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Abstract
The dual occurrence of Pseudomonas‐like and Wolbachia endobacteria has not been 
investigated in the Pederus beetles yet. We investigated pederin‐producing bacteria 
(PPB) infection in Paederus fuscipes specimens from the southern margins of the 
Caspian Sea by designed genus‐specific (OprF) and species‐specific (16S rRNA) prim‐
ers. Wolbachia infection was studied through a nested‐PCR assay of Wolbachia sur‐
face protein (wsp) gene. Of the 125 analyzed beetles, 42 females (82.35%) and 15 
males (20.27%) were positive to PPB infection; this is the first study reporting male 
P. fuscipes infection to PPB. Wolbachia infection was found in 45 female (88.23%) and 
50 male (67.57%) analyzed beetles. Surprisingly, a number of 36 females (70.59%) 
and 13 males (17.57%) were found to be infected with both PPB and Wolbachia endo‐
symbionts. In general, population infection rates to PPB and Wolbachia were deter‐
mined to be 45.6% and 76%, respectively. The infection rates of female beetles to 
PPB and PPB‐Wolbachia were significantly higher than males. In Paederus species, 
only female beetles shelter PPB and the discovery of this bacterium in adult males 
may reflect their cannibalistic behavior on the contaminated stages. Phylogenetic 
analysis showed that the sequences of OprF gene were unique among Pseudomonas 
spp.; however, sequences of 16S rRNA gene were related to the PPB of Pederus spe‐
cies. The co‐occurrence and random distribution of these endobacteria may imply 
putative tripartite interactions among PPB, Wolbachia, and Paederus. In order to elu‐
cidate these possible tripartite interactions, further studies are required even at gen‐
der level.
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1  | INTRODUC TION

Rove beetles of Staphylinidae are the largest family of beetles and 
are distributed in a wide range of habitats. They include more than 
63,000 known species arranged into thousands of genera and 32 
subfamilies worldwide (Grebennikov & Newton, 2009; Thayer, 
2005). The genus Paederus Fabricius, 1775, which is classified into 
the tribe Paederini and subfamily Paederinae, currently comprises 
~490 species (Nikbakhtzadeh, Naderi, & Safa, 2012; Vieira, Ribeiro‐
Costa, & Caron, 2014).

Fourteen species and subspecies of the Paederus, including five 
subgenera occur in Iran. Among them, six species P. balachows‐
kyi, P. balcanicus, P. duplex, P. fuscipes fuscipes, P. littoralis ilsae, and 
P. riparius are present in three Southern Caspian Provinces, Gilan, 
Mazandaran, and Golestan (Nikbakhtzadeh et al., 2012).

In natural ecosystems (predominantly moist environments), 
staphylinidaes are connected with various arthropods, higher plants, 
fungi, decomposing materials, mollusks, and vertebrates. Most of 
the rove beetles are predators of arthropods, and some of them are 
associated with social insects, while others are scavengers on decay‐
ing plant matter or live in nests of rodents (Frank & Thomas, 2016). 
Some species of rove beetles are important in terms of the biological 
control of insects of agricultural, medical, and veterinary importance 
(Echegaray & Cloyd, 2013).

Paederus species and its relatives are the agents of human der‐
matitis as well. They are active during daylight hours and can cause 
linear dermatitis on human skin and severe damage to human eyes 
(Nairobi eye). These beetles neither bite nor sting but release their 
hemolymph containing pederin, a potent vesicant toxin (C25H45NO9; 
MM: 503.63; LD50: 0.14 mg/kg rat i.p.), when they injured or crushed 
on human skin (Dettner, 2011; Iserson & Walton, 2012). This contact 
dermatitis is a distinctive stimulus form that can be distinguished by 
the rapid onset of erythematobullous lesions on the exposed areas 
(Mammino, 2011). If erythemas continue longer, other symptoms 
such as fever, edema, neuralgia, arthralgia, and vomiting may be 
observed as well (Rahman, 2006). It is supposed that pederin has 
antitumor and antiviral properties (Narquizian & Kocienski, 2000), 
presumably through the inhibition of DNA replication and protein 
synthesis (Dettner, 2011).

