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Abstract

Background: Pedigree studies of complex heritable diseases often feature nominal or ordinal phenotypic measurements
and missing genetic marker or phenotype data.

Methodology: We have developed a Bayesian method for Linkage analysis of Ordinal and Categorical traits (LOCate) that
can analyze complex genealogical structure for family groups and incorporate missing data. LOCate uses a Gibbs sampling
approach to assess linkage, incorporating a simulated tempering algorithm for fast mixing. While our treatment is Bayesian,
we develop a LOD (log of odds) score estimator for assessing linkage from Gibbs sampling that is highly accurate for
simulated data. LOCate is applicable to linkage analysis for ordinal or nominal traits, a versatility which we demonstrate by
analyzing simulated data with a nominal trait, on which LOCate outperforms LOT, an existing method which is designed for
ordinal traits. We additionally demonstrate our method’s versatility by analyzing a candidate locus (D2S1788) for panic
disorder in humans, in a dataset with a large amount of missing data, which LOT was unable to handle.

Conclusion: LOCate’s accuracy and applicability to both ordinal and nominal traits will prove useful to researchers
interested in mapping loci for categorical traits.
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Introduction

Many heritable traits, from pathogen resistance in plants [1] to

panic disorder in humans [2], are described using discrete

categories such as color or are quantified using discrete, ordered

scales such as ‘‘mildly,’’ ‘‘moderately,’’ or ‘‘severely’’ affected.

When performing linkage analysis of categorical traits, it is well

appreciated that re-coding measurements as binary can lead to

decreased power [3,4]. Recoding measurements as continuous can

lead to the same problem. Use of the most widely applied software

for linkage analysis such as Superlink [5], Merlin [6], Genehunter

[7], and LOKI [8] that do not employ categorical trait models is

therefore not the most appropriate strategy for analyzing

categorical diseases.

Most previous work done on family-based mapping of

categorical traits has been restricted to particular types of

pedigrees; these include backcross [9–11] and F2 designs

[10–13], 4-way experimental crosses [1,14–16], and sets of

independent nuclear families [17–19]. Recent methods by Zhang

et al. [20], Dupuis et al. [21], and Diao and Lin [22] allow linkage

analysis for ordinal traits on arbitrary pedigrees. To date, there is

no Bayesian framework for both ordinal and nominal linkage

analysis on pedigrees with inbreeding loops and missing data.

In this paper, we develop a Bayesian statistical framework for

linkage analysis of a categorical trait with a user-specified

penetrance function of arbitrary form. We implement this

framework in the software LOCate (Linkage for Ordinal and

Categorical traits). Our method can analyze an ordinal or nominal

trait with any number of categories, can handle missing genotype

and phenotype data, and can analyze pedigrees with inbreeding

loops. We demonstrate the versatility of our method’s user-

specified penetrance function through analysis of simulated

pedigrees with a nominal trait, and find that our method

outperforms LOT [20], the method of Zhang et al., which is
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designed for ordinal traits. We further demonstrate the versatility

of our method by reanalyzing a study of panic disorder in humans

previously analyzed as a binary trait [2], in which many

individuals have missing phenotypes. After we cut some of the

pedigrees for memory considerations, our method was able to

analyze the data and find evidence to reject a particular

trichotomous penetrance model, while LOT was unable to handle

the large amount of missing data in this study.

Methods

In our linkage analysis framework, we seek the probability of a

pedigree conditional on h, the recombination rate between a single

marker locus and the unknown disease locus:

P(X Dh)~SY P(X ,Y Dh),

where the observed data X consists of individuals’ phenotypes and

unphased marker genotypes, and the unobserved data Y consists of all

individuals’ disease locus and phased marker genotypes, as well as any

unobserved phenotypes and unphased marker genotypes. As the

number of individuals in the family increases, the sum over all

possible genotype assignments Y can grow unwieldy. Instead of

considering all possible values of Y, Gibbs sampling is used to

randomly explore the space of genotype configurations, emphasizing

those configurations Y which have the highest values of P(X ,Y Dh),
and therefore contribute the most to the summation. Below, we

describe the model, demonstrate the use of simulated tempering to

improve the mixing of the Gibbs sampler, and introduce a novel

estimator for the likelihood of the data from Gibbs sampling.

The model
Figure 1 shows the graphical model for our Gibbs sampler.

