIs (Capmatinib, Savolitinib,
Tepotinib, Cabozantinib), or MET or HGF monoclonal antibodies (mAbs), as well as MET
or HGF antibody–drug conjugates [2–5]. In addition to MET exon 14 skipping mutations
identified by next-generation sequencing (NGS) of DNA or RNA, MET-expression ana-
lyzed by IHC and MET-GCNG/GA status evaluated by fluorescence in situ hybridization
(FISH) are considered biomarkers for targeted anti-MET therapy in NSCLC [3–5]. Given
intratumor heterogeneity, direct morphological assessment of MET-overexpression and
MET-GCNG/GA in tumor specimens using IHC and FISH is deemed to be more sensitive
than NGS-based assessment of MET-amplification and more informative as to whether
the deregulated MET-receptor signaling can be targeted in a specific patient [4]. For this
reason, FISH has been the first approved and effective method employed to select NSCLC
patients with MET-amplification in clinical trials with MET inhibitors [2–5].

Malignant mesothelioma (MM) is a very aggressive and challenging cancer type
originating from mesothelial cells coating the pleura (roughly 90% of all MMs), or more
rarely other serosal membranes, such as the peritoneum (approximately 10% of all MMs),
pericardium or tunica vaginalis testis (<1%) [6]. Its pathogenesis is associated with expo-
sure to asbestos or asbestos-like fibers and inactivation of tumor suppressor genes such
as BAP1, CDKN2A, NF2, TP53, SETD2, or LATS2 [6–9] as main cancer drivers, which
represents a significant challenge for effective targeted therapy of MM. Given that for the
last two decades the approved frontline treatment for MM has been chemotherapy with the
combination of platin and pemetrexed, to which MM is very often poorly responsive, there
is a strong unmet need for more specific therapeutic targeting of this malignancy based
on its molecular alterations. In this respect, functional genomic studies have revealed that
oncogenic gain-of-function alterations are rare in MM, but have shown nonetheless the
involvement of deregulated signaling pathways and cellular processes, including those
depending on the activation of transmembrane RTKs, in the pathogenesis of MM (reviewed
in [9]). The possible reliance of MM cells on these alterations could represent vulnerabilities
to be exploited as potential therapeutic targets and is worth being investigated in detail.

With regard to RTKs, how MET is expressed in MM and whether it could represent a
target for this cancer type remains to be further elucidated. Although, preclinical inves-
tigations indicate that the HGF-MET axis may play an important role in mesothelioma-
genesis [10] and that MET can be upregulated in MM cell lines [11], MET-mutations
are extremely uncommon in MM tissue specimens or MM cell lines [7–9,11]. Similarly,
these genomic analyses have not reported MET-GCNG/GA in pleural MM [7–9], though
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one study described 1 out of 13 genomically profiled peritoneal MMs with high-level
MET-amplification, suggesting that a minor subset of these tumors could be driven by
this alteration [12]. Moreover, it is unclear whether the apparently low detection rate of
MET-GCNG/GA in MM using DNA/RNA-sequencing techniques could in fact reflect
intratumor heterogeneity resulting in the presence of this MET alteration only in minor,
difficult-to-detect MM cell populations within the tumor tissue. In any case, overexpression
of the MET receptor or its ligand HGF have been described in some cases of MM and in
certain MM cell lines displaying functional activity of MET signaling, whereas the normal
mesothelium has been reported devoid of MET expression [9,11]. Collectively, these data
suggest that a subgroup of MMs may depend on the expression and activation of the
MET receptor. Yet, only a few studies exploring the incidence of MET-GCNG/GA by
FISH and/or increased protein expression using IHC in MM have been reported. These
investigations have shown variable results attributable to differences in types of speci-
mens, specificity/sensitivity of analytical methods, and scoring procedures [13–15]. Thus,
to further clarify how MET is expressed in MM, we investigated the frequency of MET-
GCNG/GA and expression by FISH and IHC in 155 consecutive MM cases, employing
strictly defined criteria previously applied to a cancer type with significant heterogeneity
of MET abnormalities, such as NSCLC [16,17]. Furthermore, we addressed using RNA
next-generation sequencing (RNA-NGS) whether MET overexpression in MM samples
that did not display corresponding MET-GCNG/GA could be caused by MET exon 14
skipping mutations. Finally, we examined whether MET aberrations had a prognostic
impact or predicted likelihood of response to chemotherapy by comparing two groups
of MM patients with and without MET overexpression treated at our institution during
2015–2017, i.e., with a minimum 3 years of follow-up.

2. Results
2.1. MET Gene Transcript Profile in MM

As initial assessment of MET gene expression in human MM, we looked at the ex-
pression of the MET mRNA in the public GEPIA database for gene expression profiling
analysis in the different cancer types sampled for “The Cancer Genome Atlas” (TCGA)
project [18,19]. The database contains data from 87 MMs collected as part of the TCGA,
as initially described by Hmeljak et al. [8]. The GEPIA’s dot plot of the MET transcript
expression profile across the different TCGA tumor samples (and for most tumors, but
not MM, also paired normal tissues) (Figure 1) showed a median expression level in MM
comparable to other cancer types, such as lung squamous carcinoma and adenocarci-
noma, colorectal adenocarcinomas, pancreatic adenocarcinoma, or esophageal and gastric
carcinoma, though the expression range was much wider in these malignancies than in
MM, particularly in lung adenocarcinoma, which could reflect the fact that a subset of
this cancer type is characterized by high-level MET-amplification [4,5,16,17]. Moreover,
the median expression level of MET transcript in MM was higher than that in mammary,
ovarian, and prostatic adenocarcinomas or glioblastomas, but lower than in melanomas,
thyroid carcinomas or papillary renal cell carcinoma. Although it is difficult to extrapolate
data regarding the actual MET-receptor expression in MM from this analysis, the data
from GEPIA indicated that the MET gene transcript is expressed at significant levels in
MM. Thus, we decided to use IHC to further elucidate the expression of this receptor in
human MM.
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Figure 1. MET gene expression profile in different cancer types as part of the TCGA. Dot plot of the MET transcript ex-
pression profile across the different TCGA tumor samples (red dots) and paired normal tissues (green dots) adapted from 
the public GEPIA web server [18,19]. The horizontal black bars represent median values. The abbreviations for the ana-
lyzed cancer types are explained in Table S1. MESO is the abbreviation for MM, which is represented without paired 
normal tissue and is further indicated by the black arrow. 

