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Abstract: Exciton–polaritons (EPs) can be formed in transition metal dichalcogenide (TMD) multilay-
ers sustaining optical resonance modes without any external cavity. The self-hybridized EP modes
are expected to depend on the TMD thickness, which directly determines the resonance wavelength.
Exfoliated WS2 flakes were prepared on SiO2/Si substrates and template-stripped ultraflat Au layers,
and the thickness dependence of their EP modes was compared. For WS2 flakes on SiO2/Si, the
minimum flake thickness to exhibit exciton–photon anticrossing was larger than 40 nm. However,
for WS2 flakes on Au, EP mode splitting appeared in flakes thinner than 10 nm. Analytical and
numerical calculations were performed to explain the distinct thickness-dependence. The phase shifts
of light at the WS2/Au interface, originating from the complex Fresnel coefficients, were as large
as π/2 at visible wavelengths. Such exceptionally large phase shifts allowed the optical resonance
and resulting EP modes in the sub-10-nm-thick WS2 flakes. This work helps us to propose novel
optoelectronic devices based on the intriguing exciton physics of TMDs.

Keywords: WS2; exciton–polariton; anticrossing; Fresnel coefficients; phase shift

1. Introduction

Transition metal dichalcogenides (TMDs) have long attracted the attention of re-
searchers due to their fascinating physical properties for optoelectronic device applications,
including sizable bandgap energies, large absorption coefficients, high electron mobility,
and superior mechanical flexibility [1–15]. In particular, it has been noted that the exciton–
photon interactions dominate the optical responses of TMDs even at room temperature.
In two-dimensional (2D) TMD layers, strongly bound electron-hole pairs (excitons) are
generated by the weak dielectric screening and strong geometric confinement [1–11]. The
exciton binding energy in TMDs is as large as hundreds of meV, which is one to two orders
of magnitude larger than those of conventional semiconductors [1–6]. Integration of TMDs
with photonic nanostructures can broaden our understanding of exciton physics, providing
valuable insights into excitonic devices [4–6]. Moreover, strong coupling between excitons
and photons leads to the formation of exciton–polaritons (EPs) in TMDs integrated with
optical resonators [5,6]. These half-light half-matter quasiparticles allow us to investigate
intriguing physical phenomena [16–18] and realize novel functional devices [19–21].

TMD multilayer flakes, with exceptionally large refractive indices, can sustain
Fabry–Pérot (FP) resonance modes without any external cavity [8–12]. Consequently, a
variation in the thickness significantly alters the apparent color of the TMD flakes due
to the absorption and interference effects. Such unique optical characteristics enable
the rapid and reliable determination of the TMD thicknesses using optical microscopy
(OM) [13]. Moreover, coupling of excitons and the cavity photons in TMDs results in
the formation of self-hybridized EPs [8–12]. Consequently, exciton–photon anticrossing
behaviors appear at specific wavelengths along with splitting of the hybridized EP modes
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to upper and lower polariton branches (UPB and LPB, respectively) in TMD multilayer
flakes on reflective substrates [6,8–10] The wavelength showing such cavity-free EP mode
splitting depends on the thickness of the TMD flakes, since the flake thickness directly
determines the optical resonance wavelength [8–10]. The integration of TMDs with
optical resonators requires complicated time-consuming fabrication processes which are
obstacles for active research works and the development of excitonic devices. Therefore,
cavity-free self-hybridized EPs provide a versatile approach to investigate excitonic
effects in the optical characteristics of TMDs.

