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Abstract: Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic
changes in cancer arise from alterations in DNA and histone modifications that lead to tumour
suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and
non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that
control gene transcription. Organoselenium compounds have become promising contenders in cancer
therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium
compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation sta-
tus of histones and non-histone proteins, altering gene transcription. This review aims to summarise
the effect of natural and synthetic organoselenium compounds on histone and non-histone protein
acetylation/deacetylation in cancer therapy.

Keywords: cancer; organoselenium compounds; selenomethionine; selenocysteine; methylselenocys-
teine; histone deacetylation

1. Introduction

Cancer is a leading cause of mortality worldwide. In 2018, the World Health Organiza-
tion’s Annual Global Cancer Statistics indicated that 18.1 million new cases and 9.6 million
deaths have occurred [1,2]. These statistics have increased tremendously over the past
few years and are expected to double by 2040 [2]. The increase in cancer incidence and
mortality is due to several factors, such as population growth, aging, and changes in the
prevalence and distribution of cancer risk factors, the majority of which are associated with
socioeconomic development [1]. To date, significant advances have been made in cancer
prevention and therapy; however, early detection, toxic side effects, drug resistance, and
treatment costs pose substantial challenges [2].

Lifestyle and dietary modification are key in preventing cancer [2]. Selenium (Se)
is a trace element and essential micronutrient that can be obtained through the diet and
nutritional supplements. Selenium plays a critical role in cellular physiological processes
and is required for the proper functioning of all organisms [3]. In biological systems,
selenium acts as a cofactor for enzymatic reactions and is incorporated into amino enzymes
and selenoproteins [3]. Selenium also modulates cell survival and proliferation through its
pro- and anti-oxidant effects [4,5] and anti-inflammatory effects [6–9].

Cancer arises from a continuous oxidative and inflammatory environment, and a sele-
nium deficiency has been correlated with increased cancer incidence and mortality [10–12].
In contrast, selenium supplementation has been shown to reduce cancer incidence and
mortality [13]. There is no doubt that Se compounds can be both advantageous and dis-
advantageous in cancer. However, this is dependent on minor structural changes in Se
to produce favourable analogues. For this reason, natural and synthetic organoselenium
compounds and nano-selenium particles have attracted growing interest as potential anti-
cancer agents. Organoselenium compounds are usually favoured over inorganic selenium
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compounds due to their increased bioavailability and decreased toxicity [14]. Similarly,
nano-selenium particles have shown greater bioavailability and even lower toxicity than
organoselenium compounds [15]. Apart from their decreased toxicity, organoselenium com-
pounds and nano-selenium particles have both shown specificity for cancer cells. This was
conferred by their selective uptake, localisation, and accumulation in cancer cells [16]. The
selective uptake of Se by cancer cells has been explained in vitro. Gandin et al. explained
that the aberrant metabolism of cancer cells may be attributed to the selective uptake of
Se. The authors further described that the reduction of selenide to selenite stimulated the
uptake of Se by mediating a membrane-associated ATP-dependent transporter [16].

Emerging evidence suggests that the chemopreventative and therapeutic activity of
organoselenium compounds and nano-selenium particles may be attributed to alterations
in the epigenome [17,18]. These alterations can occur via epigenetic changes, such as
histone acetylation. Previous studies have indicated that organoselenium compounds and
nano-selenium particles can act as histone deacetylase inhibitors, which alter the acety-
lation of histones and non-histone proteins, thus regulating gene expression and protein
activity [17–19]. In this review, we summarise the effect of organoselenium compounds
and nano-selenium particles on histone and non-histone protein acetylation/deacetylation
in cancer prevention and therapy.

2. Cancer and Histone Acetylation

Cancer refers to the uncontrolled growth of abnormal cells that leads to the formation
of tumours that can spread to various parts of the body. Cancer occurs from aberrations in
gene expression and protein function and is often the consequence of an accumulation in
genetic and epigenetic events [20]. Epigenetics refers to the regulation of gene expression
by heritable modifications that are independent of the DNA sequence. These modifications
include DNA methylation, histone post-translational modifications, and microRNAs. Al-
though not as widely studied as DNA methylation, histone acetylation plays a critical role
in cancer development, and, hence, it will be the focus of this review.