2.2. Expression of MET-Receptor in MM Assessed by IHC 
For this study, we immunostained formalin-fixed, paraffin-embedded (FFPE) tissue 

sections according to a previously established protocol utilizing the anti-MET SP44 mon-
oclonal antibody and a MET-expression scoring system [17]. As described in Materials 
and Methods, endothelial cells or bronchial/alveolar epithelial cells were used as internal 
positive control (Supplementary Figure S1). Before analyzing the main cohort of MM cases 
for the study, we assessed whether the neoadjuvant platin-pemetrexed chemotherapy 
provided to operable MM patients would have any effect on MET expression in their 
pleurectomy/decortication (P/D) specimens as compared to their chemotherapy-naïve di-
agnostic biopsies. Thus, we performed a pilot immunohistochemical investigation on ar-
chival MM samples that we had used in previous reports [20–22] and, among them, we 
identified 10 diagnostic biopsies displaying “MET-negative” expression (immunoscore 
0/1+ as defined in the Materials and Methods), 10 displaying a MET immunoscore of 2+, 
and 10 displaying an immunoscore of 3+. Thereafter, we compared these results with the 
immunostainings in their corresponding patient-matched P/D specimens. We detected no 
difference in the paired samples, i.e., all originally MET-negative cases continued to dis-
play an immunoscore of 0/1+ in their corresponding P/D specimens, and by the same to-
ken, all the cases with diagnostic biopsies displaying a MET immunoscore of 2+ and 3+ 
maintained the same expression in the tissue sections from the patient-matched P/D sam-
ples (a representative example is shown in Supplementary Figure S2). 

Consistent with the fact that MET is a transmembrane RTK, we also observed in both 
diagnostic biopsies and P/D specimens that the expression of MET was predominantly in 
the membrane of tumor cells, though a certain positivity was also visible to a lesser extent 
in the cytoplasm (Figure 2). Hence, we concluded from the pilot study that neoadjuvant 
chemotherapy caused no significant change in the expression of MET in the P/D tissue 

Figure 1. MET gene expression profile in different cancer types as part of the TCGA. Dot plot of the MET transcript
expression profile across the different TCGA tumor samples (red dots) and paired normal tissues (green dots) adapted from
the public GEPIA web server [18,19]. The horizontal black bars represent median values. The abbreviations for the analyzed
cancer types are explained in Table S1. MESO is the abbreviation for MM, which is represented without paired normal
tissue and is further indicated by the black arrow.

2.2. Expression of MET-Receptor in MM Assessed by IHC

For this study, we immunostained formalin-fixed, paraffin-embedded (FFPE) tissue
sections according to a previously established protocol utilizing the anti-MET SP44 mon-
oclonal antibody and a MET-expression scoring system [17]. As described in Materials
and Methods, endothelial cells or bronchial/alveolar epithelial cells were used as internal
positive control (Supplementary Figure S1). Before analyzing the main cohort of MM
cases for the study, we assessed whether the neoadjuvant platin-pemetrexed chemotherapy
provided to operable MM patients would have any effect on MET expression in their
pleurectomy/decortication (P/D) specimens as compared to their chemotherapy-naïve
diagnostic biopsies. Thus, we performed a pilot immunohistochemical investigation on
archival MM samples that we had used in previous reports [20–22] and, among them, we
identified 10 diagnostic biopsies displaying “MET-negative” expression (immunoscore
0/1+ as defined in the Materials and Methods), 10 displaying a MET immunoscore of 2+,
and 10 displaying an immunoscore of 3+. Thereafter, we compared these results with the
immunostainings in their corresponding patient-matched P/D specimens. We detected
no difference in the paired samples, i.e., all originally MET-negative cases continued to
display an immunoscore of 0/1+ in their corresponding P/D specimens, and by the same
token, all the cases with diagnostic biopsies displaying a MET immunoscore of 2+ and
3+ maintained the same expression in the tissue sections from the patient-matched P/D
samples (a representative example is shown in Supplementary Figure S2).

Consistent with the fact that MET is a transmembrane RTK, we also observed in both
diagnostic biopsies and P/D specimens that the expression of MET was predominantly in
the membrane of tumor cells, though a certain positivity was also visible to a lesser extent
in the cytoplasm (Figure 2). Hence, we concluded from the pilot study that neoadjuvant
chemotherapy caused no significant change in the expression of MET in the P/D tissue
samples as compared to patient-matched diagnostic biopsies and that, in our main study,
we could correlate the results obtained in diagnostic biopsies with those in P/D specimens.
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Figure 2. Predominantly membranous pattern of MET expression in MMs. Representative serial
sections from a resected pleural epithelioid MM stained with H&E (A) and immunostained with
anti-MET SP44 mAb (B) showing moderately upregulated MET expression (MET immunoscore 2+),
which is more intense on the cell membrane than in the cytoplasm. Immunostaining of the same area
for the mesothelial marker calretinin is shown in the inset. (Magnification (A,B), ×200).

Accordingly, we examined a cohort of 155 unselected consecutive MM cases treated at
our institution between 2015 and 2017. The demographic and pathological characteristics
of the MM cases and of control cases with non-neoplastic reactive mesothelial proliferation
(RMP) are described in Table 1 and the Materials and Methods.

The samples from this patient cohort included FFPE tissue sections from 110 diagnostic
biopsies of treatment-naïve MM and from 45 extended P/Ds performed after 3 cycles of
neoadjuvant cisplatin-pemetrexed. After the immunostainings, we observed that 27 (17.4%)
of the 155 MM specimens exhibited a MET immunoscore of 3+ (representative example in
Figure 3A,B), 27 (17.4%) a MET score of 2+ (Figure 3C,D), and the remaining 101 (65.2%) a
MET score of 1+ (65/155, 41.9%; Figure 3E,F) or 0 (36/155, 23.2%; Figure 3G,H). Twenty-
three of the 27 (85%) MMs with an immunoscore of 3+ were epithelioid MMs (EMMs)
(Figure 3A,B), whereas the other 4 (15%) were biphasic MMs (BMMs) (p < 0.05, t-test).
Similarly, of the 27 MMs with an immunoscore of 2+, 16 (59.3%) were EMMs and 11 (40.7%)
BMMs (p < 0.05, t-test). Interestingly, in the 15 BMMs with a score of 2+/3+, only the
epithelioid component accounted for that, while sarcomatoid cells consistently exhibited a
score of 1+/0 (example in Figure 3C,D). Accordingly, none of the 10 analyzed sarcomatoid
MMs (SMMs) displayed a MET immunoscore of 3+ or 2+, but only 1+ (n = 3) or 0 (n = 7)
(example in Figure 3G,H).
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Table 1. Demographic and pathological features of patients with MM or RMP.

