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ABSTRACT Microbiomes are inherently linked by their structural similarity, yet the global
features of such similarity are not clear. Here, we propose as a solution a search-based
microbiome transition network. By traversing a composition-similarity-based network of
177,022 microbiomes, we show that although the compositions are distinct by habitat,
each microbiome is on-average only seven neighbors from any other microbiome on
Earth, indicating the inherent homology of microbiomes at the global scale. This network
is scale-free, suggesting a high degree of stability and robustness in microbiome transi-
tion. By tracking the minimum spanning tree in this network, a global roadmap of micro-
biome dispersal was derived that tracks the potential paths of formulating and propagat-
ing microbiome diversity. Such search-based global microbiome networks, reconstructed
within hours on just one computing node, provide a readily expanded reference for trac-
ing the origin and evolution of existing or new microbiomes.

IMPORTANCE It remains unclear whether and how compositional changes at the "com-
munity to community" level among microbiomes are linked to the origin and evolution
of global microbiome diversity. Here we propose a microbiome transition model and a
network-based analysis framework to describe and simulate the variation and dispersal of
the global microbial beta-diversity across multiple habitats. The traversal of a transition
network with 177,022 samples shows the inherent homology of microbiome at the global
scale. Then a global roadmap of microbiome dispersal derived from the network tracks
the potential paths of formulating and propagating microbiome diversity. Such search-
based microbiome network provides a readily expanded reference for tracing the origin
and evolution of existing or new microbiomes at the global scale.

KEYWORDS microbiome transition, scale-free, network, data mining, beta diversity

Microbiome composition, a fundamental feature of all microbiota in nature, is shaped by
a plethora of environmental factors, such as habitats, geographic locations, temperature,

oxygen level, and even day length (1, 2). However, it remains unclear whether and how com-
positional changes at the “community-to-community” level among microbiomes are linked to
the origin and evolution of global microbiome diversity (3–5). For example, did microbiomes
from different environments emerge and develop separately, or did the global microbiome
start homologically and then spread to other habitats with compositional dispersal and dy-
namics (6)? Over recent years, a large number of microbiome samples (e.g., Human
Microbiome Project (7), Earth Microbiome Project (1), Tara Ocean Project (8), etc.), mainly
in the form of 16S rRNA amplicons, have been produced and accumulated (4); however,
the ability to cluster and model microbiomes at the global scale has been hindered by the

Citation Jing G, Zhang Y, Liu L, Wang Z, Sun Z,
Knight R, Su X, Xu J. 2021. A scale-free, fully
connected global transition network underlies
known microbiome diversity. mSystems 6:
e00394-21. https://doi.org/10.1128/mSystems
.00394-21.

Editor Vanni Bucci, University of Massachusetts
Medical School

Copyright © 2021 Jing et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Xiaoquan Su,
suxq@qdu.edu.cn, or Jian Xu, xujian@qibebt.ac.cn.

Received 31 March 2021
Accepted 24 June 2021
Published 13 July 2021

July/August 2021 Volume 6 Issue 4 e00394-21 msystems.asm.org 1

RESEARCH ARTICLE

https://orcid.org/0000-0002-0975-9019
https://orcid.org/0000-0003-2144-1991
https://orcid.org/0000-0002-0548-8477
https://doi.org/10.1128/mSystems.00394-21
https://doi.org/10.1128/mSystems.00394-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msystems.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00394-21&domain=pdf&date_stamp=2021-7-13


enormous volume and sheer complexity of such data (e.g., a distance matrix of 100,000
microbiomes contains;5� 109 elements).