Following this model, the joint probability of the observed data (X)

and unobserved data (Y), conditional on the recombination rate h,

is as follows:

P(X ,Y Dh)!½Pi[foundersP(Qfi,Qmi DHWE):P(Mfi,Mmi DHWE)�
:½Pi[nonfoundersP(Qfi,Qmi Dparents,selectors)

:P(Mfi,Mmi Dparents,selectors)

:P(selQDselM ,h):P(selM )�

:½Pi[allP(MobsDMfi,Mmi):P(di D Qi
�!

,penetrance)�
:½PmissingP(Mfi):P(Mmi)�
:P(penetrance)

ð1Þ

where Qfi,Qmi are the disease alleles individual i received from its

father and mother; Mfi,Mmi are the marker alleles i received from

its father and mother; selQ and selM are ‘‘selector’’ variables that

tell whether i received the grandpaternal or grandmaternal allele

from each parent at the disease locus and the marker, respectively;

Mi,obs is i’s observed, unphased marker genotype; di is i’s

phenotype; and penetrance refers to the matrix of

P(phenotypeDgenotype) used to model the disease. HWE refers

to the genotype frequencies assuming the founders are drawn from

a population under Hardy-Weinberg Equilibrium.

Figure 1. The graphical model for the Gibbs sampler. All variables shown here are involved in updating the information for individual i. Filled-
in variables are typically observed, and held constant throughout the run of the sampler. Mfi,Mmi~marker alleles that i received from its father and
mother. Qfi ,Qmi~disease locus alleles that i received from its father and mother. Mi,offspring~j , Qi,offspring~j~marker and disease locus alleles that
individual i passed to its jth offspring. (Only one offspring is shown for illustration.) di~individual i’s phenotype. selM,fi~Selector variable: tells
whether i’s paternal marker allele comes from its paternal grandfather or grandmother. Mi,observed~i’s unphased marker genotype. Mf , Mm~marker
genotype vectors of i’s mother and father. If i is a founder, replace by a constant node describing the population allele frequencies.
Penetrances = matrix of the probabilities of each phenotype, conditional on disease genotype; held constant.
doi:10.1371/journal.pone.0012307.g001

Categorical Linkage Analysis
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We derived a Gibbs sampler to sample genotype configurations

Y in proportion to the probability in Equation 1. In our Bayesian

implementation, we used a uniform prior on the marker genotypes

of individuals with missing data. We also used P(selM )~:5, which

assumes unbiased inheritance, e.g., no meiotic drive. With the

availability of additional information, it would be straightforward

to change these priors. The penetrance parameters, which

describe the probability of each phenotype category conditional

on each disease locus genotype, are assumed to have a point prior,

that is, to be fixed. It would also be possible to implement a

random exploration of penetrance parameters and h values within

the Gibbs sampler; however, this would greatly increase the size of

the sample space. Therefore, to maximize computational efficien-

cy, we used a grid of values for h in the current implementation.

The Gibbs sampler updates each set of variables conditional on

its Markov blanket [23]. The equations for the updates are given

below and in Text S1. For example, individual i’s marker alleles

and selectors Mfi, Mmi, selmarker,fi, selmarker,mi are updated by a

draw from the distribution

P(Mfi,Mmi,selmarker,fi,selmarker,mi DMarkov Blanket)!

P(MfiDMf ,selmarker,fi):P(Mmi DMm, selmarker,mi)

:P(Mi,obsDMfi,Mmi)

:P(selQ,fi Dselmarker,fi):P(selQ,mi Dselmarker,mi)

:Poffspring~jP(Mij DMfi,Mmi,selmarker,ij)

ð2Þ

where Mf indicates the vector of marker alleles held by i’s father

in the current iteration.

Here,

P(Mi,obsjMfi,Mmi)~

0 if Mi,obs is not a permutation of Mfi,Mmi

1 if Mfi~Mmi (i is a homozygote)

1=2 if Mfi=Mmi (i is a heterozygote)

1 if Mi,obs is unobserved:

8>>><
>>>:

ð3Þ

In setting P(Mi,obsDMfi,Mmi)~1 if Mi,obs is unobserved, we

assume that this individual’s genotype had probability 1 of being

unobserved, independent of the individual’s true phased genotype.

If another model for gene dropouts were available, it could be

employed here.

