
INTRODUCTION

A sleep spindle is a distinctive feature of electroencephalogram 
(EEG), which is characterized by progressively increased and 
gradually decreased 10~16 Hz oscillations [1]. It occurs during 
non-rapid eye movement (NREM) sleep and is temporally locked 
to the K-complex and vertex sharp wave [1]. In human EEG, 
sleep spindle is divided into two types, slow spindle (~12 Hz) in 
the frontal and fast spindle (~14 Hz) in parietal and central brain 
region [2-6]. Each type of spindle is affected differently by the 

same variables, such as age, lifestyle and medical history [7-9]. The 
differences between the two types of spindles suggest that each 
spindle is generated by a different mechanism. However, a differ-
ent mechanism of spindle generation remains unclear due to lack 
of spatial information of sleep spindle propagation. 

Previously we reported that regionally specific sleep spindles 
exist in rodents, as they do in human [10]. Also, we reported cor-
ticothalamic connection among cortex, thalamic nucleus, and 
reticular nucleus has distinctive patterns for anterior and posterior 
spindles. This suggests that each type of spindle generation in the 
mouse had a different generation mechanism. We believe that the 
knowledge of rodent spindle can be an effective channel to un-
derstand human spindle. However, for mice, the comprehensive 
method for neuroimaging and EEG topographic measure is lim-
ited due to the small size of mouse brain. Recently, we established 
the source localization technique [11] in mice with the developed 
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high density EEG [12, 13]. 
In this study, we have chosen to apply our novel neuroimage 

technique to each type of sleep spindle and visualized the dynam-
ics of spindles. 

MATERIALS AND METHODS

We used the high density EEG data during spontaneous sleep 
which were collected, detected, and classified in our previous study 
[10]. Briefly, the high density EEG was obtained from polyimide-
based microarray in freely moving mice [12, 13]. The EEG was 
band-pass filtered and then the spindle detection algorithm was 
applied to the filtered signals based on a threshold method. The 
anterior and posterior spindles were classified based on K-mean 
clustering algorithm. 

Forward problem: a volume conduction model for mouse 

EEG 

The electrical activities inside the brain consist of currents gener-
ated by neural activities, and the major sources can be approxi-
mated to a dipole. The locations of dipoles are estimated by solving 
forward and inverse problems. The forward problem is to predict 
the distribution of electric potentials for given source locations, 
orientation, and signals according to Maxwell’s equations, which is 
basically a construction of lead field matrix defining the projection 
from current sources at discrete locations. To reduce the errors 
produced by the difference between mouse head and the spheri-
cal volume conductor model, we produced a volume conduction 
model from in vitro  magnetic resonance image (MRI) which is 
downloadable from an open database of the Magnetic Resonance 
Microimaging Neurological Atlas Group and used image data of 

C57_14_M_Normal_age12 [14, 15]. (http://brainatlas.mbi.ufl.
edu/Database/). 

The segmentation and electrode co-registration processes were 
performed using Curry software (version 7, Neuroscan Inc., 
Charlotte, NC, USA). As the spatial resolution of Curry software 
is in the order of mm, we scaled up the mouse brain by ten-fold 
and scaled down the conductivity parameter by ten-fold, which 
is mathematically right in Maxwell’s equation. To co-register the 
electrodes’ location to the MRI, we matched the positions of ana-
tomical landmarks (nasion, preauricular left point, and preauricu-
lar right point) and the anterior and posterior commissures (AC 
and PC). We aligned the AC-PC to a midline and estimated the 
coordinates of bregma. Then electrode location was co-registered 
by shifting from the original coordinate to the estimated bregma 
location.