RESULTS
Microbiome transition model and search-based network. Here, we describe the

compositional dynamics and variation among microbial communities by a microbiome
transition model. In this model, a microbial community is essentially a combination of
microorganisms and the structure of a community can be modified to another form by
adding and/or removing species by compositional dispersal or fusion (9, 10) (Fig. S1 in
the supplemental material). Theoretically, higher similarity between two communities
indicates higher probability for such microbiome transition, since fewer compositional
exchanges are needed; however, it is not clear what level of similarity may indicate such
microbial transition with reasonable confidence. Based on a pairwise full permutation of
similarity calculation among all microbiomes from the Microbiome Search Engine (MSE)
database (MSE is a microbiome database platform for searching query microbiomes
against the global metagenome data space based on the whole-community-level similar-
ity [11]; it contains 177,022 samples in total) (refer to the “Microbiome sample collection”
section for details) using the Meta-Storms algorithm (12, 13) (Table 1), we consider that
“direct transition” possibly exists between sample pairs with significant similarities that
cause permutation P values of,0.01 (equation 1; Fig. 1). As the result, we define the
Meta-Storms similarity of 0.868 as the threshold for direct transition between micro-
biomes. By further analyzing the pairwise similarity in each habitat, we found that the
threshold similarity of 0.868 is significantly high in the between-habitat similarity distribu-
tion (P value=0.0022) (Fig. 1B); moreover, it is higher than the upper boundary of most
within-habitats similarities (17 of 20; Fig. 1C). Thus, the similarity threshold of 0.868 is suffi-
ciently stringent for defining microbiome transition among the ecosystems.

Then, for each of the input 177,022 microbiomes, we applied MSE to search against all
other samples and find the top matches with similarity higher than 0.868. Based on the
search results, we constructed a transition network in which each node is a microbiome and
each edge represents a direct transition (equation 2; Fig. S2). Collectively, the network consists

TABLE 1 Distribution of samples among the habitats

Sample type Habitat Source No. of samples
Human-associated Gut Feces, etc. 51,706

Skin Hand, arm, head, leg, etc. 19,455
Oral Tongue, saliva, plaque, etc. 10,896
Other human body-site Hair, lung, blood, eye, etc. 3,018
Urogenital Vagina, urine, etc. 1,204
Nose Nostril 489

Animal-associated Mammal animal Mouse, rabbit, dog, deer, etc. 29,918
Nonmammal animal Sponge, fish, insect, etc. 11,172

Environmental Building Indoor environment, etc. 11,248
Soil Grass cover, cropland, soil sediment, etc. 10,507
Marine water Sea water 6,090
Lake Lake water, lake sediment, etc. 4,234
Plant Plant rhizosphere, plant surface, etc. 3,456
Freshwater Blank control, tap water, etc. 3,112
River River water, river sediment, etc. 2,248
Milk Tanker milk, blended solo milk, etc. 1,636
Sand Beach, desert, sand sediment, etc. 968
Food Food surface, etc. 780

Other Other Other environment 4,074
Mock Mock microbiome 811

Total 177,022
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of 177,022 nodes (samples) and 11,175,742 edges (each called a direct transition). Notably, a
pair of samples with low similarity can be connected via multiple edges (i.e., via a series of
direct transitions across intermediate transfer samples), and such a sample pair is termed an
“indirect transition” (equation 3).

The transition network predicts microbiome habitat at a global scale. At the
global scale, it is still not clear whether (and to what degree) similarity in microbiome
structure implies similarity in ecosystem features (8, 14). To quantitatively tackle this
question, we compared the direct transition frequency between within-habitat (transi-
tions of sample pairs from the same habitat) and between-habitat (transitions of sam-
ple pairs between two different habitats) cases in the transition network. For each hab-
itat, the direct transition frequency is calculated by the average number of direct
transitions per sample in this habitat. Notably, the direct transition exists more fre-
quently between samples in the same habitat (Fig. 2A; two-tailed paired t test, P
value, 0.01). Thus, the source environment of microbiomes dominates the microbial
composition. We next used the transition network to predict the habitat (mock sam-
ples were not included) of each sample by its top neighbors (see the Materials and
Methods). Via leave-one-out cross validation (LOOCV), 89.28% of samples were cor-
rectly assigned by their original habitats (Fig. 2B; Table 2). Therefore, at a global scale,
microbiome structure is strongly correlated with their environmental features.

FIG 1 Distribution of pairwise similarity in n= 177,022 microbiome samples. (A) A P value of,0.01 for significant similarity
values in the permutation determined the threshold of 0.868 (under the shadow) for putative direct transition. (B) The
threshold has P value= 0.0022 among between-habitat similarity distribution. (C) The threshold is higher than the upper
boundary of within-habitat similarities for most habitats. The three panels use the same y axis. P values are calculated by
permutation test.