Also,

P(MfijMf ,selmarker,fi)~
1{m if Mfi matches Mf ,sel

m if they do not match

�

where the mutation rate m depends on the current ‘‘temperature’’

of simulated tempering (see below). The calculation of

P(Mij DMfi,Mmi,selM,ij) for each of i’s offspring is analogous to

this. If individual i’s parents are not included in the pedigree, then i

is a founder, and P(Mfi DMf ,selmarker,fi) is replaced by

P(Mfi)~1=m, where m is the number of distinct marker alleles.

Improving the Speed of the Method
Slow mixing is a chronic problem in Gibbs samplers for linkage

analysis [24,25]. This can result in inadequate exploration of the

sample space and excessively long times to reach the stationary

distribution. Even more of a concern is the fact that in cases with

missing marker data and more than two possible marker alleles,

the Markov chain may be reducible, rendering portions of the

sample space inaccessible from a given starting point [25,26].

To ameliorate this problem, we implemented simulated temper-

ing [27,28] in our Gibbs sampling algorithm. In simulated

tempering, the Markov chain is run at several different ‘‘temper-

atures’’ l, ranging from l~0, at which the chain’s stationary

distribution is the desired probability distribution, to l~1, at which

the chain’s distribution is very ‘‘relaxed,’’ or smoothed, to increase

the chance of the chain traversing regions of low probability density

to reach different modes of the distribution. The most common way

of relaxing the probability distribution is to raise the distribution to a

power; however, this method is ineffective when some states to be

traversed have probability zero. Geyer and Thompson [27] used an

alternative approach to simulated tempering in their investigation of

carrier status for cystic fibrosis in a large pedigree of Hutterites.

Instead of raising the distribution to a power, they varied the disease

penetrances at different values of l. We extended their approach to

a more general parameter relaxation, in which each value of l
features its own penetrances, recombination rate, mutation rate,

and disease-allele frequency (see Text S1). This greatly improved

the mixing (Figure S5) and time to stationarity (Figure S6) of our

Gibbs sampler.

Estimating the LOD Curve
While results of an analysis using our framework may be

interpreted entirely from a Bayesian perspective by assuming a

prior over the grid values of h, we wished to provide a log of odds

(LOD) score for convenient linkage assessment. Likelihood-based

parameter inference from Markov chain Monte Carlo is prone to

sampling bias [26,29]. To avoid this bias, we developed a linear

regression-based estimator (LinReg) which takes advantage of the

relation

P(X Dh)~
P(X ,Y Dh)

P(Y DX ,h)
:

The numerator can be computed exactly (Equation 1). We

estimate the denominator P(Y DX ,h) by the proportion of

iterations which visit each configuration Y. The LinReg estimator

of P(X Dh)~L(hDX ) is the slope of the best-fit line (with intercept 0)

through a plot of P(X ,Y Dh) vs P̂P(Y DX ,h), as shown in Figure 2.

Simulations
We assessed the performance of our method using two sets of

simulated data. First, we tested the accuracy of LOD score

estimation for single, small simulated pedigrees. Since any errors

that occur in the analysis of one pedigree will be multiplied when

multiple pedigrees are aggregated in a typical linkage analysis

study, it is important that our method perform accurately when

only a small amount of data is available. The simulated pedigrees

included from 4 to 18 individuals; some examples are shown in

Figure S1. These included pedigrees with missing genotype data

and with inbreeding loops. For each pedigree, we simulated either

a recessive binary trait with P(d~2Dqq,Qq)~0 and

P(d~2DQQ)~:99, or a complete-penetrance codominant trichot-

omous trait (P(d~1Dqq)~P(d~2DQq)~P(d~3DQQ)~1). We

computed the LOD scores for these pedigrees using the slightly

misspecified disease penetrances in Table 1. We compared our

estimated LOD scores to the theoretical LOD scores using the true

penetrances, as well as to the LOD scores obtained by treating the

trichotomous trait as binary (in Superlink [5]) or continuous (in

Merlin [6] and SOLAR [30]). Parameter settings used for these

programs are given in Text S1.

Categorical Linkage Analysis
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For our second set of simulations, we assessed the ability of our

method to detect linkage in cases where the pedigree(s) may be

reasonably broken into a large number of small family groups or

where the study includes a large number of small families. For

these simulations, we considered linkage studies of 100 families,

each family consisting of 2 parents and 2 offspring. We simulated a

trichotomous trait with penetrances as given in Table 2 (Model A).

