
*For correspondence:

arjunraj@seas.upenn.edu

Competing interest: See

page 20

Funding: See page 20

Received: 28 May 2020

Accepted: 04 December 2020

Published: 07 December 2020

Reviewing editor: Jie Xiao,

Johns Hopkins University, United

States

Copyright Sanford et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Gene regulation gravitates toward either
addition or multiplication when combining
the effects of two signals
Eric M Sanford1, Benjamin L Emert1, Allison Coté2,3, Arjun Raj2,3*
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Abstract Two different cell signals often affect transcription of the same gene. In such cases, it

is natural to ask how the combined transcriptional response compares to the individual responses.

The most commonly used mechanistic models predict additive or multiplicative combined

responses, but a systematic genome-wide evaluation of these predictions is not available. Here, we

analyzed the transcriptional response of human MCF-7 cells to retinoic acid and TGF-b, applied

individually and in combination. The combined transcriptional responses of induced genes

exhibited a range of behaviors, but clearly favored both additive and multiplicative outcomes. We

performed paired chromatin accessibility measurements and found that increases in accessibility

were largely additive. There was some association between super-additivity of accessibility and

multiplicative or super-multiplicative combined transcriptional responses, while sub-additivity of

accessibility associated with additive transcriptional responses. Our findings suggest that

mechanistic models of combined transcriptional regulation must be able to reproduce a range of

behaviors.

Introduction
Suppose a cell at baseline expresses 100 copies of mRNA of gene X. If you give signal A, the cell

expresses 200 copies of gene X. Give signal B, and you see 300 copies. What happens when you

give both signals at the same time? Do the effects add (gene X increases to 400 copies)? Multiply

(600 copies)? Additive and to some extent multiplicative phenomenological models have seen wide-

spread use due to their simple mechanistic basis. However, there is little systematic empirical evi-

dence that either of these phenomenological models of combined responses are in general valid or

should be favored in any way.

Part of the appeal of the additive and multiplicative phenomenological models is their emergence

from simple and natural mechanistic models of transcriptional regulation. For instance, additive

behavior naturally emerges from a model in which transcription factors can independently recruit

polymerase to the promoter (Scholes et al., 2017; Bothma et al., 2015; Bender et al., 2012). Spe-

cifically, if signal A and signal B each induce the binding of different transcription factors to the

enhancers of gene X, and these each independently result in an increased rate of binding of the

polymerase to the promoter then the total rate of binding would be the sum of the two independent

contributions. (This additive prediction assumes that the binding events are not so frequent as to sat-

urate the promoter.) Consistent with this behavior, the deletion of pairs of enhancers at the mouse

b-globin locus resulted in additive reductions in gene expression (Bender et al., 2012), and

CRISPRa-based activation of enhancer subsets resulted in additive increases in gene expression for
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several genes in an endometrial cancer cell line (Ginley-Hidinger et al., 2019). However, these

experiments are typically limited to small sets of genes, making it difficult to conclude that additive

behavior is the default, and indeed deviations from additive behavior are prevalent (Bothma et al.,

2015; Ginley-Hidinger et al., 2019; Scholes et al., 2019).

Another oft-cited phenomenological observation is multiplicative integration of two transcrip-

tional signals. One common model that can readily explain multiplicative integration is the so-called

‘thermodynamic model’, in which it is assumed that equilibrium binding levels of RNA polymerase to

the promoter is the control point for transcriptional regulation (Ackers et al., 1982; Bintu et al.,

2005; Phillips et al., 2019; Scholes et al., 2017; Sherman and Cohen, 2012). In a simple instantia-

tion with two transcription factors, A’ and B’, which mediate the effects of signals A and B on gene