FIG 2 Global microbiome network predicts the microbiome habitat. (A) Frequency of within-habitat
direct transition is significantly higher than that of between-habitat. P value is calculated by a two-
sided t test. (B) The habitat of 89.28% of samples is correctly predicted by the microbiome network.
The inner ring represents the proportion of real habitats and the outer ring is the proportion of
predicted habitats.
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“Mismatches,” i.e., microbiomes that were assigned to an incorrect habitat as pre-
dicted by the transition network, represent 10.72% (18,894 of 176,211) of all samples.
Such mismatches are interesting as they can be caused by, and thus potentially indi-
cate, frequent contact and interchanges of microbiota among the habitats. Those
among human body sites are the most frequently observed mismatches (1.86% of all
samples, same as below) caused by the daily contact and exchange of microbial com-
position (15). Matches between nonmammal animal (sponge) and marine water are
the second most frequent mismatches (1.76%). Mismatches across “human skin,” “ani-
mal (pet),” and “building (indoor environment)” represent 1.68% of samples, likely due
to the sharing of the indoor environment (where the microbiome was largely sourced
from humans) (5, 16). Moreover, 0.81% of the mismatches are between human-gut and
mammal-animal-gut, which can be explained by the close phylogenetic relationship
between human and other mammals and the coevolution of mammals and their gut
microbiota (17). Furthermore, mismatches are also observed (0.14%) where lake water
samples are predicted as river water (note that this is the source stream of lake), or vice
versa. Therefore, although the microbiome structure at the global scale is mainly
shaped by their habitat, microbiome structure can be altered by, and thus reflect, the
contact and exchange of microbiota from different environments.

Microbiomes are connected globally by the transition network. The beta diver-
sity of global microbiomes may have evolved via two scenarios: (i) “polyphyly,” where
microbiomes from different environments were generated and developed separately
(Fig. S3A), or (ii) “monophyly,” in which microbiomes started homologically and then
were dispersed to other habitats (e.g., via compositional transition, exchange, or
fusion) (Fig. S3B). To distinguish between the two scenarios, we used the transitive clo-
sure algorithm to examine the connectivity of this transition network (see the Materials
and Methods). A closure is a set of nodes (microbiomes) in which each microbiome
can traverse to any other one by direct or indirect transitions (with finite steps). Hence,
being in a closure implies likelihood of transformation among samples via compositional
exchange. Traversing all nodes in the network via the transitive closure algorithm revealed
that 98.31% of samples (174,032 of 177,022) can be clustered into a single closure (also
named as the “main closure”). Under a condition that microbiota composition is distinct
by habitat for 89.28% of all samples (Fig. 2B), such high connectivity suggests that the like-
lihood of polyphyly should be very low (probability, 1.5e205; estimated by equation 5)
and supports the monophyletic origin of global microbiomes and the formation of new
microbiomes via such transitions (Fig. S3B). Notably, 1.69% (2,990 of 177,022) of samples

TABLE 2 Prediction of habitat based on the microbiome network

Habitat No. of samples
No. of correctly
predicted samples % Accuracy

Within-habitat
transition frequency

Between-habitat
transition frequency

Gut 51,706 50,431 97.53 66.89 5.40
Skin 19,455 17,464 89.77 52.11 17.82
Oral 10,896 10,070 92.42 55.10 10.98
Other human body-site 3,018 1,777 58.88 24.64 37.92
Urogenital 1,204 1,046 86.88 44.16 17.29
Nose 489 91 18.61 5.00 55.29
Mammal animal 29,918 28,010 93.62 50.67 8.87
Nonmammal animal 11,172 8,077 72.30 19.81 19.95
Building 11,248 8,942 79.50 40.24 24.54
Soil 10,507 9,978 94.97 54.49 7.28
Marine water 6,090 3,960 65.02 24.29 17.77
Lake 4,234 3,983 94.07 49.64 7.35
Plant 3,456 3,127 90.48 46.91 15.16
Freshwater 3,112 1,671 53.70 22.51 28.66
River 2,248 2,011 89.46 36.84 15.55
Milk 1,636 1,565 95.66 55.21 8.23
Sand 968 864 89.26 44.72 23.54
Food 780 677 86.79 39.01 26.57
Other 4,074 3,573 87.70 38.88 13.64
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are still not included in the main closure, and they were mostly due to statistical inaccur-
acy (1.47% exhibit a similarity level that is only slightly below the threshold for being
recruited into the main closure; P value between 0.01 and 0.05) or curation errors (e.g.,
0.16% are labeled as microbiome but actually pure-cultures or 18S/ITS amplicon samples).
Therefore, the monophyly hypothesis best explains the origin and evolution of present-
day microbiome structures.