Curry software was used to compute the boundary element 
method (BEM) model. To construct conduction model, we ex-
tracted cortex and white matter region from whole MRI based 
on brightness. We set the brain threshold as 170 and cortical 
threshold as 230 in 0 (black) to 255 (white) color scale. Mouse 
skull data is not included in MRI. Therefore, we made virtual skull 
layer around the brain and constructed a triangulated surfaced 
volume conduction model. Our BEM model consists of three-
layer structures of cortex, skull, and skin. Meshes of each layer 
consist of triangle meshes. Cortex/skull/skin layer consisted of 
1218/1301/1757 nodes and 2432/2598/3510 triangle meshes. All 
of the distance between nodes was maintained less than 0.5 mm. 
We used conductance value as 0.033 S/m for cortex and skin and 
0.00042 S/m for the skull.

Fig. 1. Structure and montage of high density EEG. (A) Structure and size of high density EEG electrode. (B) Montage of high density EEG electrode. 
Based on bregma position, we divided the anterior and posterior region. The letters indicate the respective location of electrodes. (prefrontal (FP), an-
terior frontal (AF), frontal (F), frontocentral (FC), central (C), centroparietal (CP), parietal (P), parieto-occipital (PO) and occipital (O) position). (C) 
Visualization of electrode locations together with the corresponding cortical region.
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Inverse problem of mouse source localization

The goal of inverse problem is to construct the current source 
model, which has realistic locations and strength, from the EEG 
data. To solve the inverse problem and source reconstruction, we 
applied four source localization algorithms: minimum norm (MN) 
[18], low-resolution electromagnetic tomography (LORETA) [19, 
20], standardized LORETA (sLORETA) [21] and exact LORETA 
(eLORETA) [22].

Date term (D(j)) and model term (M(j)) were given by D(j)=||L-
M(j)||2. All algorithms used same lead field matrix(L), but model 
term was defined in a variety of ways according to algorithms. MN 
method used diagonal location weighting matrix. sLORETA and 
eLORETA is the modification of MN results. sLORETA computed 
statistical measure, called current strength, and eLORETA com-
putes neuronal current flow. LORETA method included Laplacian 
term in model term that makes neighbored sources tend to have 
similar strengths. 

Inverse problem has no unique solution due to lack of informa-
tion. Therefore, to optimize and confirm our approach, we com-
pared source reconstruction results to background knowledge in 
the case of posterior sleep spindle example. 

RESULTS

We used high density EEG signals of the anterior and posterior 
spindles, which were clustered based on K-means cluster analysis 

in our previous study [10]. The representative traces of anterior 
and posterior spindles were presented in Fig. 2. In each panel, the 
left column contains the raw signals and the right column con-
tains the filtered signals. The topographies of total power of the 
corresponding anterior and posterior spindles overlay the cortical 
surface of mouse brain in (C) and (D), respectively.

We followed the procedures for the dipole source localiza-
tions described in our previous work (Fig. 1 in [11]). Briefly, the 
boundary element model for the mouse brain was built based on 
mouse MRI to compute the leadfield matrix. Four different source 
localization algorithms (minimum norm [16], LORETA [17, 
18], sLORETA [19] and eLORETA [20]) were applied and their 
performance was compared. As a demonstration, the posterior 
spindle shown in Fig. 2B was applied and the axial and coronal 
view of its estimated source distributions are shown in Fig. 3A and 
3B, respectively. While the spatial distributions of horizontal axis 
were similar for all algorithms, the spatial distributions of vertical 
axis were different depending on the algorithms. The LORETA or 
modified LORETA algorithms estimated the source deeper com-
pared to MN. In our previous study based on optogenetic stimula-
tion, the LORETA algorithm estimated the source deeper than the 
real source position [11]. On the other hand, the minimum norm 
algorithm estimated the sources successfully confined to the cor-
tex.