The trait locus was either tightly linked (h~:01) or unlinked

(h~:50) to the observed marker locus. Both the disease locus and

marker locus were simulated to be diallelic, with the marker allele

frequencies = .5 and the disease allele frequency = .25. We

required that each simulated family be informative for linkage

(at least one parent heterozygous at the marker) and exhibit at least

2 levels of the phenotype among its 4 members. We simulated 100

such studies, and examined the power vs. type I error of our

method and that of LOT [20]. Because LOCate requires an

estimate of the penetrances as input, we tested our method with a

range of penetrances (Table 2, Models A, B, C).

Application to Data
Panic disorder is a common illness in humans, characterized by

periods of intense anxiety. Because individuals exhibit varying

degrees of symptoms of panic disorder, this psychiatric illness is a

natural choice for analysis as an ordinal trait. We used LOCate to

perform trichotomous linkage analysis on the panic disorder data

Figure 2. The Linear Regression estimator of P(X Dh). X = observed data, Y = unobserved data. P(X ,Y Dh) is calculated using Equation 1;
P̂P(Y DX ,h) is estimated by the proportion of iterations which visit configuration Y, given the observed genotypes X. The slope of the regression line
(red) is an estimate of P(X Dh).
doi:10.1371/journal.pone.0012307.g002

Table 1. Penetrance models used in our small-family
simulations.

Model Phenotype qq Qq QQ

Binary d~1 .9991 .9989 .0008

d~2 .0009 .0011 .9992

Trichotomous d~1 .9764 .0228 .0020

d~2 .0226 .9545 .0225

d~3 .0010 .0227 .9755

qq, Qq, and QQ represent the genotype at the disease locus.
doi:10.1371/journal.pone.0012307.t001

Table 2. Penetrance models used to analyze simulated
linkage studies.

Model Phenotype qq Qq QQ

A d~1 .99 0 0

d~2 .01 .99 .01

d~3 0 .01 .99

B d~1 .8 .1 .1

d~2 .1 .8 .1

d~3 .1 .1 .8

C d~1 .7 .3 0

d~2 .3 .4 .3

d~3 0 .3 .7

Model A was used to generate the simulations.
doi:10.1371/journal.pone.0012307.t002

Categorical Linkage Analysis
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set of Fyer et al. [2]. This dataset consists of 1591 individuals in 120

pedigrees, classified into six categories: definitely affected by panic

disorder, probably affected, possibly affected, any symptoms of

panic, unaffected, or unknown. The dataset has missing data

among both phenotypes and microsatellite marker genotypes. Fyer

et al. analyzed these data using ANALYZE [31] and MLINK

[32,33] using the binary penetrance model shown in Table 3, and

found a two-point HLOD(.2) = 3.20 at marker D2S1788, with

HLOD computed as

HLOD(h)~ max
a

log10

aP(X Dh)z(1{a)P(X D:5)

P(X D:5)

over a grid of a values. We reanalyzed marker D2S1788 using

LOCate, under the same binary penetrance model and under four

trichotomous variations of this model (Table 3 and Table S1).

In each of the variations, we used a low (.01 or .1) phenocopy

rate, similar to the .01 rate used in Fyer et al. We varied

P(unaffectedDQq,QQ) from (.5,.5) in model A, matching Fyer et

al., to (.05,.05) in model D, to represent a disease which is much

more penetrant when individuals with ‘‘any symptoms’’ are

included as affected.

Seven pedigrees had no observed phenotypes, due to having

been collected for a different phase of the Fyer et al. study. Nine

additional pedigrees had some observed genotypes, but were

uninformative due to lack of variation in the observed phenotypes

or genotypes. These pedigrees were dropped from our analysis,

leaving 1332 individuals in 104 families. Of these, 35 families,

ranging in size from 4 to 10 individuals, could be analyzed in

LOCate on 1.7 GB-memory instances on the Amazon cloud [34].

The remaining 69 pedigrees, ranging in size from 9 to 34

individuals, would have required more than 1.7 GB of memory.

We split these pedigrees into nuclear families for analysis,

discarding subpedigrees which had no variation in observed

phenotype or marker alleles or fewer than 2 individuals with

observed genotypes, and discarding individuals without offspring

which had neither observed phenotype nor genotype. After

cutting, the dataset consisted of 167 pedigrees and subpedigrees,

comprising 858 unique individuals.