To size the global microbiome network, we computed the pairwise shortest transi-
tion steps of all sample pairs in the main closure using the Dijkstra algorithm (18) (see
the Materials and Methods). Interestingly, like the “small world” principle for social net-
work (19), the microbiome transition network follows the “7-degree of separation” pat-
tern (Fig. S4A). Specifically, any two microbiota in the main closure, even if they were
sampled from different habitats and exhibit low similarity, can traverse from one to the
other with only seven direct transitions on average (20), and 32 such steps at the maxi-
mum (i.e., the network diameter) (Fig. S4B). Such a pattern underscores the high con-
nectivity and, thus, the surprisingly close interaction among microbiomes from diverse
habitats at the planetary scale.

Global microbiome network is scale-free and the connectivity is robust. Notably,
in this global transition network, for each node, its edge degree k (number of direct
transition neighbors) follows a Poisson distribution (Fig. 3A), where Pearson r = 20.836
between log(P[k]) and log(k), i.e., PðkÞ � kð2gÞ), suggesting that the network is scale-
free (21, 22). One key feature of a scale-free network is the stability of topology, i.e.,
robustness to node removal from the network. To test the robustness, we removed dif-
ferent numbers of randomly selected samples and their associated edges, then
assessed both size and leftover sample rate of the main closure in the residual network
(percentage of residual nodes ranged from 5% to 95%; each such removal procedure
was repeated for 10 times) (see the Materials and Methods). When the number of
nodes in the network reaches 80,000 (45% of total nodes), the connectivity rate curve
of the main closure already exhibits a flat trend with 97.19% samples (98.31% prior to
sample removal) (Fig. 3B) and, moreover, the mean transition steps and maximum transition
steps (diameter) converge to 8 and 33, respectively (which were 7 and 32 before sample
removal) (Fig. 3C). Thus, these parameters are quite stable and not dependent on the
increase of total sample number in the network. These findings suggest the robustness of
microbiome diversity and similarity patterns among ecosystems at the global scale.

Microbiome transition roadmap simulates the development of global microbial
diversity among multiple ecosystems. As microbiome compositions are dominantly
determined by their habitats, the full connectivity of global microbiomes in the network sug-
gests the ability to reconstruct how the microbial diversity spreads among different habitats at
a macroscopic scale. This “microbial dispersal” roadmap can be simulated by a subnetwork

FIG 3 Robustness of the global microbiome network. (A) Node degree (number of linked neighbors) of the network follows the Poisson distribution,
suggesting the network is scale-free. (B) The effect of random node removal on the main closure in as function of sample rate. (C) The mean shortest
transition step and maximum transition step (diameter).
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that (i) covers and links all samples, and (ii) consists of deterministic finite transition steps with-
out cyclic or redundant routes. Thus, we derived such a roadmap (Fig. 4A) by parsing the mini-
mum spanning tree (MST) of the main closure using the Kruskal algorithm (23) (see the
Materials and Methods). As the global optimum with the highest overall transition probability
(similarity), the MST maximally captures the transition pattern of worldwide microbial diversity
among all the 19 habitats (with the “mock” samples excluded). For example, marine micro-
biomes most probably exchange with two other environments, where one is sand, which is
geographically close to the shore, while the other is nonmammal animals such as fishes.
These observations also suggest that sand and freshwater microbiomes are the “gateways”
to soil, plants, and human-associated habitats such as gut, oral, skin, and the human living
environments.