Characteristics MPM P/D (n = 45) MM Biopsy
(n = 110) RMP (n = 33)

Gender
Male (%) 39 (87) 88 (80) 25 (76)

Female (%) 6 (13) 22 (20) 8 (24)
Age, mean (range) 68 (40–74) 70 (40–86) 39 (17–79)
Smoking history

Ex/current smoker (%) 29 (64) 83 (75) 20 (60)
Non-smoker (%) 16 (36) 27 (25) 13 (40)

Asbestos exposure
Yes (%) 34 (76) 77 (70) 0
No (%) 11 (24) 33 (30) 33 (100)

Chemotherapy (cisplatin +
pemetrexed) (%) 45 (100) 0 0

Histological type
Epithelioid (%) 20 (44) 57 (52)

Biphasic (%) 25 (56) 43 (39)
Sarcomatoid (%) 0 10 (9)

Site
Pleura (%) 45 (100) 97 (88) 33 (100)

Peritoneum (%) 13 (12)
MM biopsy: diagnostic biopsy from malignant mesothelioma; MPM P/D: malignant pleural mesothelioma
removed by pleurectomy/decortication; RMP: reactive mesothelial proliferation.

For comparison to non-malignant mesothelial proliferations, 33 FFPE tissue sections
from RMPs identified in FFPE surgical samples of patients operated for non-malignant
pulmonary/mediastinal diseases were immunostained for MET expression with the same
protocol used for MM samples. These samples exhibited variable pleural or pericardial
chronic inflammation associated with mesothelial hyperplasia and various degrees of
fibrosis, thus representing non-neoplastic controls for the three types of MM. Ten of the
33 (30.3%) RMPs showed a MET immunoscore of 1+ (example in Figure 4A–C) and the
remaining 23 RMPs (69.7%) an immunoscore of 0 (Figure 4D), while none of the RMPs
displayed upregulation of MET corresponding to a score of 2+/3+. Collectively, the
results indicated that overexpression of MET (immunoscore 2+/3+) is related to malignant
mesothelial proliferation, is significantly more common in EMM than in BMM or SMM
and is only present in the epithelioid component of BMMs.

2.3. Assessment of MET-GCNG/GA in MM by FISH

The FISH analysis in the 155 MM samples showed that the average MET-gene copy
number (MET-GCN)/tumor cell varied between 1.44 and 5.69. By matching the FISH results
with the corresponding IHC data, we observed that MM samples displaying no upregula-
tion of MET expression (immunoscore 0/1+) had a lower average MET-GCN/cell (between
1.44 and 2.99) than MMs with upregulated MET-receptor expression (immunoscore 2+/3+;
GCN/cell = 1.54–5.69). Although significant (p < 0.05), this difference suggests that MMs
harbor fairly modest increases of MET-GCN as compared to other cancer types such as
NSCLC, in which de novo high-level MET-amplification, often with more than 15 MET
gene copies (“gene clusters”), can be detected by FISH analysis [16,17]. In addition, we
identified only 3 out of the 155 (2%) MM cases with intermediate-level MET-GCNG/GA;
all three were pleural EMMs exhibiting a MET immunoscore of 3+ by IHC (Figure 5). We
also detected 9 (6%) cases with low-level MET-GCNG/GA, of which 6 were EMMs (5
pleural and 1 peritoneal) and 3 BMMs (all pleural) showing a MET immunoscore of 3+ (6
EMMs, 1 BMM) or 2+ (2 BMMs) by IHC. Furthermore, the MET/CEN7 ratio in the MM
cohort varied from 0.78 to 1.94, with the cases with ratio <1 explainable by the occurrence
of amplicons including CEN7 but without a numeric balanced MET-GCNG, as observed in
certain cases of NSCLC [16,17].
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with anti-MET SP44 mAb (B,D,F,H). In (A,B), an EMM showing strong upregulation of MET ex-
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Figure 3. Representative examples of MET expression in tissue sections from MM of different histolog-
ical types. Serial sections from each case were stained with H&E (A,C,E,G) and immunostained with
anti-MET SP44 mAb (B,D,F,H). In (A,B), an EMM showing strong upregulation of MET expression
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(MET immunoscore 3+). In (C,D), a BMM with moderately upregulated MET expression (MET
immunoscore 2+), which is only present in the epithelioid component. In (E,F), a BMM with
weak MET expression (MET immunoscore 1+), which is only present in the epithelioid component,
whereas the sarcomatoid component is negative. In (G,H), a SMM with no MET expression (MET
immunoscore 0), in which scattered reactive endothelial cells with quite weak MET expression can
be observed. (Magnification: (A,B), ×320; (C–H) ×200).
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Figure 4. Examples of MET expression in RMPs. (A) RMP in a pericardial cyst (H&E staining).
The hyperplastic mesothelium covering the cyst wall is indicated (arrow) and highlighted by im-
munostaining for the mesothelial marker calretinin (inset). (B) Detail of the weak membranous MET
expression (immunoscore 1+) in the hyperplastic mesothelium of the pericardial cyst represented
in (A) (arrow) and in the endothelial cells of capillaries (arrowhead), but not in leukocytes. (C,D)
Two representative cases of pneumothorax-induced pleural RMP and fibrosis showing weak (im-
munoscore 1+) and no MET expression (immunoscore 0) in the mesothelium, respectively (arrows),
and no expression in the underlying fibrotic tissue, which in (D) contains dilated capillaries that are
negative too, in this case. (Magnification in (A), inset, (C), and (D): ×200; in (B): ×400).