X, each factor individually lowers the binding energy of RNA polymerase to the promoter, increasing

its affinity (Bintu et al., 2005). If both transcription factors are present, then the changes in binding

energy add, and hence, given that the probability of a transcription factor recruiting RNA polymer-

ase II depends exponentially on binding energy, the net change in equilibrium binding levels of RNA

polymerase II would multiply. Multiplicative activation by two RNA polymerase-binding factors has

been seen in mutant E. coli experiments after lcI- and CRP-binding sides were placed adjacent to a

lacZ promoter (Joung et al., 1994). In eukaryotes, thermodynamic models have been successful in

predicting how engineered combinations of a few known transcription-factor-binding sequences

next to a promoter affect the transcription of reporter genes in yeast and mouse embryonic stem

cells, explaining ~50% of the variance in reporter gene expression, and up to 72% of the variance

when non-multiplicative interaction terms are included (Fiore and Cohen, 2016; Gertz et al., 2009).

However, it is unclear from many of these assays, most of which focus on promoter manipulations,

how prevalent and general the multiplicative predictions of the simplest version of the thermody-

namic model are, especially given that many combined responses are known to follow more simple

additive predictions.

While potential mechanisms underlying additive and multiplicative behavior are straightforward,

there is no a priori reason to believe that most genes would follow one or the other, or either at all.

Indeed, a larger class of ‘kinetic’ models of transcription (which represent transcription as a coupled

series of chemical reactions with distinct signal-responsive rates) have been shown to admit a wide

variety of behaviors, ranging from sub-addition to super-multiplication (Scholes et al., 2017). A sys-

tematic test of these different phenomenological types of combined responses has yet to be done,

in part because there is a lack of transcriptome-wide experiments in the literature that treat cells

with two signals both individually and in combination. (A notable exception is Goldstein et al.,

2017, where the authors use dual-signal treatment and a heuristic approach to find synergistic and

antagonistic genes but do not compare underlying phenomenological models of combined

responses.) Thus, it remains unknown if combinatorial gene regulation is primarily additive, multipli-

cative, or a wide distribution of everything in between (and beyond).

Upstream of transcription, it is also unclear how multiple signals coordinately affect transcription

factor binding activity at cis-regulatory elements. For instance, if each signal results in the binding of

a specific set of transcription factors at a particular regulatory region individually, then do these two

different sets of factors bind with the same probability when both signals are applied? Or are these

probabilities affected by potential regulatory interactions between the signals? And how might these

binding probabilities and potential interactions affect expression of the target genes? There is only

limited transcription-factor-binding data available for experiments where cells receive multiple sig-

nals simultaneously (Goldstein et al., 2017), and then using ChIP-seq, which only reports binding

profiles for specific transcription factors. Pairing combined response experiments with chromatin

accessibility measurements, which correlate with aggregate transcription factor binding data

(Thurman et al., 2012), has the potential to answer these questions in a more comprehensive man-

ner than ChIP-seq would allow for.

Experimentally, part of what makes it difficult to compare phenomenological models of combined

responses is that additive and multiplicative models can give nearly indistinguishable predictions,

especially when one or both of the signals’ effects are relatively small. As such, often experimental

data will be consistent with, say, a multiplicative or additive model (or weighted variants of such

models), but it is difficult to exclude the possibility of the other model, especially when only a limited

number of genes are considered (Rothschild et al., 2014; Kaplan et al., 2008; Geva-

Zatorsky et al., 2010; Rapakoulia et al., 2017). With current genome-wide expression profiling
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tools, however, it may be possible to query the integration modes of sufficiently many genes so as

to discriminate between additive, multiplicative, and other phenomenological model predictions for

at least some subset of genes, thus enabling a larger scale view of gene regulation’s tendencies

toward specific combined response behaviors.

Here, we profiled MCF-7 cells with paired RNA-seq and ATAC-seq measurements after we

exposed them to retinoic acid, TGF-b, and both signals. We found that while genes’ transcriptional

responses exhibit a wide variety of behaviors when combining these two signals, they generally

tended toward either addition or multiplication. ATAC-seq peaks, on the other hand, appeared to

prefer addition as the default operation for combining two signal effects, although a minority of

peaks clearly showed sub-additive or super-additive behavior. Genes with super-additive ATAC-seq

peaks nearby were more likely to have a multiplicative or super-multiplicative transcriptional

responses to retinoic acid and TGF-b. These data provide a comprehensive and systematic view of

transcriptional responses to combined signal treatments.