This roadmap is verified by the isomorphic pattern of principal-coordinate analysis
(PCoA) derived from a subset of 140 samples randomly selected from six habitats
(Fig. 4B). Moreover, we employed a marine-gut route, which represents one of the lon-
gest transitions in this subset, to illustrate the high-resolution transition procedures
(based on phylum-level compositional variations; urogenital and gut microbiomes
were combined as they are very close in the global scale) (Fig. 4C). Zooming in on this
marine-gut route revealed a series of structure shifts that transform a freshwater

FIG 4 Roadmap of the global microbiome transition among habitats. (A) Bold lines are the roadmap that represents the maximum overall similarity, in
which arrows indicate the transitions are bidirectional. The number of samples in each habitat is scaled by the node size, and the within-habitat transition
frequency is represented by the node color depth (compared to the rim). Thin lines show the high frequent transitions between habitats. (B) Principle-
coordinate analysis (PCoA) parsed from a subset of 140 microbiomes demonstrates the roadmap by the equivalent topology. (C) The phylum-level
compositional shift of a microbiome transition route for marine to gut environment. (D) The genus-level compositional shift of a transition case from a
freshwater microbiome to gut samples.
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microbiome to gut samples. Starting from an actual freshwater sample (24), in each step,
organisms enriched in freshwater (25) (e.g., Mycoplasma and Escherichia) were removed/
reduced, and organisms abundant in gut (15) (e.g., Bacteroides and Parabacteroides) were
added/increased. Although a single step might have caused just slight modification on the
microbiome structure, after several iterations this sample can be smoothly transited to gut
microbiomes (26) in the network, via a series of transfer samples (Fig. 4D).

Microbiome transition over time and across geography. To test the feasibility of
modeling microbial dynamics by the global microbiome transition network, we used a
longitudinal cohort to describe the transition of human microbiomes across time. In
this data set, 1,963 samples were collected from three body sites (gut, oral cavity, and
skin) of two individuals (I, male; II, female) over 396 time points (27). Our search-based
network analysis revealed that the microbiome composition of each body site exhibits
significant variations across time (Fig. 5A to C; Fig. S5), while skin and oral microbiomes
were clustered into the same closure by direct transition (Fig. 5D to F). These suggest
that microbiome transition is ongoing within each site and between the skin and oral
sites across different time points. In addition, for both hosts, gut samples were “iso-
lated” from the skin-oral closure, consistent with the global microbiome transition map
(Fig. 4A), where gut microbiomes are in a distinct route from skin and oral ones.
Therefore, although the oral cavity and gut are both of the digestive tract and micro-
bial translocation from oral to gut can occur (28), the oral microbiota have more likely
been derived from (or more prominently shaped by) the skin microbiota (and vice
versa) than the gut microbiota. This seemingly counterintuitive finding can actually be
lent support by the sharing of a more aerobic and less acidic environment by the skin
and oral cavity (pH and oxygen level are known to have large effect size in microbiome
structure) (1).

On the other hand, to validate the connectivity of microbiomes from varied geo-
graphical locations, we constructed a search-based network by a single data set (29)

FIG 5 Transition of the human microbiome across time and body sites. (A to C) The within-habitat microbiome transition of gut (A), oral (B), and skin (C) of
individual I across 396 time points. (D) The oral-skin microbiome transition of individual I across time. Only selected samples are shown. The transition
patterns of individual II are shown in Fig. S5 in the supplemental material. (E and F) PCoA of the two individuals’ time-series microbiomes: skin and oral
microbiomes are linked in a closure by direct transition (highlighted by gray dotted line) and gut samples form another closure.
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that contains 3,850 samples collected from six habitats (human gut, human oral, non-
mammal animal, plant, soil, and freshwater) and locations in North America (Urbana,
IL; Columbia, MO; Aurora, CO; Ithaca, NY; and Lansing, MI, etc.). With this data set, the
authors concluded there was no overlap of abundant bacterial taxa between the mi-
crobial communities from human gut and plant roots (29). Consistent with this conclu-
sion, the network-based analysis based solely on this data set found that samples were
distributed into three isolated closures of direct transitions (Fig. 6A). However, once an
extra 1,635 samples from the MSE database that connected the different closures of
this local network were added, a single closure that covers 97.74% samples and inte-
grates the original three closures emerged, with the newly included samples serving as
“transfer nodes” (i.e., samples that link two clusters in network) (equation 3 in the
Materials and Methods) that provide additional indirect transitions (Fig. 6B; Materials
and Methods). Notably, among such “transfer” microbiomes, most (96.89%) were from
the same habitats as the original data set and others were mainly from sand and ma-
rine, which are found as the transfer nodes among nonmammal animal, plant, and soil
microbiomes in our global microbiome transition roadmap (Fig. 4). This example dem-
onstrates that although microbiomes from diverse environments and isolated geo-
graphical locations can have very distinct structures, they can still be linked within a
single closure in the microbiome transition network, i.e., evolve from each other, as
long as global beta-diversity is adequately surveyed and covered. These results, which
directly challenge the conclusion that multiple host microbiota compositions were in-
dependently evolved (29), underscores the importance of deriving or validating “local”
data sets under the context of our global microbiome network, particularly when dis-
cussing similarity (i.e., beta-diversity), interaction, or other kinds of relationship among
microbiomes.