Among numerous TMDs, WS2 is one of the most intensively investigated materials.
Monolayer WS2 has a direct bandgap of ~2 eV, while the bulk counterpart has an indirect
bandgap of ~1.3 eV [22–24]. Since the bandgap is appropriate for visible-range applica-
tions, WS2 is a strong candidate to realize high-performance optoelectronic devices [23].
Additionally, WS2 is a promising material for valleytronic devices, due to its broken inver-
sion symmetry and strong spin–orbit coupling [24]. Earlier reports have shown that the
minimum thickness of a WS2 flake on dielectric SiO2 substrates showing UPB-LPB splitting
is approximately 40 nm, which is less than ~1/10 of the exciton resonance wavelength
in vacuum [8]. To our surprise, exciton–photon anticrossing behaviors appear even in
sub-20-nm-thick TMDs on metallic layers [10]. The EP mode formation boosts the optical
absorption in thin TMD layers, which has stimulated the development of high-efficiency
ultrathin photovoltaic devices [14,15]. Despite these noteworthy features, the physical
origin to determine the minimum thickness for EP mode splitting in TMDs has not been
explicitly investigated.

In this work, we prepared exfoliated WS2 multilayer flakes and investigated their
optical characteristics. The apparent colors and the measured reflectance spectra of the
flakes showed significant variation depending on the flake thickness, which originated
from the strong coupling between excitons and cavity photons. In particular, the thickness-
dependent spectral responses of the flakes on SiO2/Si substrates and Au thin films were
compared to study how the metal underlayers affected the optical resonance and resulting
EP mode splitting. Analytical and numerical calculations were also performed to elucidate
the physical origins.

2. Materials and Methods

Exfoliated WS2 flakes were prepared on SiO2 (300 nm)/Si wafers and Au (100 nm)
thin films, as illustrated in the schematic diagrams in Figure 1a,b. Hereafter, the former
and latter samples will be called WS2/SiO2/Si and WS2/Au, respectively. The Au thin
films were deposited on SiO2/Si substrates using e-beam evaporation and then were
delaminated from the original substrates to slide glasses using UV-curable prepolymer
(NOA63, Norland) [25]. The SiO2/Si substrates serve as ultrasmooth templates, and the
stripped Au thin films have very flat surface (typical root-mean-square roughness: 0.7 nm)
(see Figures S1 and S2 of Supplementary Materials). Such template-stripped Au thin films
are beneficial for minimizing the roughness at the interface between the WS2 flakes and Au
thin films [25].

Optical reflectance spectra of flakes were measured using a homemade setup with
an optical microscope (LV100, Nikon, Tokyo, Japan) and a spectrometer (Maya 2000 Pro,
Ocean Optics, Dunedin, FL, USA). Reflected light from sample surface was collected
using a 50-µm-diameter optical fiber (M50L02S-A, Thorlabs, Newton, MA, USA), which
enabled us to obtain the spectra from a selected area of several µm2. The thickness of
the flake was measured using an atomic force microscopy system (NX10, Park Systems,
Suwon, Korea).
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Figure 1. Cross-sectional schematic diagrams and OM images of exfoliated WS2 flakes with various
thicknesses on (a) SiO2/Si substrates and (b) template-stripped Au films.

3. Results and Discussions

As shown in Figure 1a,b, the thickness of the WS2 flake (dWS2) significantly affects
the apparent color of the flakes. It should be also noted that the flakes with identical dWS2
values (e.g., 4, 7, and 20 nm) exhibit distinct colors depending on the underlying layers
(SiO2/Si and Au). Incident light undergoes reflection and transmission at the interface of
two neighboring media in WS2/SiO2/Si and WS2/Au. The amplitude and phase of light
at each medium are determined by the Fresnel equations [13,26]. The superposition of all
the reflected waves at the boundaries, i.e., the multiple-beam interference, determines the
reflectance spectra and colors of the WS2 flakes [26]. Even though the absorption coefficient
of WS2 is exceptionally large compared with those of conventional semiconductors, thin
flakes allow the transmission of incident light [23]. As a result, the underlying layer as well
as dWS2 can affect the apparent color of the flake, as shown in Figure 1a,b.