Together, the data implied that none of the 155 cases harbored high-level MET-
GCNG/GA according to the definition criteria described in the Materials and Methods
(i.e., MET/CEN7 ratio ≥2.0 or an average MET-GCN/cell ≥6.0 or ≥10% of tumor cells
with “clusters” of ≥15 MET signals). However, one of the cases eventually classified
with intermediate-level MET-GCNG/GA had a borderline value of 5.69 for average MET-
GCN/cell and a borderline MET/CEN7 ratio of 1.94. For each sample, we analyzed
100 tumor cell nuclei, taking into account possible zonal heterogeneity of GCN, i.e., we
assessed 20 neighboring tumor cell nuclei from five random areas of homogenous distribu-
tion of MET signals, as previously described [16,17]. Nevertheless, we did not observe any
obvious variation in GCN from area to area of each sample, suggesting that MET-GCNG
tend to be homogeneous in MM, as opposed to NSCLC [16,17]. Thus, it is unlikely that
the abovementioned borderline values for MET-GCN/cell and MET/CEN7 ratio in the
case classified with intermediate-level MET-GCNG/GA were due to heterogeneity and
could have reached values for high-level GA in other areas. To further exclude that, we
analyzed an extra population of 100 tumor cell nuclei from five additional random areas in
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that sample and obtained very similar borderline values of MET-GCN/cell and MET/CE7
ratio (5.65 and 1.91, respectively).
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Figure 5. Representative immunostainings for MET-receptor expression (A,C) and corresponding
FISH for MET-GCN (B,D) in two EMMs. (A,B) shows the same EMM case as in Figure 3A,B with
MET overexpression (immunoscore 3+) and intermediate-level MET-GCNG/GA, as defined in the
Materials and Methods. (C,D) shows another EMM with moderate upregulation of MET expression
(immunoscore 2+) and no MET-GCNG/GA. (Magnification (A,C) ×200; (B,D) ×1000; In (B,D) MET
signals = green; CEN7 signals = red).

Finally, no cases with low- or intermediate-level MET-GCNG/GA showed a MET
immunoscore of 1+ or 0 by IHC. Accordingly, all 10 SMMs and all 33 cases of RMPs,
which as mentioned above, all exhibited a MET immunoscore of 1+/0 by IHC, showed no
MET-GCNG/GA.

2.4. MET Overexpression in MM Specimens Is Not Associated with MET Exon 14
Skipping Mutations

Given that, in our cohort of MM specimens, the IHC and FISH analyses displayed only
a limited correlation between MET overexpression and MET-GCNG/GA, we addressed the
question, whether in the specimens displaying MET overexpression without concomitant
MET-GCNG/GA, the receptor overexpression could be explained by alternative alterations
of the MET gene. Indeed, in NSCLC, another mechanism of MET overexpression is rep-
resented by mutations involving the juxtamembrane domain of the MET gene. These
mutations cause aberrant splicing of the MET transcripts, in which exon 14 is skipped,
resulting in reduced degradation of the MET receptor that consequently becomes overex-
pressed and can function as an oncogenic driver [3–5]. Thus, we tested this possibility in
15 of the MM samples that had shown strong (3+) MET overexpression by IHC without
corresponding MET-GCNG/GA and in 5 samples with 3+ expression associated with
MET-GCNG/GA (3 with intermediate-level and 2 with low-level, all EMMs). For this
purpose, RNA was extracted from these specimens and analyzed by a well-established
commercial method of targeted RNA-based next-generation sequencing (RNA-NGS; see
Materials and Methods). The assay did not detect any MET exon 14 skipping mutations in
the 5 MM cases with MET-GCNG/GA or in the 15 without MET-GCNG/GA, suggesting
the presence of MET-overexpression mechanisms alternative to MET gene amplification or
exon 14 skipping mutations in the latter tumors.
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The RNA-NGS assay used in this study, in addition to MET exon 14 skipping, is
designed to identify variants and fusions in the ALK, BRAF, EGFR, FGFR1-3, KRAS, MET,
NRG1, NTRK1-3, RET and ROS1 genes. Thus, it is also pertinent to note that no variants or
fusions affecting these oncogenic driver genes were identified in the 20 specimens (data not
shown). These results are consistent with the paucity of oncogene activation reported in
MM [7–9] and also indicate that MET-mutations or -fusions are unlikely to be the cause of
MET overexpression in samples without MET-GCNG/GA. Moreover, they suggested that
the cross talk of RTKs described in NSCLC, resulting in upregulation and activation of the
MET receptor by mutant forms of other RTKs, such as those analyzed by our RNA-NGS
panel [5,9], was unlikely to be involved in the analyzed MMs.

2.5. Correlation of MET Overexpression with Patient Outcome

Having established that a significant fraction of MMs shows overexpression of MET
receptor, though only partially correlating with MET-GCNG/GA, we were interested in as-
sessing whether this overexpression had a prognostic impact and would predict a response
to standard-of-care first-line chemotherapy in MM. For this purpose, we compared two
groups of 30 consecutive, previously therapy-naïve patients with EMM or BMM who had
been treated with first-line platinum-pemetrexed chemotherapy at our institution during
the period 2015–2017. In each group, MET-expression status and MET-GCNG/GA had
been assessed by IHC and FISH on diagnostic biopsies with >50% of tumor cell content,
as described above. One patient group contained MMs displaying MET overexpression
(immunoscore 2+/3+ = MET-positive) with or without concomitant FISH-detected MET-
GCNG/GA, while in the other group the tumor tissue was without MET overexpression
(immunoscore 1+/0 and no MET-GCNG/GA = MET-negative). As indicated in Figure
6, the two groups were matched concerning gender, age, performance status (PS), his-
tological type, stage, asbestos exposure, smoking habit, and treatment (chemotherapy
with/without following surgical resection by P/D) and thereby were not showing any
significant difference in these parameters (Figure 6). Consistent with our previous obser-
vations, the MET-positive group showed MET overexpression by IHC only in epithelioid
tumor cells, i.e., in EMMs and in the epithelioid but not sarcomatoid component of BMMs.
Moreover, four of these 30 MET-overexpressing samples (13%) showed intermediate-level
MET-GCNG/GA by FISH. The fact that this was a group that had been selected based on
MET overexpression may explain why it showed a higher incidence of MET-GCNG/GA as
compared to the larger unselected MM cohort described above.