In eukaryotes, DNA interacts with histones to form nucleosomes. Each nucleosome
comprises an octamer of positively charged histones—2 copies each of H2A, H2B, H3,
and H4—around which approximately 147 base pairs of negatively charged DNA are
wound [21]. H1 does form part of the histone octamer; however, it serves a crucial role
in organising the nucleosomes into higher-order chromatin structures [21]. The struc-
ture of chromatin is important in determining gene expression and can be divided into
transcriptionally silent heterochromatin or transcriptionally active euchromatin [21,22].

The modification of the amino-terminal ends of histone tails by acetylation or deacety-
lation influences the interaction between the DNA and histone proteins and thus influences
the chromatin structure. Histone acetylation is associated with euchromatin and is catal-
ysed by histone acetyltransferases (HATs), which transfer the acetyl group from acetyl
coenzyme A to lysine residues [21,22]. In contrast, histone deacetylases (HDACs) remove
acetyl groups, and histone deacetylation is associated with heterochromatin [22] (Figure 1).

Both HATs and HDACs are also able to modify a large variety of non-histone pro-
teins whose activity depends on their acetylation statuses, such as transcription factors,
chaperone proteins, signal transduction mediators, structural proteins, and inflammatory
mediators [23–25]. Consequently, changes in the acetylation status affect protein stability,
protein–protein interactions, and protein–DNA interactions [22].

Numerous studies have indicated a role for histone acetylation and deacetylation in
cancer [26–31]. Clinicopathological analyses of primary non-small cell lung cancer tissues
revealed a positive association between lower levels of H3K9ac, H3K18ac, and H4K16ac
and tumour recurrence [26,27]. In prostate cancer tissues, the levels of H3ac and H4ac
were found to be significantly decreased compared to those in non-malignant prostate
tissues [28]. In another cohort study, elevated levels of H3K18ac were correlated with an
increased risk of prostate tumour recurrence and relapse [29]. Low levels of H3K18ac,
H4K12ac, and H4K16ac were determined to be an early sign of breast cancer. In contrast,
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low levels of H3K18ac were correlated with a better prognosis of oesophageal squamous
cell carcinoma [31]. Moreover, the tumour suppressor and oncogenic activity of various
proteins are also dependent on the recruitment of HATs and HDACs, and, thus, acetylation
and deacetylation play a vital role in cancer initiation and progression [32–34].

Figure 1. The process of histone acetylation and deacetylation. Histone acetylation is catalysed by histone acetyltrans-
ferases (HATs) and is associated with a transcriptionally active chromatin structure (euchromatin). In contrast, histone
deacetylation is mediated by histone deacetylases (HDACs) and is associated with a transcriptionally repressed chromatin
structure (heterochromatin).

3. Naturally Occurring Organoselenium Compounds

Numerous tools have emerged to facilitate the screening of molecular targets and
therapeutic candidates for the identification of compounds associated with histone deacety-
lation inhibition. These compounds include short-chain fatty acids, hydroxamic acids,
benzamides [35–37], and other chemical families, such as organoselenium compounds [18].
Selenium is an essential trace element found in the soil, which is absorbed from the diet
in two significant forms [38]. Cereal grains and enriched yeast supply selenomethionine
(SeMet), while some plants, such as garlic and broccoli, bio-accumulate Se-methyl seleno-
cysteine (MSC) [39]. SeMet is an amino acid containing a sulfur to Se modification most
commonly found in nuts, potatoes, and meat proteins, such as fish and chicken [40]. In
humans, SeMet is incorporated into proteins by substituting methionine via the acylation
of Met-tRNA or the conversion to selenocysteine (SeCys) through a transsulfuration mech-
anism [41,42]. SeCys can then be cleaved by the enzyme β-lyase to form hydrogen selenide
(H2Se) (Figure 2). SeMet has demonstrated cytotoxicity in lung, colorectal, breast, prostate,
and melanoma cancer cells [43,44], highlighting an inverse relationship between Se intake
and cancer incidence [38,39]. Although these cytotoxic effects have been observed at a
medium to high micromolar range, a strong selectivity towards cancer cells over normal
cells has been identified in vitro [45].

The monomethylated seleno–amino acid derivative, more commonly known as MSC,
cannot be incorporated into proteins. Instead, it is converted to methylselenol by seleno-
cysteine Se-conjugated β-lyases [41,46]. The metabolism of MSC into methylselenol has
not yet been identified in animal models or cells owing to the high volatility and reactivity
of methylselenol [16]. The cytotoxicity of MSC in vitro has been shown in the micromolar
range for human colon, breast, lung, and oral squamous cell lines [43,47], while in vitro
treatment with MSC has shown reduced vascular endothelial growth factor expression [43].