Pederin and its derivatives, namely, pseudoephedrine and 
pederone, are synthesized by uncultured Pseudomonas‐like endo‐
symbionts located in the female accessory glands, restored in the 
hemolymph and transferred to the developmental stages through 
the contaminated eggs (Kellner, 1998, 2001; Kellner & Dettner, 
1995). Studies based on 16S rRNA gene have shown that only fe‐
male beetles contain the pederin‐producing bacteria (PPB; Kellner, 
2002). These bacteria are distributed in the rove beetle populations, 
through the transovarial transmission (Kador, Horn, & Dettner, 
2011).

Naturally, pederin is used by Paederus species as a defen‐
sive compound against insect and arachnid predators (Kellner & 
Dettner, 1996). The immature stages of P. fuscipes and P. ripar‐
ius, which were pederin positive, were repulsive for spiders of 

the families Lycosidae and Salticidae but not for insect predators 
(Kellner & Dettner, 1996).

Wolbachia, obligate endosymbionts, are estimated to infect 40% 
of terrestrial arthropod species (Zug & Hammerstein, 2012) and 
many parasitic filarial nematodes (Taylor, Bandi, & Hoerauf, 2005). 
They manipulate reproduction properties of the hosts through the 
induction of cytoplasmic incompatibility, parthenogenesis, feminiza‐
tion, and male killing (Hughes, Pamilo, & Kathirithamby, 2004; Li et 
al., 2016; Li, Wang, Bourguet, & He, 2013; Vavre, Fleury, Lepetit, 
Fouillet, & Boulétreau, 1999; Werren, 1997; Yun, Peng, Liu, & Lei, 
2011).

Wolbachia strains and their role in arthropod host fitness have 
been reviewed recently (Zug & Hammerstein, 2015). It has been in‐
dicated that a Wolbachia strain could protect alfalfa weevil, Hypera 
postica, against the parasitic wasp, Microctonus aethiopoides (Hsiao, 
1996). Recently, it has been shown that Wolbachia can protect Culex 
pipiens mosquitoes against Plasmodium relictum‐induced mortality 
(Zele, Nicot, Duron, & Rivero, 2012). In addition, a new strain of 
Wolbachia has been reported in Cimex lectularius that appears to dis‐
play an important role in bedbug fitness through provisioning of B vi‐
tamins (Nikoh et al., 2014). More recently, some strains of Wolbachia 
have been introduced as a weapon in the war against vector‐borne 
pathogens (Hughes & Rasgon, 2014; Kambris, Cook, Phuc, & Sinkins, 
2009). Therefore, a variety of Wolbachia strains can have either 
mutualistic or parasitic outcomes in the insect/pathogens/parasit‐
oids assemblages (van Nouhuys, Kohonen, & Duplouy, 2016), which 
should be studied in details when their properties are exploited.

Initially, insect’s isolates of Wolbachia pipientis has been classi‐
fied into two supergroups (A and B) and 12 groups based on the 
sequences of the major Wolbachia surface protein (wsp) gene 
(Zhou, Rousset, & O’Neill, 1998). Today, all invertebrate isolates of 
Wolbachia have been divided sequentially into 16 supergroups (A to 
Q) using the multilocus sequence typing (MLST) technique (Baldo et 
al., 2006; Glowska, Dragun‐Damian, Dabert, & Gerth, 2015).

Despite many advances in the study on Wolbachia infection in 
insects, our knowledge on the Wolbachia strain diversity/dispersion, 
or their effects on the beetle hosts is very limited. According to the 
findings of a review study (Kajtoch & Kotásková, 2018), Wolbachia 
infection was detected in 204 coleopteran species with average 
prevalence of 38.3%. The most intensively studied families have 
been herbivorous beetles of Curculionidae and Chrysomelidae. 
Coleoptera‐infecting Wolbachia strains belonged to three super‐
groups of A, B, and F with single, double, or multiple infections in 
the studied species. Wolbachia has had a lot of effects on its beetle 
hosts ranging from selective sweep with host mtDNA and cytoplas‐
mic incompatibility to other changes related to the reproductive or 
developmental phenotypes (Kajtoch & Kotásková, 2018).