Figure 2a–e shows the calculated and measured reflectance spectra of WS2 flakes.
The calculated spectra were obtained using transfer matrix method (TMM) based on the
refractive indices of the materials in the literature [27,28]. The spectra of stand-alone
WS2 flakes are also calculated for comparison with those of WS2/SiO2/Si and WS2/Au
(Figure 2a). All the spectra exhibit local minima at 620 and 510 nm, which correspond to
the A and B exciton resonance wavelengths of multilayer WS2, respectively (see dashed
lines in Figure 2a–e) [8–10,23] WS2 flakes with dWS2 > 40 nm exhibit thickness-dependent
reflectance dips in addition to the exciton resonance dips (Figure 2a–c). These thickness-
dependent reflectance dips originate from EP mode splitting since WS2 multilayer flakes
can work as optical cavities without external cavities [8–10]. The EPs can be formed when
the wavelengths of the exciton resonances and cavity modes are close to each other. For
an intuitive understanding, FP cavity modes in dielectric thin films can be regarded as
standing waves. Thus, the minimum dWS2 for the FP cavity mode is expected to be either
λ/2nWS2 or λ/4nWS2 (n: real part refractive index of WS2) [26]. Considering the large
refractive index of WS2, the minimum dWS2 allowing the FP resonance can be less than
100 nm. Wang et al. reported the EP mode splitting from WS2 flakes with dWS2 > 40 nm
on glasses [8]. Our results also show that the exciton–photon anticrossing occurs in sub-
100-nm-thick WS2 flakes (Figure 2a–c). Interestingly, the EP-mediated reflectance dips
appear in WS2/Au even with dWS2 < 40 nm (Figure 2c). Zhang et al. reported similar
thickness-dependent reflectance spectra from WS2 multilayer flakes on Au thin films [10].
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Figure 2. (a) TMM-calculated thickness-dependent reflectance spectra of (a) stand-alone WS2

(air/WS2/air), (b) WS2/SiO2/Si, and (c) WS2/Au. Measured reflectance spectra of WS2 flakes
with various thicknesses on (d) SiO2/Si substrates and (e) Au thin films. The exciton resonance
wavelengths of WS2 are denoted as dashed lines in a–e. Gray circles and triangles in b–e represent
the EP-induced dips.

Figure 2d,e shows the measured reflectance spectra of WS2/SiO2/Si and WS2/Au
with several dWS2 values, respectively. These experimental data well reproduce the key
features of the calculation results in Figure 2b,c. The samples with dWS2 of 50~60 nm show
two EP-induced reflectance dips in both WS2/SiO2/Si and WS2/Au, similar to others’
reports. [8–10] Hereafter, the dips at the wavelength (λ) < 600 nm and λ > 600 nm will be
called as UPB- and LPB-related dips, respectively (see gray circles in Figure 2b–e). The UPB-
and LPB-related reflectance dips also appear in the stand-alone flakes (Figure 2a). This
suggests that the EP mode splitting observed in the flakes with dWS2 of several tens of nm is
originated from the self-hybridization of the excitons and the FP cavity photons [8–10] The
reflectance spectra of WS2/SiO2/Si with dWS2 = 8, 20, and 27 nm exhibit exciton resonance-
mediated dips (see dashed lines in Figure 2d). These spectra show a gradual increase in the
reflectance at long wavelengths above 700 nm, which depends on the thickness of the SiO2
layer (see Figure S3 of Supplementary Materials). Thus, these long-wavelength features can
be attributed to thin film interference in 300-nm SiO2/Si substrates. In WS2/Au with dWS2
of 10 nm, a broad UPB-induced dip appears at 500 nm < λ < 600 nm and a LPB-induced
dip appears slightly above the A exciton resonance wavelength (see gray triangles in
Figure 2c,e). WS2/Au with dWS2 of 21 and 25 nm shows very broad UPB-mediated dips at
λ~600 nm and weak LPB-related dips at λ > 600 nm (see gray triangles in Figure 2c,e). These
measured reflectance dips of WS2/Au agreed well with the calculation data (Figure 2c).
This suggests that self-hybridized EP mode splitting can be formed in WS2 flakes with dWS2
much smaller than λ/4nWS2.