Natural Selenium Compounds and Their α-Keto Acid Metabolites

HDAC inhibitors have demonstrated potential as cancer therapeutic agents since they
potentially de-repress epigenetically silenced genes by altering the histone acetylation
status [48].
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Figure 2. Summary of the metabolism and structures of major dietary organoselenium compounds.

In one study [49], the authors found that methylselenic acid (MSA) increased the
acetylation of histone 3 and α-tubulin in a time- and concentration-dependent manner.
The same group investigated the effect of MSA in a cell-free assay system and cell lines.
MSA did not exhibit HDAC inhibitory activity in a cell-free system based on the Flourde
Lys™ substrate deacetylation. However, in human non-Hodgkin’s B-cell (DoHH2, DHL4,
RL, and SUD4) cell lines, MSA had a concentration-dependent inhibitory effect on HDAC
activity [49]. In oesophageal squamous cell carcinoma (ESCC) cells, MSA reduced HDAC
activity and up-regulated GCN5 protein levels, which is a transcription-related histone
acetyltransferase associated with histone acetylation and gene activation [50].

HDAC inhibition has been reported by MSC and SeMet, which are transaminase
substrates of glutamine transaminase K (GTK) and L-amino acid oxidase [51]. However, it
was reported that SeMet is a poor substrate for aminotransferase activity as compared to
MSC [52,53].

Previously, it has also been shown that the α-keto acid metabolites of organoselenium
compounds alter histone deacetylase activity and histone acetylation status [18]. For
the α-keto acid metabolites to be formed, methylselenol must be created in situ from
organoselenium compounds by the action of β-lyases, but a transamination reaction must
compete with the β-elimination for an α-keto acid to be formed [54]. In a cell-free system,
MSC forms β-methylselenopyruvate (MSP) via the enzyme glutamine transaminase K,
while SeMet forms α—Keto—γ–methylselenobutyrate (KMSB) via the enzyme L-amino
acid oxidase, as summarised below (Figure 3).

Figure 3. Summary of the formation of α-keto acids.

Structurally, MSP and KMSB resemble short-chain fatty acids, a significant class
of HDAC inhibitors [53]. These α-keto acid metabolites share substantial similarity to
butyric acid, which suggests their selectivity for histone deacetylases. Most HDACs hold a
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coordinating zinc atom in the active site. At the same time, seleno α-keto acids possess a
highly electronegative selenium moiety in the vicinity of the zinc atom active site, enabling
the disruption of the charge relay system within the HDAC pocket [53].

MSP and KMSB exhibit a dose-dependent inhibitory activity on human HDAC1 and
HDAC8 in human colon cancer cells [17]. In addition, prostate cancer cells treated with
both MSP and KMSB had accumulated acetylated histone H3 [18]. Colon cancer cells
treated with MSP and KMSB showed an increase in p21 mRNA and protein expression,
and increased histone acetylation associated with the P21WAF1 promotor region [17]. MSC,
MSP, and KMSB were able to induce global histone acetylation in prostate, breast, lung,
and leukaemia cells, while SeMet did not affect the histone acetylation [52].

4. Synthetic Organoselenium Compounds

The synthesis of organoselenium compounds was first reported by Lowig as early
as 1836; however, the malodorous nature, troublesome purification, and the instability of
many Se derivatives hampered early developments [55]. Research into organoselenium
compounds picked up in the 1970s as they were found to be less toxic than their inorganic
counterparts and were found to have several useful applications [55–57]. Presently, the
synthesis and applications of organoselenium compounds are still the centre of intense
research and may play a central role in cancer therapeutics [16]. Below, we discuss the role
of synthetic organoselenium (methylseleninic acid, seven derivatives of suberoylanilide
hydroxamic acid and ebselen) on their HDAC inhibitory and anti-cancer properties.

4.1. Methylseleninic Acid

The oxoacid methylseleninic acid (MSA, CH3SeO2H) is considered among the simplest
Se-containing compounds with chemopreventative and chemotherapeutic properties. Due
to its pro-oxidant nature, MSA was shown to be effective against human pancreatic [58],
lung [59], breast [60], and prostate [61,62] tumour cellular models. MSA has also shown
to be effective against rodent mammary [63] and pancreatic [58] in vivo cancer models, as
well as colon [64] and prostate cancer [54,58] xenograft models.