Survival and reproduction of many insects rely on the endosym‐
biotic bacteria (Eleftherianos, Atri, Accetta, & Castillo, 2013; Ratzka, 
Gross, & Feldhaar, 2012). Therefore, PPB as defensive (Oliver & 
Moran, 2009) and Wolbachia as reproductive (Kajtoch & Kotásková, 
2018) symbionts may play an important role in evolution and adap‐
tation of Paederus species. As a matter of fact, PPB seems to affect 
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the capacity of the Paederus beetles to be causative agent of human 
linear dermatitis. It is also necessary to study the distribution of 
Wolbachia in the rove beetles to determine its function in host biol‐
ogy. Infection of Paederus species by PPB and Wolbachia has sepa‐
rately been investigated in a very few studies (Kador et al., 2011; Yun 
et al., 2011); however, dual occurring of these endobacteria has not 
been investigated yet. Hence, we studied co‐occurrence of PPB and 
Wolbachia in P. fuscipes. The achieved results can contribute to pave 
the way to address interesting open queries on the evolutionary 
consequences of the interactions between these inherited bacteria 
and their host biology with further experiments.

2  | E XPERIMENTAL PROCEDURES

2.1 | Study areas

The specimens were collected from nine locations of two provinces 
of southern coast of Caspian Sea in Iran, Gilan (Bijar Boneh [n = 6], 
Vashmeh Sara [n = 38], Kochesfehan [n = 10], Chini Jan [n = 8], 
Kalachai [n = 1], and Tajan Gukeh [n = 40]) and Mazandaran (Royan 
[n = 6], Shirud [n = 5], and Amol [n = 11]). Live adult beetles were 
gathered from humid areas, principally from rice fields, using hand 
collection method. The specimens were kept in 70% ethanol in 4°C 
refrigerator until experiments.

2.2 | Morphological studies

The specimens were morphologically identified using available iden‐
tification keys generated by Blackwelder (1957), Arnett and Thomas 
(2001), and Borror and DeLong’s (Triplehorn & Johnson, 2005).

2.3 | DNA extraction

Prior to molecular survey, to surface sterilize, the specimens were 
immersed twice in freshly prepared 70% ethanol for 2 min and 
rinsed vigorously with 0.9% normal saline. The whole bodies of adult 
beetles were homogenized in the DNA lysis buffer using sterile pes‐
tles. Genomic DNA of rove beetles was extracted using Collins DNA 
extraction method (Collins et al., 1987).

2.4 | Detection of PPB infection

2.4.1 | OprF primer designing and amplification

The major outer membrane protein of Pseudomonas, OprF, has 
been found only in Pseudomonas genus and considered as a di‐
agnostic protein in Pseudomonas sensu stricto (Bodilis & Barray, 
2006; Bouffartigues et al., 2011). A total of 44 sequences of 
OprF gene related to Pseudomonas isolates were extracted 
from the GenBank and aligned using Mega 5.0 software. The 
conserved regions among all Pseudomonas isolates were tar‐
geted to design genus‐specific primers. Two primers, OPRFF: 
5’‐GTGGA(A/G)GTGGACGGGTACTGCTTCATG‐3’ and OPRFR: 

5’‐CAACGGTCACCAGGGCGAGTGGATG‐3’, were designed based 
on the OprF‐specific sequences to amplify 327 bp of Pseudomonas 
spp. and PPB in the rove beetles. PCRs were done in a volume 
of 20 μl containing 5 pmol of each designed primer (Macrogen, 
Korea), 0.5 nmol dNTPs (Fermentas, USA), 1 U Taq DNA polymer‐
ase (CinnaGen, Iran), 2.5 μl buffer 10×, and 1–5 μl (~0.1 μg) of the 
extracted DNA from samples. The PCR thermal profile used with 
these primers was an initial denaturation at 95°C for 5 min, followed 
by 35 cycles of 94°C for 30 s, 66°C for 30 s, 72°C for 25 s, and a 
final extension step at 72°C for 10 min. All specimens were firstly 
screened with OprF gene, and then positive ones were examined via 
16S rRNA gene.