The two matched groups were then compared with respect to outcome, evaluating the
response rate (RR) to first-line platinum-pemetrexed chemotherapy (either neoadjuvant
before P/D or for advanced disease), progression-free survival (PFS), overall survival (OS),
and number of patients alive in the respective group. We noticed a significantly lower
RR in the MET-positive group as compared to the MET-negative group, with fewer/no
MET-positive patients showing partial/complete response and more patients with pro-
gressive disease as compared to MET-negative cases (responding MET-positive = 37% vs.
responding MET-negative = 70%; p = 0.04) (Figure 6). As indicated on the Kaplan–Meier
curve (Figure 7, top), there was no significant difference in PFS between the two groups
(median PFS 8 months vs. 10 months; log-rank p = 0.430). Similarly, we did not observe
a significant difference in OS between the two groups (MET-positive = median OS of 20
months; MET-negative = median OS of 27 months; log-rank p = 0.934) (Figures 6 and 7,
bottom). Furthermore, we observed fewer MET-positive patients alive after treatment as
compared to MET-negative patients, but the difference was not statistically significant (17%
MET-positive alive vs. 27% MET-negative alive; p = 0.532) (Figure 6).
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In univariate analysis, female gender, stage IV, and lack of pleurectomy (P/D) showed
a significantly negative impact on both PFS (Table 2) and OS (Table 3), whereas all the other
variables, including MET status, did not exhibit any significant effect upon survival. A
multivariate Cox regression analysis confirmed an independent negative impact upon PFS
(Table 4) and OS (Table 5) for the female gender and for stage IV as compared to stages
I–III, whereas an apparent positive impact on OS for pleurectomy did not reach statistical
significance (Table 5). The other variables analyzed, including MET status, histological
MM subtype, asbestos exposure, smoking status, PS, and age at diagnosis, did not exhibit
a statistically significant independent effect on survival.
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Table 2. Univariate analysis of PFS.

Hazard Ratio (HR) 95% CI (HR) p-Value

MET status 1.240 0.714–2.153 0.446

Gender 0.419 0.211–0.833 * 0.013

Histologic type 1.012 0.552–1.854 0.970

Asbestos exposure 0.808 0.429–1.523 0.510

Smoking status 0.946 0.532–1.682 0.851

Stage 3.336 1.366–8.147 * 0.008

Performance status 1.387 0.590–3.259 0.454

Pleurectomy (P/D) 0.508 0.290–0.892 * 0.018

Age 1.005 0.970–1.041 0.774
P/D: pleurectomy/decortication. Significant p values are marked by *.
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Table 3. Univariate analysis of OS.

Hazard Ratio (HR) 95% CI (HR) p-Value

MET status 0.976 0.549–1.735 0.935

Gender 0.407 0.205–0.809 * 0.010

Histologic type 0.931 0.489–1.773 0.828

Asbestos exposure 0.962 0.499–1.855 0.909

Smoking status 0.970 0.527–1.783 0.921

Stage 2.659 1.108–6.382 * 0.029

Performance status 2.174 0.916–5.162 0.078

Pleurectomy (P/D) 0.385 0.213–0.694 * 0.002

Age 1.024 0.987–1.061 0.206
P/D: pleurectomy/decortication. Significant p values are marked by *.

Table 4. Multivariate analysis of PFS.

Hazard Ratio (HR) 95% CI (HR) p-Value

MET status 1.356 0.763–2.413 0.300

Gender 0.299 0.128–0.697 * 0.005

Histologic type 1.278 0.645–2.531 0.483

Asbestos exposure 1.038 0.495–2.176 0.921

Smoking status 1.460 0.741–2.878 0.274

Stage 3.911 1.364–11.215 * 0.011

Performance status 2.110 0.770–5.779 0.146

Pleurectomy (P/D) 0.576 0.286–1.160 0.123

Age 0.976 0.938–1.015 0.226
P/D: pleurectomy/decortication. Significant p values are marked by *.

Table 5. Multivariate analysis of OS.

Hazard Ratio (HR) 95% CI (HR) p-Value

MET status 1.051 0.563–1.962 0.877

Gender 0.223 0.085–0.586 * 0.002

Histologic type 1.439 0.688–3.009 0.334

Asbestos exposure 1.923 0.825–4.478 0.130

Smoking status 1.551 0.723–3.325 0.260

Stage 3.319 1.045–9.425 * 0.041

Performance status 2.110 0.770–5.779 0.146

Pleurectomy (P/D) 0.471 0.217–1.024 0.057

Age 0.980 0.937–1.025 0.375
P/D: pleurectomy/decortication. Significant p values are marked by *.

3. Discussion

In this study, based on a cohort of 155 consecutive MM patients, we used a well-
established method of IHC [4,16,17] to identify cases having moderately (2+) or strongly
(3+) increased MET protein expression in the tumor tissue. The latter was observed in
35% of patients. In contrast, we did not observe MET overexpression in RMPs, suggesting
that upregulation of the receptor is related to a subset of MM, rather than simply cell
proliferation. The MET overexpression appears significantly more common in EMM
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than in BMM and limited to the epithelioid MM cells, as we could detect it only in the
epithelioid component of BMM, but not in sarcomatoid cells of BMMs or in SMM. More
frequent overexpression of MET in the epithelioid subtype of MM has also been observed
by others [13,14]. Interestingly, MET overexpression as assessed by IHC seems to poorly
correlate with MET-GCNG/GA, given that low- or intermediate-level GCNG/GA were
only observed in 27% of cases with a 3+ or 2+ MET IHC score. This poor correlation
between protein expression and gene amplification suggests other mechanisms regulating
MET expression and has also been observed by others in cases of NSCLC [4,5] and MM [14].
In NSCLC, the MET overexpression detected by IHC has usually been associated with
MET-GCNG/GA, though MET exon 14 skipping mutations have also been described more
recently as alternative and mutually exclusive mechanism of MET-receptor overexpression
and activation that can be targeted by MET inhibitors [2,3,5]. Yet, the clinical studies have
not completely clarified whether MET-receptor overexpression, MET-mutations, and MET-
amplification might be interchangeable predictive biomarkers for MET-targeting therapy
of NSCLC [4,5]. Data from clinical trials seem to suggest that MET-protein overexpression
is less effective as a predictive biomarker in NSCLC than amplification or mutations of
the MET gene, which could be explained not only by expression heterogeneity in tumor
tissue and sample types, but also by the differences in IHC platforms, commercially
available antibodies, and cutoffs for immunohistochemical positivity used in these clinical
studies [4,5].