Contrary to selenoamino acids, MSA circumvents the need for β-lyase to generate
methylselenol. MSA is easily reduced to methylselenol via enzymatic and nonenzymatic
processes [65]. In a reaction with three molecules of thiol, MSA forms selenylsulfide, which
is further reduced to methylselenol in the presence of excess thiols [66]. In cells, where
glutathione is the major thiol, a methyl-selenium-glutathione intermediate is formed, which
undergoes reduction by glutathione reductase to form the key intermediate methylselenol.
Methylselenol can undergo demethylation to replete selenoenzymes, producing hydrogen
selenide [65], or be further methylated to dimethyl selenide (Figure 4) [67]. The reduction
to methylselenol generates superoxide, resulting in cellular dysfunction and death [16].
The redox modifications induced by MSA may contribute to its anti-proliferative and
pro-apoptotic effects in cancer cells via caspase activation, ER stress, induction of unfolded
protein response, cytochrome c, and PARP cleavage [61,62].

In addition to the pro-oxidative properties of MSA, the inhibition of HDAC activ-
ity could be a contributing factor to MSA’s anti-carcinogenic effects. Kassam, Goenaga-
Infante [67] were the first to demonstrate the HDAC inhibitory action of MSA in four
diffuse large B cell lymphoma cell lines (diffuse large B-cell lymphoma (DLBCL): DoHH2,
RL, SUD4, and DHL4). MSA (30 µM, 2 hr) was shown to inhibit both class I and II HDACs
by 40–50% as a concentration-dependent increase in the acetylation of H3 (regulated by
class I HDACs) and α -tubulin (regulated by HDAC6, a class II HDAC) occurred. HDAC
activity was also measured using cell-based and cell-free assays. While the activity assays
involving intact cells confirmed the concentration-dependent HDAC inhibitory action of
MSA in all four cell lines, MSA did not affect HDAC activity in the cell-free assay, which
used HeLa nuclear extracts. The authors further demonstrated that medium from cells
exposed to MSA had a slight (21%) inhibitory effect on the HDAC activity of HeLa nuclear
extracts; however, medium incubated with MSA in the absence of cells had no effect on
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the activity of HDACs [67]. The above data suggest that the inhibitory action of MSA is
likely due to the intracellular activation of MSA to methylselenol, which is responsible for
its anti-tumour activity [65]. The volatile nature of methylselenol would explain the small
effect observed as it is not retained in the cell medium. Kossam, Goenaga-Infante [67] found
that the intracellular Se metabolite formed after MSA exposure to the cell was dimethyl
selenide. Although methylselenol was not detectable due to its high volatility, the presence
of dimethyl-selenide confirmed that methylselenol was the major metabolite formed and
was thus likely responsible for HDAC inhibition.

Figure 4. Metabolism of methylselenic acid (MSA). MSA is reduced to the volatile metabolite methylselenol, which is
further reduced to hydrogen selenide or methylated to the stable dimethyl selenide.

The authors further hypothesised that inhibition of HDAC activity might be respon-
sible for HIF-1 expression and activity, providing a potential mechanism by which MSA
inhibits angiogenesis. However, they did not demonstrate a direct relationship between
HDAC activity and HIF-1 expression or activity. It was suggested that the concentration
inhibiting HDAC activity was similar to that required for the inhibition of HIF-1α expres-
sion and VEGF secretion. Thus, HDAC inhibition may be a potential mechanism by which
MSA inhibits angiogenesis in vivo, although this claim requires further investigation [67].

The modulation of HDAC activity was further investigated in human oesophageal
squamous cell carcinoma cell lines (EC9760 and KYSE-150) exposed to MSA (5 µM;
24 hr) [53]. MSA treatment significantly increased H3 acetylation at lysine 9 (H3K9) and
lysine 18 (H3K18); however, no detectable changes were observed at other sites on H3, and
the total H3 was only slightly upregulated. H3 hyperacetylation post-MSA treatment was
due to the reduced expression of HDAC 1 and 2, impaired HDAC activity, and increased
expression of the HAT, general control non-repressed protein 5 (GCN5) [53]. Krüppel-
like factor 4 (KLF4) participates in the transcription of various oncogenes and tumour
suppressor genes and could either promote or inhibit cell growth in a tissue-dependent
manner [68,69]. Overexpression of KLF4 was shown to inhibit growth and invasion of
several tumour cell lines [70]; however, it is widely reported to be downregulated in
ESCC. MSA treatment increased KLF4 expression via the increased acetylation of H3
at KLF4 promoters in KYSE-150 cells, contributing to MSA-mediated ESCC cell growth
inhibition [71].