2.4.2 | 16S rRNA primer designing and amplification

Five available 16S rRNA sequences of PPB in rove beetles (P. fuscipes 
[AJ316016], P. riparius [AJ316018], P. melanurus [AJ316017], P. rufi‐
collis [AJ316019], and P. sabaeus [AJ295331]) and five representa‐
tive 16S rRNA sequences of other bacteria (Pseudomonas aeruginosa 
[AE004844], Escherichia fergusonii [NR_074902], Salmonella enteric 
[NR_119108], Klebsiella pneumoniae [NR_117686], and Proteus mi‐
rabilis [NR_114419]) were retrieved from the GenBank and sub‐
jected to PPB species‐specific primer designing. After alignment, 
16S‐PPBF: 5’‐ACCGCATACGTCCTAAGGGAG‐3’ and 16S‐PPBR: 5’‐
CCTCCTTGCGGTTAGACCAG‐3’ primers were designed based on 
the 16S rRNA‐specific sequences of PPB in rove beetles to amplify a 
1,265‐bp fragment of this gene. PCRs were the same as those per‐
formed for OprF primers. After an initial denaturation step of 5 min 
at 94°C, 35 cycles were carried out (denaturation for 30 s at 94°C, 
annealing for 30 s at 59°C, and elongation for 80 s at 72°C), followed 
by 10 min at 72°C.

2.5 | Detection of Wolbachia infection

Wolbachia infection was detected in rove beetles on the basis of 
Zhou et al.’s, (1998) introduced primers and through a nested‐
PCR assay recruited by Karami et al., (2016). Originally, prim‐
ers of 81F: 5’‐TGGTCCAATAAGTGATGAAGAAAC‐3’ and 691R: 
5’‐ AAAAATTAAACGCTACTCCA‐3’ were applied to amplify a 632‐
bp of partial sequence of the wsp gene. The PCR product of the first 
step was employed as a template for the second step. In this step, 
the primers of 691R and 183F: 5’‐AAGGAACCGAAGTTCATG‐3’ 
were used to amplify a 501‐bp fragment. The PCR was performed 
in a total volume of 20 μl containing 5 μl (~0.5 μg) of genomic DNA 
for the first step, and 2.5 μl of PCR product for the second step of 
nested‐PCR, one‐time PCR buffer, 2.5 U Taq polymerase (CinnaGen, 
Iran), 1 μl of each primer (20 mM, Macrogen, Korea), 200 μM of 
each dATP, dTTP, dCTP, and dGTP (Fermentas, USA) and 1.5 mM 
of MgCl2 in an automated Thermocycler (Analytik Jena FlexCycler, 
Canada). The PCR conditions were set as an initial denaturation at 
95°C for 5 min, followed by 35 cycles of denaturation at 94°C for 
1 min, annealing at 55°C for 1 min, and extension at 72°C for 1 min, 
followed by a final extension at 72°C for 7 min.
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2.6 | Sequencing and phylogenetic analysis

All the PCR products from 16s rRNA, OprF, and wsp genes were ana‐
lyzed by 1% agarose gel electrophoresis, followed by Green Viewer 
staining and visualization using a UV transilluminator. Amplicons of 
the representative specimens were extracted from the gel, and after 
purification was sequenced bidirectionally via the same amplifica‐
tion primers (Macrogen Company, Korea).

The raw sequences were initially edited by the Chromas 2.6.5 
software through trimming of right and left cut‐off regions that may 
contain poor qualities. The consensus of confident sequences was 
analyzed using NCBI (nucleotide collection) database. Multiple align‐
ments of the studied sequences were generated by the Clustal Omega 
package (Sievers et al., 2011). BLOSUM62 and Kimura‐2‐Parameter 
models were used to, respectively, score the pairs of aligned OprF/wsp 
amino acids and 16S rRNA nucleotides. Phylogenetic trees were con‐
structed using the maximum likelihood method embedded in Mega 
5 software (Tamura et al., 2011). Confidence of internal nodes was 
tested by Bootstrap test with 1,000 replications.

The phylogeny of various Pseudomonas spp., including PPB, was 
evaluated based on the OprF gene sequences. The relationships 
between 16S rRNA gene sequences of PPB in Paederus specimens 
and their close relative, Pseudomonas aeruginosa, was investigated 
through the phylogenetic tree construction.