Results

Upregulated genes gravitate toward addition and multiplication when
combining the transcriptional effects of both signals
To quantitatively measure how gene regulation depends on multiple input signals, we performed

three replicates of a paired RNA-seq and ATAC-seq experiment using MCF-7 cells (human breast

carcinoma; selected for being well-characterized in its response to the two signals chosen). Prior to

sequencing, we treated these cells with three different doses of TGF-b (1.25, 5, and 10 ng/ml), reti-

noic acid (50, 200, and 400 nM), or both signals (low, medium, and high dosages of both TGF-b and

retinoic acid simultaneously) for 72 hr (Figure 1B). We waited 72 hr to create a larger set of differen-

tially expressed genes to use in subsequent analyses, and chose doses that led to broad changes in

transcription and chromatin accessibility (Figure 1B; see Materials and methods for discussion of

doses chosen). Initial analysis showed that the number of differentially expressed genes and differen-

tial peaks increased in a dose-dependent manner, and that all genes that were upregulated in both

individual signal treatments were also upregulated in the combination treatment (Figure 1B). We

focused our analysis on upregulated genes and upregulated ATAC-seq peaks due to their greater

dynamic range in effect sizes and their more straightforward interpretation in the context of poten-

tial binding of activators to increase the transcription of nearby genes. (Note that our ethanol ‘vehi-

cle’ controls were performed at three different cell concentrations, and there were no significantly

differentially expressed genes between concentrations. We did not, however, add the signals to dif-

ferent concentrations of cells or cells at different points in the cell cycle, in which context the signals

may exert differential effects.)

We defined a master set of 1398 genes by selecting the set of genes that were significantly upre-

gulated in any dose of the combination treatment (log2 fold-change �0.5 and Benjamini-Hochberg

adjusted p value � 0.05) and that had increased expression in all doses of each individual signal

(Figure 1D). If we had selected the full set of all genes upregulated in any dose of the combined

treatment, we would have analyzed a set of 2246 genes (Figure 1D). We required the change in

expression to be positive for both individual signals, however (i.e. DA > 0 and DB > 0), in order to

maintain a consistent mapping between our categorical description of combined responses (e.g.

‘sub-additive’, ‘super-multiplicative’ (Figure 1—figure supplement 1)) and our continuous ‘c value’

description of combined responses defined in Appendix 1 and Figure 1A. Requiring DA > 0 and DB

> 0 in our master set of genes was necessary to guarantee that sub-additive combined transcrip-

tional responses always had c values less than 0 and that super-multiplicative responses always had c

values greater than 1. Imposing the conditions of DA > 0 and DB > 0 removed 37.8% of the 2246

genes that showed a significant increase in expression in the combined treatment (Figure 1D), leav-

ing 1396 of the 1398 genes that ultimately fed into our analyses. Inclusion of genes with negative

changes after individual signal treatments would require a more elaborate analysis framework to

encompass the much larger variety of categorizations of potential responses that would be difficult

to characterize with the number of genes in our analysis. (There were only two genes that were sig-

nificantly downregulated in the combined treatment while also having DA > 0 and DB > 0 at all doses
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Figure 1. Addition and multiplication are enriched modes of signal integration in upregulated genes. (A) Example of additive vs. multiplicative effects

on expression of hypothetical gene X, mathematical formulation of the combined response factor, and illustration of how the value of the combined

response factor (c value) reflects whether a combined gene expression response is sub-additive, additive, multiplicative, or super-multiplicative. (B)

Schematic of signal response experiments in MCF-7 cells. Briefly, we treated MCF-7 cells with three different dosages of retinoic acid, TGF-b, or both

Figure 1 continued on next page
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of each individual signal treatment; we elected to also include these two genes in our master set for

the total of 1398.)