While the earlier studies examined specific acetylation marks, a recent study by
Khalkar, Ali [72] in human chronic myeloid leukaemia K562 cells evaluated and compared
genome-wide epigenetic alterations induced by MSA (5 µM, 24 hr) with those of the inor-
ganic Se, selenite (6 µM, 24 hr). Both compounds reduced the global nuclear HDAC activity
by 10%; however, these results were not significant. Western blot analysis revealed a signif-
icant increase in global H3K9ac upon MSA treatment; these results were not supported in
MCF-7 breast cancer cells, which showed that MSA had no effect on H3K9ac [73]. Both
studies did observe a negligible effect on H3K9ac by selenite. A chromatin immunopre-
cipitation assay followed by a whole genome-wide sequencing using the H3K9ac histone
mark revealed that the cytotoxic effects exerted by MSA were not solely dependent on its
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pro-oxidant nature. MSA affected genes related to cell adhesion, glucocorticoid receptor
binding, and inositol-3-phosphate synthase activity [72].

The mechanism by which MSA inhibits HDAC activity needs further investigation.
Classical HDAC I and II inhibitors contain a side chain that can easily reach the catalytic
pocket of HDACs to chelate Zn2+ ions found at the active site. Neither MSA nor its
metabolites include these features [74]. However, MSA was shown to inhibit other enzymes,
such as PKC, via redox modifications to key cysteine residues [75]. There is, therefore,
the potential for Se compounds to directly alter the HDAC structure and catalytic activity;
however, such a relationship needs further investigation.

4.2. Selenoderivatives of Suberoylanilide Hydroxamic Acid

Suberoylanilide hydroxamic acid (SAHA, C14H20N2O3) or vorinostat is a well-known
HDAC inhibitor approved by the USA Food and Drug Administration for treatment against
advanced cutaneous T cell lymphoma [76,77]. It has been shown to be effective against
other hematological malignancies and is known to block in vitro and in vivo proliferation
of cancer cells with little to no toxicity to normal cells [78–82]. The anti-proliferative effect of
SAHA is believed to be due to its ability to inhibit HDAC activity, leading to the accumula-
tion of acetylated proteins and histones, thus altering the transcription and activity of multi-
ple genes related to cell cycle arrest, apoptosis, and differentiation [83–85]. While SAHA is
effective against hematological malignancies, it has limited efficacy in the treatment of solid
tumours [86,87]. Se-containing SAHA derivatives have been developed to overcome the
shortfalls of SAHA. The most well-investigated SAHA Se-containing analogue includes the
Se-dimer SelSA-1, also known as Bis(5-phenylcarbamoylpentyl) diselenide [B(PCP)−2Se],
and the selenocyanide SelSA-2, also known as 5-phenylcarbamoylpentyl selenocyanide
(PCP-SeCN), and a ferrocenyl modified SelSA analogue known as Fe-SelSA (Figure 5).

SelSa-1 and SelSa-2 were developed in 2010 by Desai and co-workers. Its inhibitory ac-
tivity was evaluated in Hela nuclear extracts and its effectiveness compared against SAHA.
Both SelSA-1 (50 nM) and SelSA-2 (50 nM) were shown to be the superior HDAC inhibitors,
disrupting HDAC activity by 81% and 95%, respectively, whereas SAHA (500 nM) only
inhibited HDAC activity by 77% [88]. Similar results were observed by Gowda Madhu-
napantula [89] in Hela nuclear extracts. SelSA-1 or SelSA-2 dose-dependently decreased
HDAC activity in the WM35 melanocytic lesion cell line, which resulted in the acetyla-
tion of histones H3 and H4. SAHA was 50–60% less effective against obstructing HDAC
activity compared to SelSA compounds. Moreover, the topical application of the SAHA
Se-derivatives was found to kill melanocytic lesions developed on laboratory-generated
skin reconstructs two to four times more effectively than SAHA and decreased tumour
development by 87% [89]. SelSA-1 and SelSA-2 were also shown to be more effective
against lung cancer cell lines (A549, H2126, H1299, H226, H460, H522, H23, and H441) as
they exhibited a lower IC50 than SAHA and more potent inhibition of growth activity was
observed using the Se derivatives. However, normal lung epithelial cells showed resistance
to the SelSA-1 and SelSA-2, suggesting that these SelSA compounds will be well tolerated
as compared to SAHA. While the effect of these SAHA derivatives against HDAC activity
was not directly investigated, the authors believe that the anti-proliferative effects are due
to the induction of autophagy and inhibition of MAPK and PI3K signalling, which are
common occurrences during HDAC inhibition [90].
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Figure 5. Structures of the HDAC inhibitor SAHA and its selenium-containing derivatives.