Likewise, previous immunohistochemical investigations of MET expression in MM
have shown variable results attributable, at least in part, to the lack of standardized im-
munostaining and scoring procedures and to differences in types of specimens [13–15].
In the present study, we used both MM biopsies from chemotherapy-naïve patients and
resection specimens taken after standard neoadjuvant platin-pemetrexed treatment for
MM after having verified on patient-matched samples that the expression in the surgical
material was not affected by the chemotherapy. Moreover, we applied a well-established
method of immunostaining and scoring that we and others have previously utilized for
assessing MET expression in NSCLC [16,17]. In contrast to NSCLC [4,16,17], we observed
no significant heterogeneity of MET-protein expression in the MMs (i.e., cases with upregu-
lated expression showed that in the vast majority of tumor cells). Also, differently from
NSCLC, we did not find high-level MET-GCNG/GA by FISH in our MM cohort, consistent
with the rarity of MET-amplification in previous studies performed by FISH or genomic
profiling in pleural MM [7,8,14,15].

Yet, high-level MET-GCNG/GA might occur at low frequency also in MM, as a
genomic analysis of 13 peritoneal MMs showed one case harboring focal high-level ampli-
fication of the MET oncogene, in addition to a structural rearrangement involving BAP1
and homozygous deletion of CDKN2A [12]. Furthermore, if we apply our FISH scoring
criteria to previous reports, we notice that Bois et al. identified one case of high-level MET-
GCNG/GA in a cohort of 149 analyzed pleural MMs [14], whereas Salvi et al. described at
least 2 out of 106 MM cases (1.9%) in commercial tissue microarrays displaying high-level
MET-GCNG/GA (MET/CEN7 ratio reportedly 4 and 6, respectively) [15]. These authors
also reported 6 additional cases in their cohort that exhibited 6 to 10 MET copies in 60% to
80% of MM cells, which also fulfills our criteria for high-level MET-GCNG/GA. Overall,
these results suggest that, although aberrations of BAP1, CDKN2A, and other tumor sup-
pressor genes are the commonest genomic cancer-driving hits in MM [7–9], some rare cases
of MM might also be driven by genomic dysregulation of MET signaling. In this respect,
the level of MET-GCNG/GA in cancer cells may have importance for the intensity by
which this event perturbs the MET-signaling pathway through protein overexpression and
prolonged kinase activity [5]. Yet, what level (i.e., how many MET gene copies) should be
reached in order to induce substantially increased MET-expression and ligand-independent
sustained activation of MET signaling with clinically relevant oncogenic effect is unclear
and may vary according to tumor type.
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Most knowledge on the correlation between MET-gene copies and MET signaling in
cancer patients derives from investigations in lung cancer. Indeed, in untreated NSCLC
patients, low-/intermediate-level MET-GCNG/GA is often accompanied by co-mutations
in other oncogenic drivers and is less sensitive to MET-signaling inhibition by MET-TKIs,
as opposed to NSCLCs with high-level MET-GCNG/GA, which at baseline are less likely
to harbor other detectable oncogenic drivers and are associated with significantly higher
RR to MET-TKIs [4,5,16,23,24]. Accordingly, in the setting of EGFR-mutated NSCLC
progressing on EGFR-TKIs, acquired resistance to EGFR-TKIs due to activation of the
parallel bypass MET-signaling pathway is typically associated with high-level MET am-
plification [4,5]. These results suggest that high-level MET-GCNG/GA may act as an
autonomous NSCLC-driver, which results in MET-dependence and the death of cancer
cells, once the MET signaling to which they have become addicted is inhibited. Thus,
high-level MET-GCNG/GA seems to be both a negative prognostic factor and a potential
predictive biomarker for MET-TKIs [2,5,25]. In contrast, lower levels of MET-GCNG/GA
may require a cooperative effect from other co-drivers in order to contribute to oncogenesis
and it may therefore represent a weaker therapeutic target for NSCLC cells. However,
whether this also applies to MM requires further studies exploring to what extent co-
mutations may occur in MM with genomically deregulated MET and the possible response
of these cases to MET inhibitors. In that respect, a limitation of our and previous studies
is that they have not assessed by extensive genomic analysis the possible presence of
co-mutations in the identified MM specimens harboring low-/intermediate-level MET-
GCNG/GA. Accordingly, we do not know whether the pattern of genomic aberrations
associated with various levels of MET-amplification in NSCLC is also present in MM.

A further drawback of the studies that have analyzed MET-GCNG/GA in MM by
FISH is the lack of a standardized method for determining MET-amplification [13–15],
which complicates their comparison. A similar problem has affected investigations of
MET in NSCLC [4,5,25]. In the literature on different cancer types, MET-amplification
has been defined as a ratio relative to chromosome 7 centromere (MET/CEN7 ratio) or
as average MET-GCN/cell, which may theoretically include true gene amplification and
high polysomy [4,5]. Although most FISH studies on MET alterations in cancer report
either a MET/CEN7 ratio ≥2.0 or an average MET-GCN/cell of at least 4 in a tumor
sample for categorizing it as MET-amplified, the parameters used and the cutoff to define
“positivity” are not standardized and this may cause differences in the reported frequency
of MET-amplification and its ability to be exploited as a potential therapeutic target [5].
Notably, some data suggest that an increased number of MET copies might be a better
predictor of responses to MET-TKIs than the MET/CEN7 ratio [4,25].

Compared to other studies, we have classified the MM specimens according to a
FISH-scoring method that we and others had successfully applied to NSCLC [16,17]. This
approach considers both parameters used in other studies (MET/CEN7 ratio and average
MET-GCN/cell) and uses reliable cutoffs for high-level amplification (MET/CEN7 ratio
≥2.0 and an average MET-GCN/cell ≥6.0). Moreover, it considers an additional parameter
for high-level GCNG/GA, i.e., ≥10% of tumor cells with “clusters” of ≥15 MET signals
and specific parameters for intermediate-level MET-GCNG/GA (≥50% of tumor cells with
≥5 MET signals) and for low-level MET-GCNG/GA (≥40% of tumor cells with ≥4 MET
signals). The special emphasis on average GCN and percentages of tumor cells with ≥4,
≥5, and ≥15 MET-GCN/cell as well as the fact that the method is based on the analysis
of neighboring tumor cell nuclei from five random areas of homogenous distribution of
MET signals [16,17], enables to classify the samples, including those with heterogeneous
MET-GCNG/GA, at different MET-amplification levels. Importantly, the approach avoids
excluding the samples, in which MET-GCNG/GA may occur with co-amplification of the
centromeric 7 region and thereby results in a paradoxical “negative” MET/CEN7 ratio
<2.0 [16,17,25]. Given its robustness, this FISH scoring method has been adopted in clinical
trials [25,26]. Recently, Overbeck et al. have added a top-level category of MET-GCNG/GA
in NSCLC, corresponding to an average MET-GCN/cell ≥10, which was observed in a
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subset of poorly differentiated adenocarcinomas with unfavorable prognosis [25]. However,
having not observed any high-level MET-GCNG/GA in our study, which began before the
work of Overbeck et al. was published, we did not include top-level MET-GCNG/GA in
the classification of our MM cohort.