DISCUSSION

Microbiota have been coevolving with and shaping our planet, but their origin and
evolution at the global scale remain elusive, due to the lack of fossils and the methodo-
logical challenges associated with integrating and mining such large-scale high-complex-
ity data (14). Although “species-to-species” interactions have been mapped by co-occur-
rence analysis on microbiomes across various habitats (30, 31, 38), efforts to globally
traverse and interrogate the vast microbiome data space at the “community-to-commu-
nity” level have just started (32–34). Here, we propose a microbiome transition model and
a network-based analysis framework to describe and simulate the variation and dispersal

FIG 6 Microbiome transition across habitats and geographical locations. (A) The 3,850 samples from six habitats are included in three
isolated transition closures, of which the sample proportions are 43.22%, 7.90%, and 45.53%, respectively. (B) After adding an extra
1,635 bridge samples from the MSE database, the three closures merged by direct transition into a single closure, which contains
97.74% of the samples.
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of the global microbial beta-diversity across multiple habitats. Benefitting from the
extremely high search speed of the Microbiome Search Engine (11), we introduced a
global microbiome network with 177,022 microbiome samples that contains 11.3 billion
sequences. By traversing such a network, we showed the microbiome structures are con-
nected world-wide by significant similarity that follows the “small world” principle. This
endeavor reveals the inherent homology of the global microbiome diversity and supports
the monophyletic origin of all microbiomes on Earth. Further, we drew the first global
microbiome transition roadmap to illustrate the potential and most likely paths that can
explain the evolution process of global microbiomes.

Due to the ongoing exponential growth of microbiome sequencing data, current
beta-diversity analysis approaches, which mainly rely on the O(n2)-complexity pairwise
relations (n is the number of samples) such as principle-coordinate analysis (PCoA) and
clustering, have become increasingly stressed or even impractical, particularly when
computational resources are limited. Here, we tackled this challenge via a search-based
network, which is built on the “neighbors,” i.e., those with the highest similarity for
each sample; this strategy reduces the computational complexity to O(c*n) (c is con-
stant, i.e., the number of neighbors), and thus enables deciphering the pairwise similar-
ity for.100,000 microbiomes within 3 h on a single computing node. As a result, the
global microbiome transition roadmap, which will be regularly updated as community
resource, can serve as a reference for interpreting or validating those existing or future
observations on intermicrobiome similarity, association, or interaction, since local
microbiome data sets can be readily aligned to this global roadmap based on their
shared nodes. Moreover, such a network-based analysis framework, which can be
extended to shotgun metagenome data sets, provides a new perspective for tracking
back or predicting microbiome evolution with fine resolution even at the global scale.

MATERIALS ANDMETHODS
Microbiome sample collection. We used all the microbiome samples from the Microbiome Search

Engine database (http://mse.ac.cn). Samples were collected from 572 studies/projects that included 20
habitats (Table S1 in the supplemental material). Operational taxonomic units (OTUs) were picked and
annotated against Greengenes (35) full-length 16S rRNA gene sequences (version 13-8) on 97% similarity
level by Parallel-META 3 (36) (version 3.4.4). Variation of 16S rRNA gene copy number was normalized
based on the IMG/M database (37). We set a minimum sequence number of 500 and minimum 16S
rRNA mapping rate of 80% for each sample to ensure high quality of the reference data sets. Finally,
n=177,022 samples with 11,302,841,991 mapped sequences assed the quality control and curation
(Table S1).