In our analysis of combined transcriptional responses, we assumed that retinoic acid and TGF-b

exhibited their effects on common target genes through distinct transcription factors. To justify this

assumption, we confirmed that there was little cross-activation of pSMAD2 (which serves as a proxy

for the readout of TGF-b signaling) by performing immunofluorescence targeting pSMAD2 upon the

addition of TGF-b and retinoic acid individually (Figure 1—figure supplement 2A–B). We saw that

TGF-b treatment rapidly increased the nuclear signal of pSMAD2 (by 40 min), which remained above

baseline until the final time point at 72 hr, whereas retinoic acid treatment induced no changes in

pSMAD2 signal relative to baseline (Figure 1—figure supplement 2C–E). Nuclear expression of reti-

noic acid receptor alpha, which resides in the nucleus regardless of activation level

(Mangelsdorf and Evans, 1995), was stable between conditions at all time points (Figure 1—figure

supplement 3). Subsequent transcription factor motif analysis of our ATAC-seq data, however, sug-

gested that retinoic acid receptor alpha (RARA) is activated by retinoic acid and not TGF-b (see sec-

tion titled ’Motif analysis reveals that sub-additive peaks have a depletion of AP-1 and an

enrichment of CTCF motifs while super-additive peaks have an enrichment of SMAD motifs’). This

same motif analysis also suggested that retinoic acid and TGF-b largely increased the activity of dis-

tinct transcription factors at the 72 hr time point, meaning that the secondary effects of retinoic acid

and TGF-b are likely mediated through the activity of distinct transcription factors.

Within our master set of 1398 upregulated genes, we found a variety of different combined tran-

scriptional response behaviors ranging from sub-addition to super-multiplication (Figure 1D–F). A

transcriptional response is additive when the combined treatment effect represents the sum of the

individual treatment effects, and multiplicative when the combined treatment represents the product

of the individual treatment fold-changes. When both signals upregulate the expression of a gene, a

multiplicative response is always higher than an additive response (Appendix 1; Figure 1A). To sys-

tematically classify the combined transcriptional responses at each gene, we used a statistical

approach where we assumed each observation of a gene’s expression value was derived from a

Gaussian distribution (see Materials and methods). We classified a combined transcriptional

response as sub-additive, additive, multiplicative, or super-multiplicative by comparing where a ‘per-

fect’ hypothetical additive or multiplicative response lay with respect to the 80% confidence interval

of the combined treatment’s expression value (Figure 1—figure supplement 1B). If both the hypo-

thetical additive and the hypothetical multiplicative predictions lay within the confidence interval, we

classified the response as ambiguous (Figure 1—figure supplement 1B). Using this approach, we

found that at the medium dose, 8.7% of genes had sub-additive combined transcriptional responses,

Figure 1 continued

signals for 72 hr, then performed bulk RNA-seq and ATAC-seq at the endpoint. We show the number of differentially expressed genes and peaks for

each dose of each condition as well as the overlap between the sets of differentially expressed genes and differential peaks. (C) Five example genes

representing sub-additive to super-multiplicative combined transcriptional responses, where we show each gene’s transcripts per million (TPM) value

for each replicate after single or combined signal treatments. Horizontal gray bars show the average TPM value, and error bars represent the 80%

confidence interval of the estimated underlying Gaussian distribution of each dosage and condition (see Materials and methods for parameter

estimation details). (D) Illustrated definition of master set of upregulated genes. (E) Frequency of each type of combined response behavior for each

dosage in the master set of genes. (F) Simulated, observed, and residual histograms of c value distributions for the medium and high doses. In the

simulated mixture model, we randomly simulated combined responses to be either additive or multiplicative based on the relative frequency of

additive vs. multiplicative combined transcriptional responses that we observed at each dose in 1E. Annotated percentages at broken bars represent

the fraction of c values in the tail beyond the limits of the x axis of the graph. *For all c value analyses, 14 genes with a control TPM of zero were

removed from the master set of genes, as they end up misleadingly having c values of exactly 0 regardless of the effects of retinoic acid and TGF-b.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Explanatory schematics for model of gene expression variation, classification of combined responses, and simulating new

additive or multiplicative combined responses.