The advantage of source localization is in the ability to visual-
ize the propagation of potential sources generating the cortical 

Fig. 2. High density EEG of anterior and posterior spindles. Examples of raw traces of HD-EEG (left) and filtered data (right, 8~18 Hz zero-phase band-
pass filter) during (A) anterior and (B) posterior spindle activities. The letters indicate the electrode position as defined in Fig. 1. The topographies of 
averaged powers of band-pass filtered data are presented on the cortical surface of MRI for the (C) anterior and (D) posterior spindle activities. The red 
bar indicates spindle period.
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Fig. 3. Comparing between source localization algorithms. (A) Axial view and (B) coronal view of source estimation of the posterior spindle. Axial view 
showed very similar patterns, but coronal view showed quite different. Except for minimum norm (MN), other method estimated the deep subcortical 
source. Brightness indicates the ratio to the maximum intensity of each algorithm.

Fig. 4. Cine-mode presentation of the anterior spindles at 20 ms time window. Brightness indicates the ratio to the maximum intensity.
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potentials. Therefore, we employed the weighted norm algorithm 
to sleep spindles to visualize the propagation of cortical sources as 
time passes and presented in cine mode for anterior and posterior 
sleep spindles in Fig. 4 and Fig. 5, respectively. The cine mode pre-
sentation shows the spatio-temporal patterns of spindle evolution 
over time. For example, the sources of posterior spindles were con-
fined to the posterior regions, but their positions fluctuated within 
the posterior cortex. A movie with high temporal resolution 
showed that the first slow wave of spindles was generated in the 
somatosensory cortex and propagated to the motor cortex, but the 
last slow wave of spindle was generated in the motor cortex and 
then propagated to the somatosensory cortex, showing complex 
patterns of onset and propagation of sleep spindles. This visualiza-
tion confirms that the spindles are dynamical phenomena rather 
than an event of one entity. 

DISCUSSION

In this study, we evaluated the performance of four different 
algorithms for source localization of spindles. The flow direction 

of source cluster was similar, but LORETA or modified LORETA 
algorithms overshoot the depth of source. Generally, cortical 
dipole was regarded as the source of EEG [21]. Many studies 
have suggested that the rodent EEG has identical characteristics 
as the human EEG [10, 22]. Also, an electrode with the imped-
ance of several hundred ohms can only measure the signal in 250 
μm [23]. Additionally, we used common average reference. This 
method cancels out the signal from deep brain region. Therefore, 
the subcortical source was not reasonable. One of the major pos-
sible sources of error is the electrode position. All our electrodes 
were located above the upper surface. Therefore, depth of source 
localization solution could be biased. The MN is used to analyze 
evoked responses that involve wide-spread neuronal activation 
over time. In addition, MN tends to reconstruct sources that are 
superficial [24, 25]. Therefore, we recommended that MN method 
is suitable for mouse brain.

As a comparable tool for noninvasive functional brain mapping, 
functional magnetic resonance imaging (fMRI) has been used 
in human brain mapping. However, the fMRI is based on blood 
oxygen level dependenet level rather than neural activity like EEG. 

Fig. 5. Cine-mode presentation of the posterior spindles at 20 ms time window. Brightness indicates the ratio to the maximum intensity.
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EEG is the sum of synchronized post-synaptic activities, whereas 
BOLD response represents the change of hemodynamics that was 
related to the total synaptic activity. Additionally, EEG and the 
BOLD signal were caused by different cellular populations [26]. 
Previous research shows that average distance between local field 
potential and centroid of functional MRI was 1 cm in half of the 
monkey sensory cortex recording [27]. As previously mentioned, 
EEG is more related to functional neural activity and have a better 
temporal resolution to understand fast brain dynamics. Besides, 
the temporal resolution of fMRI is inappropriate to trace the fast 
activities like sleep spindles.

In sum, this study employed the equivalent dipole source esti-
mation method in visualizing the sleep spindles in mouse brain. 
By applying source localization method, we have shown that the 
anterior and posterior spindles do not have identical functional 
brain mapping and temporal change of spindle dynamics. Our 
result suggests the possibility of the minimally invasive functional 
approach of the spindle network analysis. Also, our approach may 
advance our understanding for the functional study of cortical 
network in mice.
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