The mechanism of SAHA’s inhibitory action on class I and II HDACs is through the
chelation of zinc (Zn2+) ions present in the active sites of HDACS [91]. Replacing the
zinc-binding group (carbonyl and hydroxyl amine group) of SAHA with Se improves its
affinity for Zn2+ ions, consequently enhancing its effectiveness as an HDAC inhibitor [92].
In silico, modifications with organoselenium to the zinc-binding group of SAHA resulted
in 1726 ligands. Further molecular docking simulations revealed that the five best ligands
(CC27, HA27, HB28, IB25, and KA7) had better binding affinity and interactions with Zn2+

ions in inhibited HDACS than SAHA [93]. In silico molecular docking revealed that SelSA-1
shares the same common binding sites on class I HDACs (class I) with SAHA. However,
differential binding patterns of Sel-SA-1 with HDAC2 and HDAC8 were observed. For
instance, HDAC2 appears to bind similar to SAHA, where the SeH of SelSA-1 binds deeply
to HDAC8. For HDAC8, SelSA-1 mimics the binding of trichostatin, which is another
potent HDAC inhibitor against different cancers [94].

Docking simulations further established that SelSA-2 selectivity inhibited HDAC6
as SelSA-2 adopted a favourable binding position in the active site of HDAC6 with the
selenocyanide group engaging in key hydrogen bonds critical for chelation of Zn2+ ions in
the catalytic domain [95]. Hydroxamic acid is able to chelate the Zn2+ ion, which can inhibit
HDAC activity [96]. This was confirmed in the breast cancer cell lines MCF-7 and MDA-
MB-231 as SelSA-2 selectively inhibited HDAC6, resulting in tubulin acetylation. Moreover,
SelSA-2 specifically targeted breast tumours in vivo and improved treatment efficacy with
fewer side effects compared to SAHA [95]. Modifications to the cap-linker of SelSA-2 with
ferrocenyl (FC-SelSa-2) have also demonstrated effectiveness against MDA-MB-231 cells.
Molecular docking analysis showed Fc-SelSA formed new hydrogen-bonding interactions
with residues D98 and G151, whereas SAHA and SelSA were unable to do so. Moreover,
Fc-SelSA was selectively more potent against MDA-MB-231 cells in comparison to MCF-7
cells, with no toxicity against normal cells. In addition, Fc-SelSA showed a relatively
low acute toxicity in vivo and significantly inhibited the growth of triple-negative breast
cancer in a xenograft mouse model [97]. Given its high HDAC binding affinity and potent
therapeutic effect, selenoderivatives of SAHA serve as a highly promising candidate for
targeted cancer therapy with clinical translation potential.

4.3. Ebselen

Ebselen (C13H9NOSe), first synthesised in 1924, was considered pharmacologically
irrelevant until its capability as a potent anti-oxidant was established in 1984 [98–100].
Ebselen mimics glutathione peroxidase to detoxify ROS. ROS oxidises the resting state
selenol (Ebselon–SeH) to selenenic acid (Ebselon–SeOH), which is subsequently reduced to
active selenol by glutathione via a selenenyl sulphide intermediate (ebselen–SeSG) [101].
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The anti-oxidant actions of ebselen are also demonstrated through its ability to react
with the thioredoxin system, responsible for removing ROS and reactive nitrogen species
(RNS) [102]. Ebselen’s antioxidative properties have been widely studied, suggesting
that it might possess anti-proliferative and anti-cancer properties through ROS produc-
tion [103]. These anti-cancer characteristics may also be regulated by the inhibition of
quiescin sulfhydryl oxidase 1 (QSO1), an enzyme that enhances growth and tumour cell
invasion and alters the composition of the intracellular matrix [104].