Figure 3a,b shows that the measured and TMM-calculated reflectance spectra of
WS2/Au with dWS2 ≤ 30 nm well agreed with each other. This suggests that the sam-
ples were well prepared, as intended. In particular, the good agreement between the
experimental and calculated results should be attributed to the ultrasmooth surface of
the template-stripped Au thin films. In the calculations, the refractive indices of the bulk
WS2 in Ref. [28] were used, since most of the flakes considered in this work were thicker
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than several layers. The UPB-related dips exhibit red-shift as increasing dWS2 and they
merge with the A-exciton dips. The LPB-related dips appear near the A exciton wavelength
and exhibit red-shift as increasing dWS2. From the measured and calculated data, the Rabi
splitting energy of WS2 flakes with dWS2 < 50 nm on Au was estimated to be ~180 meV,
which is somewhat smaller than those of flakes with dWS2 > 50 nm reported in literature:
~270 meV in Ref. [8] and ~235 meV in Ref. [9] (see Figure S4 of Supplementary Materials).
Figures 2c and 3a,b clearly show that the EP mode dips can appear in even sub-10-nm-thick
WS2 flakes on Au. Such thickness is much smaller than λ/4nWS2. Therefore, the simple
analogy between the FP cavities and the standing waves in air columns cannot satisfactorily
explain the minimum dWS2 forming the EP modes in WS2 flakes.
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The electric field (E-field) distributions in WS2/SiO2/Si and WS2/Au can be obtained
using finite-difference time-domain (FDTD) simulation, as shown in Figure 4a–d. The
horizontal axis, z, represents the position along the direction perpendicular to the sam-
ple surface. The origins of z were chosen at the WS2/SiO2 and WS2/Au interfaces for
WS2/SiO2/Si and WS2/Au, respectively. The regions between the dashed lines represent
the WS2 flakes with dWS2 = 70 nm for Figure 4a,b and dWS2 = 20 nm for Figure 4c,d. The
left sides of the WS2 regions indicate the underlying SiO2 (300 nm) and Au (100 nm) layers
for WS2/SiO2/Si (Figure 4a,c) and WS2/Au (Figure 4b,d), respectively. The right sides
of the WS2 flakes indicate air. The E-field distributions were obtained at wavelengths
where the local minima of the reflectance appear (Figure 2b,c). The field distribution for
WS2(70 nm)/SiO2/Si at λ = 580 nm, corresponding to UPB, is similar to the fundamental-
mode standing wave in a pipe opened at both ends (Figure 4a). At λ = 650 nm, correspond-
ing to LPB, the WS2/SiO2 interface looks like the antinode of a standing wave, but the
other antinode is in air rather than the WS2 surface. The field distribution for WS2/Au can
be compared to the standing wave pattern of a one-side-closed air column. In the cases of
WS2(70 nm)/Au at λ = 555 (UPB) and 630 nm (LPB), the WS2/Au interface is similar to the
node of a standing wave, but the antinode is in air (Figure 4b). The E-field exponentially
decays in the Au layer due to the absorption and the decay length is determined by the
penetration depth of light in Au (for example, 50 nm at λ = 600 nm) [29].
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Figure 4. FDTD-calculated E-field distributions of 70-nm-thick WS2 flakes on (a) SiO2/Si and (b) Au
and 20-nm-thick WS2 flakes on (c) SiO2/Si and (d) Au. The wavelengths correspond to the local
minima of the reflectance spectra (Figure 2b,c). The regions between two dashed lines represent the
WS2 flakes. The left and right sides of the dashed lines correspond to the underlying layers (SiO2 and
Au) and air, respectively. The z-axis is perpendicular to the sample surface and the origin is set at the
WS2/substrate interface. E0 indicates the magnitude of the E-field of the incident light.