2.7 | Statistical analysis

SPSS 20 for windows (SPSS Inc., USA) was used for statistical analy‐
sis. Differences between the proportions of subjects positive for 
each one of the Wolbachia and BBP bacteria or their combination in 
females and males were assessed using Chi‐square (χ2) test. p values 
<0.05 were considered statistically significant.

3  | RESULTS

3.1 | Morphological study

In this research, a total of 125 adult rove beetles, including 74 males 
and 51 females, were studied. All the collected specimens were tax‐
onomically identified as Paederus fuscipes Curtis, 1840 (Coleoptera: 
Staphilinidae) by using the morphological keys mentioned in the 
Experimental Procedures.

3.2 | Detection of PPB and Wolbachia infection in 
P. fuscipes

Prior to practical procedures, the specificity of designed primers 
was tested in silico. Performing BLAST searches showed that OprF 
primers were able to find cultured and uncultured Pseudomonas spp., 
which is in accordance with the desired specificity we expect for 
our study to identify Pseudomonas and Pseudomonas‐like species, 
but not the other genera. Also, the 16S rRNA primers could amplify 
only PPB endosymbiont of P. fuscipes, and it did not even reproduce 
symbionts which were present in the GenBank other than P. fuscipes.

In practice, both Pseudomonas‐specific (OprF) and PPB‐specific 
(16S rRNA) primers resulted in amplicon sizes of 327 and 1,265 bp, 
respectively, as expected. Applying the nested‐PCR assay could eas‐
ily detect the wsp, a single‐copy gene. The PCR products of the first 
and the second steps of nested‐PCR assay were roughly 650 and 
500 bp, respectively.

3.3 | PPB and Wolbachia infection rates in P. fuscipes

The designed OprF primers could amplify all Pseudomonas spe‐
cies, including Pseudomonas‐like PPB and P. aeruginosa (Figure 1). 

F I G U R E  1  Maximum likelihood tree showing the phylogenetic relationships between the OprF gene sequences obtained in this study 
(solid/empty circles) and other isolates of Pseudomonas spp. Solid and empty circles: bacterial genome amplified from female and male 
Paederus fuscipes, respectively; solid diamond: clinical isolate of Pseudomonas spp.; empty diamonds: environmental isolate of Pseudomonas 
spp. Pseudomonas putida was designated as outgroup. The numbers at the branch points are bootstrap values based on 1,000 replicates
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However, the species‐specific 16S rRNA primers that we designed 
could identify only Pseudomonas‐like PPB (Figure 2). In total, of the 
125 (51 female and 74 male) analyzed beetles, 42 females (82.35%) 
and 15 males (20.27%) were positive to OprF primers and the same 
rates (82.35% and 20.27%) were also positive to the PPB‐specific 
16S rRNA primers. PPB was detected not only in female beetles (as 
reported by Kellner, 2002) but also in male beetles. This is the first 
study reporting male P. fuscipes infection to PPB. Also, Wolbachia 
infection was found in 45 female (88.23%) and 50 male (67.57%) 
analyzed beetles. Surprisingly, a number of 36 females (70.59%) and 
13 males (17.57%) were detected to be infected with both PPB and 
Wolbachia endosymbionts. Individual analysis of bacteria showed 
that six females (11.76%) and two males (2.7%) were PPB positive 
and nine females (17.65%) and 37 males (50%) were positive for wsp 
gene.

The Chi‐squared test showed no significant difference (p = 0.13) 
of Wolbachia infection among male and female beetles, either alone 
or in combination with Pseudomonas. The infection rates of females 
to PPB and PPB‐Wolbachia were significantly higher than males in 
both alone and combined analyses (χ2, p < 0.05). Combined analy‐
sis showed that Wolbachia infection rate in females was more than 
males; however, this difference was not significant (χ2, p = 0.015). 
Overall, our results pointed out that 45.6% and 76% of all the spec‐
imens were positive to PPB and Wolbachia endosymbionts, respec‐
tively. The infection results in both alone and combined analyses are 
depicted in Table 1.