Using LOCate, we first analyzed a reduced set of 96 subfamilies

to compare 4 trichotomous penetrance models (Table S1), and

then re-analyzed the full set of pedigrees using the best-fitting

penetrance model (Table 3). Using multiple penetrance models is a

form of multiple testing, so we must increase the LOD score

threshold used to declare significance. A Bonferroni correction

gives the adjusted threshold as 3z log10 (n), where n is the number

of penetrance models; in this case, the threshold is

3z log10 (4)~3:60. Other, less conservative approaches to

correction would also be possible, such as Rom’s correction [35]

or determining empirical p-values by permuting phenotypes [36].

We also attempted to analyze the cut pedigrees using LOT, but

found that LOT froze during this analysis. Test analyses with

simulated phenotypes on the same pedigree structures revealed

that this was due to the large proportion (32%) of individuals with

unobserved phenotypes.

Results

Estimating the LOD Curve
We compared our LinReg estimator to the Reverse Logistic

Regression (RLR) estimator of Geyer [37]. The LinReg estimator

is faster to compute than the RLR estimator, because LinReg

involves a simple linear regression, while RLR requires a complex

optimization over many values of h. We used both estimators to

estimate the LOD curve for several simulated pedigrees, for 5

different runs of our Gibbs sampler. Using Superlink to compute

the exact value for each LOD(h), we found that the LinReg and

RLR estimators have comparable empirical mean squared error

(Figure 3). Given the speed and accuracy of LinReg, we used this

estimator for the rest of the analyses described below.

Simulations
LOCate accurately estimated LOD curves for individual

simulated pedigrees with binary traits (Figure S2) and trichoto-

mous traits (Figure 4). Previous studies have shown that treating a

categorical trait as binary leads to a loss of power [3,4]. Our results

concur with this (Figure S3). We also examined the effect of

treating categorical traits as continuous by analyzing simulated

pedigrees with Merlin [6] and SOLAR [30]. These methods’

continuous-trait models were unable to estimate the LOD curves

accurately, while LOCate succeeded (Figure 4). Transforming the

phenotypes using Merlin’s inverseNormal option was also not

effective in improving the fit of the continuous model.

We present the results of our analysis of simulated 100-family

linkage studies in Figure 5, which compares the receiver operator

characteristic (ROC) curves for our method and for LOT. Our

method has substantially higher power than LOT for the three

penetrance models. Therefore, we find our method retains

excellent discriminating power even when the penetrance model

used is not the true model. A highly inaccurate penetrance model

does reduce the magnitude of the estimated LOD scores, giving

low power at a LOD threshold of 3 (Figure S4). This reinforces the

value of considering alternative penetrance models in situations

when LOD scores are close to zero genomewide, especially when

analyzing categorical traits.

Application to Data
The LOD scores produced by LOCate under the binary and

trichotomous analyses are shown in Table 4. Although the

trichotomous model we used had the highest LOD score of the

four models we tested on a subset of 96 subpedigrees, when

applied to all 167 pedigrees and subpedigrees this model had

much lower LOD scores than the binary model. HLOD scores

were also lower under the trichotomous model than the binary

model (Table 4).

It is clear that the necessary pedigree cutting had an effect on

our results, as we found a binary HLOD(.2) = 1.85, compared to

Fyer et al.’s binary HLOD(.2) = 3.20 on the uncut pedigrees.

However, the very negative LOD scores under the trichotomous

model are surprising, and give evidence that the trichotomous

penetrance matrix in Table 3 is not a good model for the

contribution of this locus to panic disorder. It is also possible that

Table 3. Penetrance models used in our analysis of Panic
Disorder data.

Model Phenotype qq Qq QQ

Binary Unaffected .99 .5 .5

Definite, Probable, Possible .01 .5 .5

Trichotomous Unaffected .99 .5 .5

Possible, Any symptoms .005 .125 .125

Definite, Probable .005 .375 .375

doi:10.1371/journal.pone.0012307.t003

Categorical Linkage Analysis
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this locus contributes only to a broad, binary distinction between

‘‘affected/unaffected’’, and that finer gradations that produce the

ordinal nature of panic disorder are determined by other loci.