MET splice mutations result in MET overexpression and are reportedly mutually
exclusive with MET-amplification in NSCLC [2–5]. However, we did not detect any
MET exon 14 skipping mutations in MM cases showing MET overexpression without
concomitant MET-GCNG/GA. These cases did not harbor MET-fusions either. These
observations suggest the possibility that transcriptional/posttranscriptional/epigenetic
mechanisms rather than MET gene amplification, exon 14 skipping mutations at splice
sites or fusions could have caused the receptor overexpression in these tumors. Further
studies are necessary to address the causes of MET overexpression in MM.

Importantly, despite the limitations of the study, including also the small size (affecting
the statistical power) of the two matched cohorts of MET-positive and MET-negative MM
patients, our data indicate that MET-protein overexpression was associated with lower RR
to standard platinum-pemetrexed chemotherapy for MM, while no significant difference in
median PFS and median OS after standard chemotherapy was observed between the two
groups. Moreover, a multivariate regression analysis revealed an independent significant
impact on survival for female gender (possibly due to the low number of females in our
cohorts) and MM stage, but not for the MET status. We noticed also an apparent positive
impact on survival for P/D, which, though, did not reach statistical significance, possibly
due to the low number of pleurectomized patients in the analysis.

Our results imply that MET overexpression occurs in a substantial fraction of predomi-
nantly epithelioid MMs, and that despite correlating poorly with MET-amplification status,
it may negatively impact the RR of MM patients receiving standard chemotherapy. This
may be due to MET being a driver of tumor cell proliferation/survival/invasiveness [1,2],
and to some extent causing insensitivity to chemotherapy. Larger cohorts are needed to
reach conclusions regarding the impact of MET alterations on the survival of MM patients.
In this regard, our results may suggest a possibility of treating MET-positive MM by MET
inhibitors, as currently evaluated in other malignancies, e.g., in NSCLC, but would need
validation in another and larger cohort beforehand. However, in NSCLC there seems to be
a MET gene dose effect (the higher MET-GCN/cell, the higher are chances of response to
MET-TKIs), causing uncertainty regarding which levels of MET-receptor overexpression
and MET-gene amplification are actionable targets in NSCLC [4,5,25]. Therefore, the extent
of these MET alterations in MM and the predictive significance of MET-IHC and -FISH for
possible MET-targeted therapy of MM also remain to be elucidated.

4. Materials and Methods
4.1. Tissue Samples

The study examined a cohort of 155 consecutive MM cases treated at our institution
between 2015 and 2017 with demographic and pathological characteristics, as specified in
Table 1. The cohort comprised 110 diagnostic biopsies of treatment-naïve MM (97 pleural
and 13 peritoneal) and 45 extended pleurectomies/decortications (P/Ds) performed at
our institution after 3 courses of neoadjuvant cisplatin-pemetrexed. All the included MM
samples from the cohort were formalin-fixed, paraffin-embedded (FFPE), had a tumor cell
content [(number tumor cell nuclei: total number of cell nuclei) × 100] of >50%, and had
been diagnosed according to the criteria defined by the World Health Organization (WHO)
and the International Mesothelioma Interest Group [27–29]. The specimens included 77
epithelioid MMs (EMMs: 68 pleural, 9 peritoneal), 68 biphasic MMs (BMMs: 64 pleural, 4
peritoneal), and 10 sarcomatoid MMs (SMMs: all pleural). Thirty-three RMPs identified in
FFPE surgical samples from patients operated for non-malignant pulmonary/mediastinal
disease were used as non-neoplastic controls for the three types of MM (Table 1): pleura on
pulmonary wedge-resection after pneumothorax due to ruptured cyst/bulla (n = 24); lung
explant/pneumonectomy for end-stage sarcoidosis or chronic allergic alveolitis (n = 3);
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pleura-covered resection of thymus for thymus hyperplasia (n = 1) or of aorta for dissection
(n = 2); pericardial cyst (n = 3). In all these samples, we identified variable pleural or
pericardial chronic inflammation associated with mesothelial hyperplasia and fibrosis.

4.2. Immunohistochemistry

The immunostaining for membranous and cytoplasmic expression of MET-receptor
was performed as previously described [17]. Briefly, 2.5-µm-thick FFPE tissue sections
from each sample were stained using a Roche-Ventana BenchMark ULTRA automated
slide immunostainer (Ventana Medical Systems Inc.; Roche Diagnostics A/S, Hvidovre,
Denmark), Ultra Cell Conditioning solution (CC1) pretreatment for 8 min at 95 ◦C, four
CC1 treatments (20, 36, 52, and 64 min), and incubation with the pre-diluted CONFIRM
anti-MET (clone ID, SP44) rabbit monoclonal antibody (mAb) (Ventana Medical Systems,
Inc.; Roche Diagnostics A/S, Hvidovre, Denmark) for 16 min. The immunostaining for
the mesothelial marker calretinin was carried out on specific tissue sections to further
visualize malignant or hyperplastic mesothelial cells using CC1 pretreatment for 64 min at
97 ◦C followed by incubation for 32 min at 36 ◦C with anti-calretinin rabbit mAb (clone
ID, SP65; Ventana Medical Systems Inc.; Roche Diagnostics A/S, Hvidovre, Denmark) at
1:400 dilution, as previously reported [20]. The immune reactions were visualized using
ultraView DAB Detection Kit (Ventana Medical Systems, Inc.; Roche Diagnostics A/S, Hvi-
dovre, Denmark) and hematoxylin counterstaining (Ventana Medical Systems, Inc.; Roche
Diagnostics A/S, Hvidovre, Denmark) following the manufacturer’s recommendations.