Calculation of pairwise microbiome similarity matrix for definition of direction transition. The
pairwise similarity matrix of all n=177,022 samples was entirely permuted (totally [n � n21]/
2=15,668,305,731 times) to examine the distribution of microbiome phylogeny similarity using the Meta-
Storms algorithm (12, 13) in the Parallel-META 3 software package. By setting a cutoff P value of,0.01 in
the permutation of the similarity (rank of top 1%), we got the Meta-Storms similarity 0.868 as the statistical
threshold of the significant high value to define the direct transition (this threshold is also referred to as Td.
t). Thus, the transition model can be described in the following form

P direct transition a; bð Þð Þ ¼ sim a; bð Þ; if sim a; bð Þ$Td:t

0; if sim a; bð Þ,Td:t

�
(1)

in which si and sj are two arbitrary microbiomes, and sim(si, sj) represents their Meta-Storms similarity.
Search-based microbiome network. The search-based microbiome network is built using the

Microbiome Search Engine (MSE) (11). For each sample, we searched it against all other samples for the
top 100 matches and connected it with the matched samples that have similarity higher than the
threshold of direct transition (Td.t = 0.868). By iterating such search with all samples, we constructed a
global network G.

G ¼ V ¼ a; b; . . .f g; E ¼ edge a; bð Þ; . . .� �� �

edge a; bð Þ ! sim a; bð Þ$Td:t (2)

In this network, one node (e.g., a or b in equation 2) is a single microbiome, and edges (e.g., edge[a,
b] in equation 2) that link the nodes are direct transitions (Fig. S2). Finally, in the network there were
177,022 nodes (samples) and totally 11,175,742 edges (direct transitions). In this network, a pair of sam-
ples with low similarity can be connected by a path of multiple edges, i.e., an indirect transition:
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indirect transition a; bð Þ ! sim a; bð Þ,Td:t

9 edge a; x1ð Þ; edge x2; x3ð Þ; . . . edge xi21; xið Þ; edge xi; bð Þ (3)

Here, x1, x2, . . ., xi are defined as the “transfer samples” that underlie the indirect transition from a to
b.

Prediction of habitat using microbiome network. In the network G we predicted the source habi-
tat of each microbiome by its top n= 10 neighbor samples and similarities. For an arbitrary microbiome
sample a in the network, similarities to its top 10 neighbors are S ¼ fs1; s2; . . . ; sng, while the n neighbor
were from m (1#m# n) different habitats as H ¼ fh1; h2; . . . ; hmg, then the probability for the pre-
dicted habitat of microbiome a as hk is calculated by

P a 2 hkð Þ ¼

X
j2hk

n2j11ð Þ � sj
� �

Xn

i¼1
n2i11ð Þ � sið Þ

(4)

Here, j2hk means the habitat of neighbor j is hk (1# k#m). Then the predicted habitat that has the
highest probability P will be assigned to the sample a as the prediction results.

Probability of global transition among all habitats in the network. By equation 4 we calculated
that at the global scale the microbiota composition is distinct by habitat, and that the probability of
transition among the same habitat is 89.28% (Fig. 2B). To calculate the overall probability of connecting
all habitats in the transition network, we can start from connecting arbitrarily two habitats of which the
probability ptransition(n= 2) = 1 2 89.28%. When one more habitat is added into the network, the probabil-
ity of transitions among the three habitats can be calculated as ptransition(n=3) = ptransition(n=2) � (1 2
89.28%2), where the square of 89.28% represents the probability there is no direct transition between the
added habitat and the former two habitats. Then we can expand such a procedure to estimate the proba-
bility for connecting n habitats in the transition network by

ptransition nð Þ ¼ 1289:28% ; n ¼ 2
ptransition n21ð Þ � 1289:28% n21ð Þð Þ; n. 2

�
(5)

Transitive closure algorithm of microbiome network. In the microbiome transition network, a clo-
sure is a subset of nodes (microbiomes) that are fully connected, so that each microbiome can be linked
to any other sample by direct or indirect transitions (with finite transfer nodes). Closures can be initial-
ized by an arbitrary node in the network, and then expanded by adding more external nodes that are
directly connected with this closure (Fig. S6). If two or more closures are connected by any edge, these
closures can also be merged as one closure. By the traversal among all nodes in the network G we get a
main closure C with 98.31% of the samples.