Discussion

Bayesian methods for linkage analysis are useful because they allow

for incorporation of prior information about allele frequencies, meiotic

drive, and other factors important to linkage calculations. This, along

with LOCate’s versatility for ordinal and nominal traits, makes our

method a valuable complementary tool to existing frequentist methods.

Even in a Bayesian framework, it is desirable to have a means of

computing LOD scores, as they are commonly used to assess

linkage. We developed a new, linear-regression based estimator for

L(h), which has similar mean squared error to the RLR estimator,

and is faster to compute. Our LinReg estimator will be useful for

parameter inference in any situation in which MCMC is used and

it is possible to calculate P(X ,Y Dh), the joint probability of the

Figure 3. LinReg and RLR estimators of LOD(h). Shown are the empirical mean squared errors of the LinReg and RLR estimators of LOD(h) for a
simulated pedigree. We used Superlink to compute the target value for each LOD(h).
doi:10.1371/journal.pone.0012307.g003

Figure 4. Accuracy of LOCate. Shown are the results of linkage analysis on single, simulated pedigrees with trichotomous traits. Our method (red)
gives a good fit to the theoretical LOD curve (black). When the categorical trait is treated as continuous, the LOD curve estimates (from Merlin and
SOLAR) are a much poorer fit (blue).
doi:10.1371/journal.pone.0012307.g004

Categorical Linkage Analysis
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observed and unobserved data, conditional on the parameter. For

example, it could be used in the problem of population structure

[38] to infer K, the number of populations represented by an

observed sample of genotypes.

The choice of a penetrance model is an important question in

any parametric linkage analysis, and this choice becomes even

more challenging when analyzing categorical traits, as the number

of possible penetrance matrices increases with the number of levels

of the trait. An important distinction in the choice of penetrance

matrices for categorical traits is whether the model should be

ordinal or nominal. LOT estimates penetrances according to an

ordinal model; this gives it an advantage for researchers who are

confident their trait follows an ordinal model, but who do not wish

to estimate the penetrances in advance. In contrast, LOCate is

flexible to both ordinal and nominal penetrance models, but

requires the penetrances to be estimated in advance. As we have

done in this paper, these can be estimated on the basis of previous

estimates of the phenocopy rate and overall penetrance of the trait.

As our simulations demonstrate, LOCate exhibits better power

than LOT when used to analyze a nominal trait, even when the

input penetrance matrix is only a rough estimate. This robustness

mitigates the importance of exactly estimating the penetrance

matrix, and makes LOCate a valuable alternative method for

researchers who wish to test penetrance models that do not have

the ordinal proportional-odds property.

Due to LOCate’s computational intensiveness, our simulation

study was limited in scope. We believe our simulations establish

LOCate as a valuable complementary approach for linkage

analysis of categorical traits, particularly nominal traits. We are

currently developing extensions to increase the computational

speed of LOCate, which will enable a more extensive range of

simulations to compare LOCate’s performance to LOT on a

variety of ordinal and nominal traits with varying amounts of

missing data and inbreeding.

We further demonstrated the versatility of our method through

a trichotomous linkage analysis of a dataset of humans affected by

panic disorder with a large proportion of missing data. By splitting

the most memory-intensive pedigrees into nuclear families, we

were able to analyze the dataset using LOCate, while LOT was

unable to process the large proportion of individuals with missing

phenotypes. In this particular application, it was interesting to note

the very negative LOD scores produced in the trichotomous

analysis, while the binary analysis on the same set of subpedigrees

had positive LODs. This demonstrates that the trichotomous

model in Table 3 is a poor fit to the data. The exclusion of this

penetrance matrix as a model for the contribution of D2S1788 (or

a locus linked to it) to panic disorder was not possible using LOT.

The exclusion of this model, a categorical ‘‘translation’’ of the

binary penetrance model used by Fyer et al., demonstrates that

modeling genetic contributions to categorical traits is not a simple

matter of applying a few modifications to existing binary models.

Further investigation of panic disorder as an ordinal trait is

needed, to establish more complete bounds on the range of

possible penetrance models. In addition, further methods devel-

opment, such as a Bayesian treatment of the penetrance matrix,

would enable us to analyze categorical traits without specifying the

penetrance matrix in advance.