MET-protein expression was scored in a blinded manner (without knowing the FISH
results) by one observer (E.S.-R.), assessing staining intensity (negative, weak, moder-
ate or strong) and the percentage of stained cells, thereby defining four diagnostic “im-
munoscores”, i.e., 3+ (strong intensity in ≥50% of cells); 2+ (moderate intensity in ≥50% of
cells); 1+ (weak intensity in ≥50% of tumor cells); 0 (no staining or <50% of tumor cells
stained), and considering 2+/3+ as indicative of MET upregulation (“MET-positive”) as
opposed to no upregulation (“MET-negative”), as previously described [16,17]. Endothe-
lial cells or bronchial/alveolar epithelial cells present in the tissue sections were used
as internal controls, since they can display weak and weak-moderate intensity of MET
expression, respectively, as reported [16,17] (example in Supplementary Figure S1). Image
acquisition was obtained by digital scanning of the slides with a Nano Zoomer S210 slide
scanner (Hamamatsu, Ballerup, Denmark) and the digital slide viewing software Sectra
Workstation IDS7 (Sectra AB, Linköping, Sweden).

Before staining the cohort of MM cases, we performed a smaller pilot investigation
comparing the MET immunostaining of 30 independent FFPE diagnostic biopsies of MM
with their corresponding patient-matched P/D specimens, in order to assess whether the
neoadjuvant chemotherapy would have any effect on MET expression in P/D specimens
as compared to the corresponding chemotherapy-naïve diagnostic biopsies. For this
purpose, we selected from samples utilized in previous studies [20–22] 10 diagnostic
biopsies displaying MET-negative expression (0/1+, as defined above), 10 displaying a MET
immunoscore of 2+, and 10 displaying an immunoscore of 3+, and then compared these
results with the immunostainings in their corresponding patient-matched P/D specimens.

4.3. Fluorescence In Situ Hybridization

FISH was performed with the Zyto-Light SPEC MET/CEN7 dual-color probe (Zyto-
vision GmbH, AH diagnostics A/S, Tilst, Denmark) that detects the MET gene and the
centromeric portion of the MET-harboring chromosome 7, as we previously described [17].
Briefly, slides were scanned using a ×63 objective and appropriate filter sets (automated
upright Leica DM4 B fluorescent microscope; Leica Microsystems, Brønshøj, Denmark),
using normal fibroblasts, leukocytes, endothelial cells or non-neoplastic lung tissue as
internal controls and individually analyzing 100 tumor cell nuclei (20 neighboring tumor
cell nuclei from five random areas of homogenous distribution of MET signals) with the
×100 objective, counting MET (green) and CEN7 (orange) signals. Representative images
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were acquired using the 19 mm sCMOS Leica DFC9000 camera incorporated with the
microscope after identification of representative areas with the Leica LAS X Navigator Soft-
ware (Leica Microsystems, Brønshøj, Denmark). FISH was assessed by two readers (E.S.-R.
and a trained and experienced laboratory technician) without knowing the IHC data. The
samples were classified into the following four groups of MET-amplification status [16,17]:
(A) High-level MET-GCNG/GA = MET/CEN7 ratio ≥2.0 or an average MET-GCN/cell
≥6.0 or ≥10% of tumor cells with ≥15 MET signals (“clusters”); (B) Intermediate-level MET-
GCNG/GA = ≥50% of tumor cells with ≥5 MET signals; (C) Low-level MET-GCNG/GA
= ≥40% of tumor cells with ≥4 MET signals; (D) No MET-GCNG/GA = none of above
criteria fulfilled.

4.4. RNA Next-Generation Sequencing of MET Exon 14 Skipping Mutations

For analysis of possible mutations causing an aberrantly spliced transcript of MET
leading to exon 14 skipping and reduced degradation of the MET-receptor [3–5], total RNA
was extracted from the MM specimens showing MET overexpression (3+) using a Maxwell
RSC RNA FFPE kit (Promega, Madison, WI, USA). RNA-NGS was performed using the
Archer FusionPlex® Lung kit according to the manufacturer’s instructions (ArcherDX, Inc.,
Boulder, CO, USA). In addition to MET exon 14 skipping mutations, this method allows
the detection of variants and fusions involving the ALK, BRAF, EGFR, FGFR1-3, KRAS,
MET, NRG1, NTRK1-3, RET and ROS1 genes.

4.5. Correlation of MET-Amplification and Expression with Treatment Outcome

To assess the prognostic impact or predictive value for response to chemotherapy of
MET-amplification and/or overexpression we compared two MM patient groups with and
without MET aberrations treated during 2015–2017. For this purpose, MET-expression
status and MET-GCNG/GA were evaluated as described above on FFPE diagnostic tissue
biopsies obtained from 60 consecutive, previously untreated patients with EMM or BMM.
Tumor samples from 30 of these 60 patients displayed MET overexpression by IHC (MET-
positive = immunoscores 2+/3+) with or without concomitant MET-GCNG/GA detected
by FISH. MM samples from the other 30 patients had an immunoscore of 1+/0 (MET-
negative) and no MET-GCNG/GA. The two groups of patients were matched concerning
gender, age, performance status, histologic subtypes, stage, asbestos exposure, smoking
habit, and treatment (chemotherapy alone or chemotherapy plus P/D) and were compared
with respect to outcome, such as RR to chemotherapy, PFS, OS, and number of patients
alive in the respective group.

4.6. Statistical Analysis

For immunohistochemical data, the unpaired Student’s t-test (two-tailed) was used to
detect significant differences in expression between two groups. Significant differences in
the MET expression in three or more groups overall were detected using one-way ANOVA.
p values adjusted for mass significance were obtained using Tukey–Kramer post-tests. For
the analysis of IHC results, the distributions of H-scores in three groups were compared
using nonparametric Kruskal–Wallis ANOVA and the Dunn post-test. For the correlation
with outcome and the analysis of alive patients in the two groups of MET-positive and
MET-negative patients a Chi-squared test was performed. OS was defined as the time from
diagnosis to the time of death from any cause or last follow-up. PFS was defined as the
time from diagnosis to a documented progression or death from any cause. For patients
without any progression at the time of analysis, the date of last follow-up was considered
right-censored. OS and PFS analysis were performed using the Kaplan–Meier method
and survival curves were tested for differences by using the log-rank test. The possible
independent effect upon survival of the variables considered in the study was assessed
by multivariate Cox regression analysis. A p-value < 0.05 was considered statistically
significant. Statistical analyses were performed using IBM Statistics SPSS software (IBM
Corp., IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY, USA).
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