3.4 | Sequence and phylogenetic analyses

Sequence analysis of OprF gene revealed the presence of two phylo‐
genetically diverse groups in both male and female rove beetles; the 
first group of PPB sequences had 78% similarity to P. jinjuensis and 
P. citronellolis, and the second group of sequences was 100% iden‐
tical to P. aeroginosa (Figure 1). Phylogenetic analysis showed that 
the sequences of OprF gene are unique among Pseudomonas spp.; 
however, the sequences of 16S rRNA gene were related to the PPB 
of Pederus species.

Comparative 16S rRNA gene sequence analysis showed 
that some specimens from Gilan (KY568938 & KY568939) and 
Mazandaran (KY568940) Provinces were 100% identical to each 

other. Nevertheless, there were minor differences between the 
samples from Gilan Province (KY568941 with 4 and KY568937 
with 2 substitutions). In general, phylogenetic analysis of 16S 
rRNA gene from P. fuscipes specimens indicated that along with 
a sequence of the same species from Germany, the sequences of 
this study made a monophyletic clade were located as the sister 
clade of the sequences from P. ruficollis (France) and P. sabaeus 
(Cameroon; Figure 2).

The wsp gene sequence analysis displayed that all Wolbachia 
strains, obtained from the collected P. fuscipes in the study areas, 
were 100% identical to each other. In addition, the results of the 
BLAST search indicated that these strains were fully similar to the 
wsp sequence of Aedes albopictus [AF020059], Drosophila simu‐
lans [AF020069 and AF020074], Culex pipiens [AF020061], and 
Lasioderma serricorne [AB469359], the members of the Pip group of 
supergroup B.

3.5 | Nucleotide sequence accession numbers

The nucleotide sequences determined in this study have been de‐
posited into the GenBank database under the following accession 
numbers; OprF: KY568928–KY568936, 16s rRNA: KY568937–
KY568941, and wsp gene: KY555600–KY555603. The representa‐
tives of each sequences group were applied to phylogenetic analysis 
(Figures 1 and 2).

4  | DISCUSSION

We studied dual occurrence of PPB and Wolbachia endobacteria 
in P. fuscipes rove beetles. The overall population infection rates to 
PPB and Wolbachia endosymbionts were revealed to be 45.6% and 
76%, respectively. The PPB infection has previously been reported 
only in adult females (Kellner, 2002); however, here, we report the 
infection not only in females but also in male specimens. Detection 
of PPB in male beetles does not necessarily mean the existence of 
pederin substance in the male beetles. The PPB infection in females 
was found to be four times that of males (Table 1). These results are 
rational because the female Paederus have to transmit PPB to off‐
spring and protect them against both conspecific and other natural 

F I G U R E  2  Maximum likelihood tree 
showing the phylogenetic relationships 
among pederin‐producing bacteria (PPB) 
in Paederus spp. based on 16S rRNA 
gene sequences. Sequences obtained 
in this study are shown by solid circles. 
Pseudomonas aeruginosa was set as 
outgroup. The numbers at the branch 
points are bootstrap values based on 
1,000 replicates
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predators. Finding the PPB infection in adult males may be reflecting 
the cannibalistic behavior of the rove beetles, in part.

In this study, for the first time, PPB was detected at the genus 
and species levels, respectively, by OprF and 16S rRNA primers. 
The outcoming results from both genus and species levels were in 
agreement with the detection of PPB. Initially, the specimens were 
screened with OprF gene (copy numbers ≃ 200,000 per bacterial 
genome [Hancock, Siehnel, & Martin, 1990]), and then positive spec‐
imens were examined via 16S rRNA gene with copy numbers 1–15 
per bacterial genome (Rainey, Ward‐Rainey, Janssen, & Hippe, 1996). 
The OprF is a protein that not only has widely been studied in vaccine 
researches (Rawling, Martin, & Hancock, 1995) but also considered 
as a diagnostic protein for Pseudomonas spp. (Bouffartigues et al., 
2011). Our designed OprF primers could amplify both Pseudomonas‐
like PPB and P. aeruginosa (Figure 1). The P. aeruginosa is extensively 
distributed in the environment and can be both opportunistic and 
pathogenic microbial agent of plants, animals, and humans (Balcht & 
Smith, 1994). It has frequently been isolated from medical and non‐
medical insects (Bulla, Rhodes, & St. Julian, G., 1975; Maleki‐Ravasan 
et al., 2015; Mitscherlich & Marth, 1984). Pseudomonas strains found 
in insects have been shown to protect host against toxic compounds 
in some cases (e.g., Ceja‐Navarro et al., 2015); however, they display 
pathogenic characteristics in general (Vega & Kaya, 2012). The role 
of P. fuscipes originating Pseudomonas strains needs to be disclosed 
in future studies. Our designed species‐specific 16S rRNA primers 
could identify only Pseudomonas‐like PPB (Figure 2), an advantage 
that will be useful for the determination of PPB circulation pattern in 
the life cycle of Paederus beetles.