To identify potential and novel HDAC inhibitors, two separate studies screened drug
and compound libraries approved by the Library of Pharmacologically Active Compounds
(LOPAC), US FDA, and National Institutes of Health Clinical Collection compound li-
brary [105,106]. In the first study, 1280 compounds were evaluated for potential inhibitory
activity against class I and IIa HDACs. Ebselen was identified as one of five compounds
with inhibitory action against class I and Iia HDACs and was most effective against
HDAC2 [105]. The screening of 1360 compounds from FDA and National Institutes of
Health Clinical Collection library against HDACs from subtypes 1 to 11 also found ebse-
len to exhibit selective HDAC inhibition [106]. Ebselen was shown to selectively inhibit
the activity of HDACs 5, 6, 8, and 9 by more than 50%. The HDAC inhibitory action
of eleven ebselen analogues was also investigated; in this review, we focused on the Se-
containing ebselen analogue, ebselen oxide (Figure 6). Ebselen oxide was also shown
to dose-dependently inhibit HDAC 1, 3, 4, 5, 6, 7, 8, and 9 and increased the potency
of HDAC8 inhibition in comparison to ebselen. Unlike other synthetic organoselenium,
ebselen and ebselen oxide were shown to effectively inhibit nicotinamide adenine dinu-
cleotide (NAD+)-dependent class III HDACs. Ebselen and ebselen oxide dose-dependently
inhibited SIRT1, SIRT2, SIRT3, and SIRT5 activities in biochemical assays. The IC50 values
of these three compounds on SIRTs were in the range of 0.3 to 6 µM.

Figure 6. Structures of HDAC inhibitors ebselen and its oxidised derivative, ebselen oxide.

Like MSA, ebselen lacks the characteristic features of HDAC inhibitors to chelate
Zn2+ ions present in the active site of HDACs. Its inhibitory action may also be covalent
modification to cysteine residues of HDACs, similar to its irreversible inhibitory action
against inositol–monophosphatase (IMPase). The therapeutic potential of ebselen is also
explored in infectious diseases, such as SARS-CoV-2. A recent study has shown that ebselen
and its derivatives inhibit the main protease of SARS-CoV-2 via ebselen interaction with
cysteine [107].

5. Selenium Nanoparticles

Over the past three decades, the emergence of nanotechnology has transformed the
perception of drug delivery and development by providing many disease pathophysiol-
ogy and treatment options [108]. Nanotechnology involves sub-microscopic particles or
nanoparticles (NPs) with remarkably unique features, such as small size, high surface area,
surface charge, surface chemistry, solubility, and multi-functionality [109]. The incorpora-
tion of nanoparticles into nutrition is advantageous to solubility, protection from oxidation
and enzymatic degradation, extended residence time, and enhanced bioavailability [110].
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Biogenic selenium nanoparticles (SeNPs) are biocompatible and less toxic compared
to selenate and selenite [111]. However, their toxicity varies among different species [112].
Biogenic SeNPs, with an LD50 of 198.1 mg/kg, were reported to be 26-fold less toxic than
SeO2, with an LD50 of 7.3 mg/kg [113]. The use of SeNPs drastically decreased death
incurred by Se-associated acute toxicity up to four times in a rodent model [114]. In mice,
sub-acute and short-term toxicity studies revealed the higher toxicity of selenite compared
to SeNPs. Liver injuries due to a high Se dosage are substantially reduced by SeNPs, as
indicated by the hepatotoxicity biomarkers [115].

Due to their high bioavailability and low toxicity, SeNPs are advantageous over their
organic and inorganic variants and play a role in biomedical applications, including as
anti-oxidants, chemopreventative agents, and anti-cancer drug delivery carriers [116]. By
exploiting the overexpression of folate receptors in most cancers, folate has been widely
used as a ligand for nanoparticles. Recently, it has been demonstrated that selenium–
chitosan–folic acid nanocomplexes selectively bind to the HeLa cell surface, thus mediating
gene silencing in vitro [117]. Furthermore, these SeNPs demonstrated low cytotoxicity in
non-cancer cell lines in vitro.