We have implemented our method in the software LOCate,

available at https://sourceforge.net/projects/categorical. LOCate

is an effective and versatile approach for single marker analysis of

nominal, ordinal, and binary traits on arbitrary family-sized

pedigrees, including those with inbreeding loops and missing

phenotypes and/or genotypes. While our method currently has

scaling limitations for larger pedigrees, we are developing

extensions for LOCate that make use of variable elimination to

make the method available for multimarker analysis as well as the

analysis of arbitrarily sized linkage studies.

Supporting Information

Text S1 Equations used in variable updates, details of simulated

tempering, and parameters used in other software.

Found at: doi:10.1371/journal.pone.0012307.s001 (0.06 MB PDF)

Figure S1 Examples of simulated pedigrees. Black = affected;

white = unaffected; gray = moderately affected. Each individual’s

unphased marker genotype is listed below the individual. A, B, and

D are examples of simulated pedigrees with binary traits; C shows

a simulated pedigree with a trichotomous trait and an inbreeding

loop. Question marks in B indicate missing genotype data.

Found at: doi:10.1371/journal.pone.0012307.s002 (1.74 MB TIF)

Figure S2 Estimated LOD curves for simulated pedigrees with

binary traits. Our method (red) and Superlink (black) give nearly

identical results.

Found at: doi:10.1371/journal.pone.0012307.s003 (7.32 MB TIF)

Figure S3 Treating trichotomous traits as binary. When our

method is run on simulated pedigrees with a 3-level categorical

Table 4. LOD scores from our analysis of Panic Disorder data.

Model h~:1 .2 .3 .4

Binary LOD 1.52 1.85 0.99 0.15

Trichotomous LOD 210.5 27.94 28.08 28.81

Binary HLOD (a) 1.86 (0.7) 1.85 (1.0) 0.99 (1.0) 0.15 (1.0)

Trichotomous HLOD (a) 1.03 (0.35) 0.92 (0.5) 0.34 (0.5) 0.00 (0.0)

HLODs were computed as HLOD(h)~ maxa log10

aP(X Dh)z(1{a)P(X D:5)

P(X D:5)
.

The maximizing value of a is given in parentheses.
doi:10.1371/journal.pone.0012307.t004

Figure 5. ROC plot from simulated linkage studies. Our method
demonstrates better distinguishing power than LOT, even under
penetrance model C, which is substantially different from model A,
the values used to generate the simulations.
doi:10.1371/journal.pone.0012307.g005
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trait, the LOD curve estimate (red) is a good fit to the theoretical

LOD curve (black). When the categorical trait is treated as binary,

the LOD curve estimates (from Superlink) are a much poorer fit

(blue).

Found at: doi:10.1371/journal.pone.0012307.s004 (7.70 MB TIF)

Figure S4 LOD scores from simulated linkage studies. Red bars

show the frequency of LOD scores for simulations with a linked

QTL; black bars show the frequency for simulations with an

unlinked QTL. Both penetrance models have good distinguishing

power, but the LOD scores under the inaccurate model C have a

smaller range.

Found at: doi:10.1371/journal.pone.0012307.s005 (0.40 MB TIF)

Figure S5 Lag-k autocorrelation with and without simulated

tempering. We show the correlation between P(X,Yi) (the joint

probability of the observed and unobserved data at iteration i) and

P(X,Yi+k) (the probability k iterations later). Without simulated

tempering (black line), distantly separated iterations of the Gibbs

sampler remain highly correlated. With simulated tempering, the

autocorrelation reaches near-independence (,.05, below blue line)

for k.15, demonstrating improved mixing of the Gibbs sampler.

Found at: doi:10.1371/journal.pone.0012307.s006 (0.21 MB TIF)

Figure S6 Gelman-Rubin statistics for the likelihood of a simulated

pedigree. Without simulated tempering (blue bars), the Gelman-

Rubin statistics are significantly greater than 1, indicating that the

chains have not reached stationarity, at a burn-in of 64,000 iterations.

With simulated tempering (red bars), a burn-in of 1,000 iterations is

sufficient to achieve Gelman-Rubin statistics very close to 1.

Found at: doi:10.1371/journal.pone.0012307.s007 (3.49 MB TIF)

Table S1 Additional trichotomous penetrance models used to

analyze Panic Disorder data. We tested each of these models on 96

subfamilies, as discussed in the Methods: Application to Data

section, in addition to the selected model (model A) in Table 3.

Found at: doi:10.1371/journal.pone.0012307.s008 (0.01 MB PDF)
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