To raise the sensitivity and specificity of Wolbachia DNA amplifi‐
cation, we used a nested‐PCR assay (Karami et al., 2016). Generally, 
in many specimens, PCR products of the first step were positive; 
however, in a few cases, the density of Wolbachia indeed was so 
low (as indicated by Arthofer, Riegler, Avtzis, & Stauffer, 2009) that 
we have to perform the second step. The use of other techniques, 
including high‐quality polymerases, amplicon detection via DNA 
probes (Arthofer, Riegler, Schneider, et al., 2009) or high‐through‐
put sequencing methods (NGS), is recommended. The frequency 
of Wolbachia in 128 species of beetles belonging to seven families 
of Buprestidae, Hydraenidae, Dytiscidae, Hydrophilidae, Gyrinidae, 
Haliplidae, and Noteridae showed to be 31% (Sontowski, Bernhard, 
Bleidorn, Schlegel, & Gerth, 2015). Oliveira et al. (2015) used three 
markers (16S rRNA, wsp, and ftsZ) to screen a broad range of Brazilian 
insect species and found Wolbachia infection in 13% (n = 25) of the 

studied coleopterans (Oliveira et al., 2015). Infection of P. fuscipes 
by Wolbachia strains was originally reported by Yun et al., (2011). 
They did not track the prevalence of Wolbachia infection in the rove 
beetles but provided evidence for indirect horizontal transmission 
of Wolbachia between predators and preys (Yun et al., 2011). In 
the present study, Wolbachia (combined) infection rate in female 
and male specimens was 88.23% and 67.57%, respectively (χ2, 
p = 0.015). This difference is remarkable as the infection rates are in 
accordance with other studied insects including mosquitoes (Karami 
et al., 2016), and the fact is that no study has already been compared 
Wolbachia infection rates in the male and female beetles.

Herein, the phylogeny of P. fuscipes‐infecting Wolbachia was 
not investigated; nonetheless, they were previously classified in 
the supergroup B, based on the 16S rRNA and wsp markers (Yun et 
al., 2011). MLST data are needed to determine their exact position 
among 16 supergroups.

Surprisingly, the coinfection rates of both PPB and Wolbachia 
were 70.59% in females and 17.57% in males. The frequency of both 
bacteria in females was four times that of males (χ2, p < 0.0001). 
This co‐occurrence may imply putative interactions among these 
endosymbionts.

Our results highlighted the coexistence of PPB (as defensive) and 
Wolbachia (as reproductive) secondary endosymbionts not only in 
females but also in males of P. fuscipes. These bacteria will potentially 
interact with the host beetle and with each other as well. As defined 
in defensive symbiosis, the symbionts protect their host against hos‐
tile agents, including pathogens, parasites, parasitoids, or predators 
by the production of diverse metabolites, antimicrobial compounds, 
or toxins (Flórez, Biedermann, Engl, & Kaltenpoth, 2015). Defensive 
compounds such as pederin, piericidin, streptochlorin, and diaphorin 
have been characterized from bacterial symbionts of diverse insects 
(Beemelmanns, Gio, Rischer, & Poulsen, 2016). Although pederin can 
protect Paederus species from predation by natural enemies (Kellner 
& Dettner, 1995, 1996), its protective role against parasitoid wasps 
or entomopathogenic nematodes has not been inspected (Oliver & 
Moran, 2009). Also, the effects of Wolbachia infection on the life 
history of Paederus spp. are unclear. The reproductive phenotypes 
caused by Wolbachia in the P. fuscipes will need to be determined in 
the future surveys.