The concept of nanomedicine has emerged in therapeutics because it offers unique
advantages, such as its enhanced safety [109]. SeNPs have a range of medical applications,
including as anti-microbial, anti-oxidant, and anti-cancer agents [118,119]. SeNPs scavenge
ROS in a size-dependent manner, where smaller SeNPs hold greater free radical scavenging
potential [120]. SeNPs are one of the successfully tried nanoparticles to induce cytotox-
icity in cancer cells. SeNPs-based approaches provide hope in fighting drug resistance,
mitigating toxicities in chemotherapeutic agents, and transporting chemotherapeutics to
their target site [109]. Although the mechanisms underlying the anti-cancer properties
of SeNPs have not been fully elucidated, several hypotheses are proposed: (i) increased
carcinogen detoxification, oxidative stress, and immune surveillance; (ii) cellular and
mitochondria-mediated apoptosis; (iii) inhibited angiogenesis and tumour cell invasion;
(iv) S phase cell cycle arrest; (v) inhibited expression of the matrix metalloproteinases
preventing metastasis; and (vi) mobilisation of endogenous copper [121–123]. Among
these possible mechanisms, apoptosis receives the most attention for SeNPs’ anti-cancer ac-
tivity [124]. SeNPs conjugated with organic molecules and drugs inhibit the accumulation
of nanoparticles, increase their anti-cancer efficacy, and alleviate the toxic effects of antibi-
otics [123,125,126]. SeNPs linked with Spirulina polysaccharides prevent tumour growth
through apoptosis confirmed by increased sub G1 cell population, chromatin condensation,
and DNA fragmentation. These conjugates also aid SeNPs in the targeted delivery in
cancer cells via specific interactions between lectins and carbohydrates present on the cell
surface [125].

6. Discussion

The search for effective chemopreventative and therapeutic compounds that have
minimal or no side effects is currently ongoing. Cancer is an epigenetic disease that arises
from the excessive activation of oncogenes and inhibition of tumour suppressor genes. As
discussed in this review, organoselenium compounds can modulate gene expression by reg-
ulating the epigenome. This can occur by functioning as histone deacetylase inhibitors and
modulating the acetylation pattern of histones and non-histone proteins, and it provides
the potential for the use of organoselenium compounds as anti-cancer agents. Furthermore,
since cancer is an epigenetic disease, the ability of organoselenium compounds to alter the
epigenome may increase its efficacy as an anti-cancer agent.

Unlike the current anti-cancer drugs that do not selectively target cancer cells, organose-
lenium compounds have demonstrated cytotoxic activity against cancer cells whilst leaving
non-cancerous cells relatively unharmed. As such, the therapeutic use of organoselenium
compounds provides a targeted approach [126]. Previous reports emphasise the use of
organoselenium compounds administered in combination with conventional chemothera-
peutic treatments [16]. This characteristic of organoselenium compounds may reduce the
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side effects often associated with the current cancer treatments [127]. However, whether
this predisposes non-cancerous cells to develop a carcinogenic phenotype remains to
be elucidated.

Furthermore, the excessive intake of organoselenium compounds, above the recom-
mended dietary intake of 400 µg/day for adults, has been associated with toxicity. Other
challenges include the bioavailability of the exact concentration of organoselenium com-
pounds required to reverse the epigenetic modification in cancer cells and the effect of
organoselenium compounds in combination with existing anti-cancer drugs [128]. The gut
microflorae significantly influences the bioavailability of Se; thus, we can manipulate Se
nutritional availability [129]. However, the overuse or prolonged use of antibiotics compro-
mises the microbiota and is associated with an excess incidence of cancer diagnosis [130].

These issues can be curbed using SeNPs, which exhibit lower toxicity and have greater
bioavailability and biological activity than both natural and synthetic organoselenium
compounds [131]. For these reasons, selenium nanoparticles may provide the potential for
precision cancer therapy. Several recent studies have highlighted the impact of SeNPs in
cancer therapy with optimistic results [132–137]. As such, research in this revolutionary
field is growing rapidly; however, a better understanding of non-cancerous cells’ interac-
tions must be evaluated.

7. Conclusions

Ultimately, through simple dietary choices, such as incorporating foods that are rich
in selenium into the diets of cancer patients as well as those patients that are at a high
risk of developing cancer, organoselenium compounds may have the potential to decrease
the prevalence of cancer and increase patient survival. Likewise, SeNPs can be used as
a food additive, and synthetic organoselenium compounds and SeNPs can be used to
create nutritional supplements that are easily administered to cancer patients and at-risk
individuals with selenium deficiencies.
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