The dWS2 of 20 nm is only ~1/10 of the wavelength of visible light, even if the large
refractive index of WS2 (4~5) is considered. Thus, the magnitude of the E-field does not
change much in the 20-nm-thick WS2 flakes (Figure 4c,d). As shown in Figure 4c, a large
E-field appears in the 20-nm-thick WS2 flake on SiO2/Si under 600-nm-wavelength light
illumination. Since the absorption is proportional to the square of the E-field, the large
E-field increases (reduces) the absorption in the flake (reflectance), as shown in Figure 2b,d.
In WS2(20 nm)/Au, the local minima in the reflectance appear at λ = 600 and 700 nm
(Figure 2c). The magnitude of the E-field in the flake at λ = 600 nm is smaller than that
at λ = 700 nm (Figure 4d). Since the optical absorption depends on the imaginary part
of the permittivity of the medium as well as the E-field, the smaller reflectance of WS2
(20 nm)/Au at λ = 600 nm seems to result from the very large absorption coefficient of WS2
near the exciton resonance wavelength. At λ = 700 nm (LPB), the relatively large E-field
increases the absorption in the WS2 flake, resulting in a broad reflectance dip at λ = 700 nm
(Figure 2c). Obviously, the cavity modes in WS2/Au with dWS2 < 40 nm are distinct from
typical FP resonance modes, which can be regarded as standing waves.

As illustrated in Figure 5a, three kinds of optical phase shifts need to be considered
to understand the reflectance spectra of WS2/SiO2/Si and WS2/Au. The spectra of the
multilayers can be explained by superposition of light reflected at each interface, i.e.,
multiple-beam interference [26]. First, the propagation-related phase shift of light, ϕWS2, is
given by 2 2π

λ
nWS2

dWS2, as shown in Figure 5b. Clearly, ϕWS2 increases with increasing dWS2.

Notably, ϕWS2 of a 50-nm-thick WS2 flake becomes larger than 2π. nWS2 is as large as 4~5 in
the visible wavelength range and, therefore, the propagation of light in the WS2 flake with
a thickness of only about ~1/10 of the vacuum wavelength results in a large ϕWS2 [23]. The
Fresnel coefficient of the reflected light, rij, is

ni−nj
ni+nj

(ni and nj are the refractive indices of
the two media at the interface) [26]. If ni and nj are real, then rij, is also real and the phase
of rij can be either 0 (rij ≥ 0) or π (rij < 0). However, the phase of rij can differ from either 0
or π for complex ni and nj. The Fresnel coefficient-related phase shifts at the WS2/air (ϕAir),
WS2/SiO2 (ϕSiO2), and WS2/Au (ϕAu) interfaces are shown in Figure 5c. The optical phase
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shifts largely vary as a function of wavelength, depending on the complex refractive indices
of WS2 and Au. The magnitude of ϕAu is much larger than that of ϕAir and ϕSiO2 over a
broad wavelength range since the complex refractive index of Au is very large [27,29].
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Figure 5. (a) Schematic diagram to illustrate the phase shift of light in WS2/Au (detailed explanations
can be found in the text). (b) Calculated wavelength-dependent phase shift caused by round-trip
propagration in WS2 flakes with a dWS2 of 10~100 nm. (c) Complex Fresnel coefficient-related phase
shifts of light reflected at the WS2/air, WS2/SiO2, and WS2/Au interfaces. (d) Total phase shifts
of light for WS2/Au as a function of wavelength. The intersection points of the phase shift curves
and dashed lines (0, 2π, and 4π) indicate the wavelengths to form the resonant cavity modes in the
WS2 flakes.

Figure 5d shows the total round-trip phase shift of light in WS2/Au, ϕTotal, which is
the sum of the interfacial Fresnel coefficient-related contributions (ϕAir and ϕAu) as well
as the propagation-related change (ϕWS2). When ϕTotal is equal to integer multiples of
2π, WS2/Au can form resonant cavity modes. Such resonant modes boost the optical
absorption in the WS2 flakes, as featured as local minima in the optical reflectance spectra.
The intersection points of the ϕTotal and 2π(integer) curves represent the resonant cavity
mode wavelengths for WS2/Au. The intersection points in Figure 5d agree well with the
local minima in the calculated and measured spectra in Figure 2c,e. For dWS2 > 40 nm,
ϕWS2 is larger than 2π at a certain wavelength, giving rise to the FP resonance modes and
resulting EP-induced reflectance dips. Figure 5d also shows that the resonant modes can
appear for dWS2 < 30 nm. For example, WS2/Au of dWS2 = 10 nm possesses intersection
points near λ = 600 nm, close to the A exciton resonance wavelength of WS2. As a result,
the reflectance spectra of sub-10-nm-thick WS2 flakes on Au exhibit clear features of UPB
and LPB modes, as shown in Figures 2c and 3a,b. It should be noted that ϕWS2 alone
cannot enable the resonant cavity mode in WS2/Au of dWS2 < 10 nm (Figure 5b). Since
the negative ϕAu can reduce ϕTotal to zero at certain wavelengths, WS2/Au enables the
coupling of excitons and cavity photons (Figure 5c,d). The considerable contribution of the
interface phase shift can explain why the E-field distributions in WS2/Au are distinct from
the waveforms of simple standing waves (Figure 4b,d).