Given the transovarial transmission of Wolbachia as well as its 
relation to the reproductive phenotypes, the attention of research‐
ers on Wolbachia infections should be drawn to the reproductive 
tissues. Dobson et al. (1999) have conversely demonstrated that 

TA B L E  1  Prevalence of PPB and Wolbachia infection in the Paederus fuscipes specimens collected from nine locations of two Northern 
provinces of Iran during 2016

Endosymbiont beetle 
gender

Alone Combined

PPB (%) Wolbachia (%) PPB‐Wolbachia (%) PPB (%) Wolbachia (%)

Male 2 (2.7) 37 (50) 13 (17.57) 15 (20.27) 50 (67.57)

Female 6 (11.76) 9 (17.65) 36 (70.59) 42 (82.35) 45 (88.23)

Total 8 (6.4) 46 (36.8) 49 (39.2) 57 (45.6) 95 (76)
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Wolbachia infections not only are distributed in germ line but also 
are present throughout insect somatic tissues. They have also re‐
ported that the distribution of Wolbachia in somatic tissues is var‐
ied between different Wolbachia/host associations (Dobson et al., 
1999). Distribution of Wolbachia in the somatic and reproductive 
tissues of Paederus species needs to be determined in future.

The interaction between the PPB and Wolbachia has not been 
studied in any case. However, the asymmetrical interaction of 
Wolbachia and Spiroplasma endosymbionts had been indicated in 
the Drosophila melanogaster by Goto, Anbutsu, and Fukatsu (2006) 
who showed that Wolbachia could not affect the population of 
Spiroplasma, while Spiroplasma could negatively restrict the popu‐
lation of Wolbachia. Remarkably, they could not detect Wolbachia 
from the fly hemolymph, the principal location of Spiroplasma 
(Goto et al., 2006). Insect hemolymph is an operational area for 
innate immune responses where the phenol oxidase cascade fac‐
tors, antimicrobial peptides, phagocytosis, and encapsulation of 
exotic agents are produced by hemocytes (Lavine & Strand, 2002; 
Naitza & Ligoxygakis, 2004; Theopold, Li, Fabbri, Scherfer, & 
Schmidt, 2002). In Paederus beetles, the addition of pederin toxin 
to the hostile environment of the hemolymph may render the con‐
dition more difficult for dwelling microorganisms, requiring fur‐
ther investigation.

Our results reported more frequency of both bacteria in females 
than that of males (χ2, p < 0.0001). This observation may indicate tri‐
partite interactions among Paederus, Wolbachia, and PPB. Recently, it 
has been proposed that the nature of the interaction between the in‐
sect host and Wolbachia bacterium is parasitic or mutualistic, and the 
induction/inhibition of reactive oxygen species would be an essential 
player in the new and native hosts (Zug & Hammerstein, 2015). The 
nature of Paederus–Wolbachia interaction is not known and requires 
being determined in upcoming studies. Moreover, it has previously 
been reported that antimicrobial peptides keep the insect’s endosym‐
bionts under governor (Login et al., 2011). It is unclear whether the 
PPB regulates the population of Wolbachia via pederin or not. Hence, 
co‐occurrence of Wolbachia and PPB in rove beetles may infer that 
Wolbachia is adapted to cope with adverse conditions triggered by PPB. 
Numerous Wolbachia strains have already been found in beetle’s eggs 
containing antimicrobially active components (Pankewitz, Zollmer, 
Hilker, & Graser, 2007). Thus, it seems that these kinds of adaptations 
are common features among the Wolbachia strains. As a conclusion, on 
the side of symbiosis, PPB and Wolbachia may interact with each other 
and Paederus beetles, while on the side of insect host, Paederus beetles 
exploit these defensive and reproductive symbionts to warrant their 
fitness in the environment. Details and nature of these interactions 
(even at gender level) call for further investigation and testing.
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