Size of the microbiome network. In the main closure C, there are always multiple routes between
two indirectly connected nodes (microbiomes). We count the edge between two directly linked nodes
as 1, so the length of indirect routes is the number of transfer nodes1 1 on this route (Fig. S4). We used
the Dijkstra algorithm (19) by Python package igraph (0.7.1 running inside Python 3.6.1) to find the pair-
wise shortest transition steps (with smallest number of transfer nodes) between all indirectly linked
node pairs in the main closure C. Thus, the number of maximal steps among the shortest route is the di-
ameter of the closure. The diameter means in this closure, any two microbiomes could be linked to each
other by a route with steps that smaller than the diameter.

Minimum spanning tree for the roadmap of microbiome network. In a transitive closure, a span-
ning tree is a subnetwork that connects all nodes (microbiomes) with no cycle. For two directly linked
samples a and b, we define their distance as

dist a; bð Þ ¼ 12sim a; bð Þ (6)

the minimum spanning tree (MST) could be considered the global transition path of all samples with the
highest overall transition probability, since it links all samples with the shortest total distance. In the
main closure C, we used the Kruskal algorithm (23) to calculate the second-level MST to reflect the tran-
sition among different habitats from the global scale.

The first-level MST was on “sample resolution,” based on which we then made the second MST on “habitat
resolution.” Initially we calculated the first-level MST of the main closure C, and then generated the habitat-
based network G9 (equation 2), where each node represents one habitat and the distance between two habitats
hi and hj is the average distance of all edges that linked the two habitats in the MST. Then we computed the sec-
ond-level MST (G9), which illustrates the global microbiome transition roadmap across multiple habitats.

G9 ¼ V9 ¼ hi; hj; . . .
� �

; E9 ¼ average edge a; bð Þð Þ� �� �

a 2 hi; b 2 hj; edge a; bð Þ 2 MST Cð Þ (7)

The significance of the roadmap (MST[G9]) was assessed by the permutation test of the topologically
equivalent subnetwork in the main closure C of the original network. Specifically, in a permutation, for
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each edge that connects two habitats (eg. habitati and habitatj) in the roadmap, we also randomly
selected an edge that connects two samples (eg. sample a and b), respectively, from these two habitats
(eg. a2habitati and b2habitatj). Since we iterated the permutation for 10,000 times, if the total distance
of the roadmap is smaller than 99% of permutated network (also meaning the total probability is in the
top 1%, P value, 0.01), we can consider the roadmap MST(G9) is significant in the main closure C.

Search-based sample selection from reference database to link-separated closures. To select
transfer samples from a reference database to link two separated closures, we search all samples of each
closure against the referenced repository for top matches with higher similarity than the direct transition
cutoff (Td.t = 0.868), and the overlapped matches between the two closures are the transfer microbiomes
that link the two closures. If there is no overlap in the matches, we then extend each of the closure by
adding their matches and repeat the search process until we find any transfer sample. On the other
hand, once closures cannot be further extended by database searching but still no available transfer
sample is found, this means that no sample in the reference database is able to work as the transfer
node to link the two separated closures by direct transition.

Availability of data and materials. The key bioinformatical tool here, Microbiome Search Engine
(MSE), can be freely accessed as an online service via http://mse.ac.cn. Moreover, for standalone searches
of customized microbiome databases, the kernel and tutorial of MSE are provided at GitHub (https://
github.com/qibebt-bioinfo/meta-storms). All the data and analytical scripts used in this work are avail-
able at GitHub (https://github.com/qibebt-bioinfo/microbiomenetwork) to ensure reproducibility.
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