Figure 6a,b shows the measured reflectance spectra of WS2 flakes on SiO2/Si substrates
with dWS2 < 30 nm before and after deposition of 30-nm-thick Au thin films, respectively.
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The top Au layers significantly modify the reflectance spectra of the WS2 flakes. Such very
thin flakes without Au thin films cannot exhibit the EP mode splitting, and there are only
exciton-related dips in the reflectance spectra (Figures 2b and 6a). However, the Au-coated
flake exhibits additional reflectance dips in addition to the exciton-related dips, indicating
the self-hybridized EP modes (Figure 6b). Since the penetration depth of Au at λ = 600 nm
is 50 nm, the 30-nm-thick Au thin films allow the transmission of incident light to the WS2
flakes and the formation of optical cavity modes [29]. The TMM-calculated 3D reflectance
plots of Au(30 nm)/WS2/SiO2/Si samples in Figure 6c clearly show the exciton–photon
anticrossing behaviors for not only dWS2 > 40 nm but also dWS2 < 40 nm, similar to WS2/Au
(Figures 2c and 3a,b). The additional dips in the measured spectra (Figure 6b) agree well
with those in the calculations (Figure 6c). These experimental and calculated results suggest
that the contribution of the large optical phase shifts at the Au/WS2 interface is crucial for
the formation of EPs in WS2 flakes with dWS2 < λ/4nWS2. Many TMDs possess large real
and imaginary parts of refractive indices [11–15,30], and hence the EP modes are expected
in other kinds of very thin TMD layers. Furthermore, strong electronic interactions [31]
as well as remarkable plasmonic effects [7,10] at TMD/metal interfaces can give rise to
emergent physical phenomena of TMD/metal systems.
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Figure 6. Measured optical reflectance spectra of WS2 flakes on SiO2/Si (a) before and (b) after
deposition of 30-nm-thick Au thin films. (c) TMM-calculated reflectance spectra of Au(30 nm)-coated
WS2 flakes on SiO2/Si. The exciton resonance (exA and exB) wavelengths of WS2 are denoted as
dashed lines in (a–c).

4. Conclusions

We investigated the reflectance spectra of exfoliated WS2 multilayer flakes on SiO2/Si
substrates and template-stripped Au layers. On such reflective layers, the exceptionally
large refractive indices of WS2 gave rise to optical resonance modes in the flakes without
external cavities. The reflectance spectra of the flakes exhibited not only exciton-resonance-
mediated dips but also EP mode-induced dips, resulting from hybridization of the excitons
and the cavity photons. EP mode splitting appeared in WS2/SiO2/Si with dWS2 > 40 nm,
whereas WS2/Au, even with dWS2 < 10 nm, exhibited EP mode splitting. Such a notable
difference in the minimum thickness for the formation of EPs could be attributed to the
large optical phase shifts at the WS2/Au interface. These results suggested that integration
of metal thin films and nanostructures with TMDs enabled control of the EP behaviors and
resulting optical characteristics of the TMD/metal systems.
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reflectance spectra of WS2 flakes on 300- and 90-nm-thick SiO2/Si substrates. Figure S4: Thickness-
dependent UPB- and LBP-energies of WS2 flakes (thickness < 50 nm) on Au.
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