Figure supplement 2. TGF-b, and not retinoic acid, leads to an increase in nuclear pSMAD2 levels in MCF-7 cells.

Figure supplement 3. Nuclear retinoic acid receptor alpha levels are stable across treatment conditions.

Figure supplement 4. A secondary peak occurs at or near perfectly multiplicative combined transcriptional responses (c = 1) after subtracting a

distribution of simulated additive responses from the observed distribution of c values.

Figure supplement 5. The combined response factor tends to remain stable or decrease with increasing signal dosage.
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15.1% had additive responses, 2.1% had between an additive and multiplicative response, 11.7%

had multiplicative responses, 18.7% had super-multiplicative responses, and 43.7% had ambiguous

responses (Figure 1D), suggesting that there is no single dominant category of combined response

behavior. However, while the categories of addition and multiplication are appealing due to their

correspondence to these simple phenomenological models, there is no a priori reason to believe

that all or even most genes should necessarily adhere to either of these possibilities.

In order to quantitatively describe the combined transcriptional response characteristics of any

gene without any presupposition of additive or multiplicative behavior, we defined a continuous

parameter, hereby referred to as a gene’s combined response factor or ‘c’ value, that places the

gene in an exact location on the spectrum of possible combined response behaviors (Appendix 1;

Figure 1A). We could then solve for any gene’s c value (within experimental error) after measuring

the individual signal effects and the combined treatment effect. For an upregulated gene, a c value

of 0 would indicate perfect addition, a c value of 1 indicates perfect multiplication, a c value less

than 0 indicates sub-addition, and a c value greater than one indicates super-multiplication (see

Figure 1A for equation). We wondered what the distribution of c values would look like across our

master set of upregulated genes, and whether this distribution would tell us anything about genes’

natural inclinations for specific combined response behaviors. For instance, if this distribution had its

main peak at c = 0.5, it would imply that genes naturally prefer to integrate two signals in a manner

that lies between addition and multiplication. At all doses of combination treatment, we observed a

wide peak centered around c = 0 (additive), with a hint of a secondary peak at c = 1 (multiplicative),

suggesting that the integration of the effects of two signals is preferentially additive or multiplicative

(Figure 1F; Figure 1—figure supplement 4).

In order to more rigorously demonstrate the preferences for these two values of c, we performed

a series of simulations and statistical analyses. First, we generated simulated data taking into account

measurement noise to estimate what the expected distributions of c would look like if signal integra-

tion was wholly additive or multiplicative. For each gene, we made three random draws for expres-

sion levels in both signal conditions based on the actual expression measurements and variance of

those measurements to mimic our actual data (Figure 1—figure supplement 1C). We then com-

puted what we would have measured c to be based on these simulated measurements. This ‘null’

produced broad peaks centered around c = 0 and c = 1, respectively, and a superposition of these

two nulls appeared to match our experimentally measured distribution of c values (Figure 1F). In

order to more clearly demonstrate the existence of a secondary peak at c = 1, we subtracted off

from the distribution a purely additive null model (as computed above, fit to the observed distribu-

tion). The resultant residual distribution was a broad peak centered roughly around c = 1 (a Gaussian

fit to the residual gave a fit centered at c = 1.12 and c = 1.00 at medium and high doses, respec-

tively), consistent with our multiplicative simulated data (Figure 1F; Figure 1—figure supplement

4A). We showed that this residual distribution was not likely to be due to statistical fluctuations by

computing a p-value for the possibility of obtaining as big a residual in a sliding window by random

chance (Figure 1—figure supplement 4B). Overall, while there is the possibility of further peaks

within our data, our data most strongly support the existence of two peaks in the c-value histogram,

one corresponding most closely with an additive model, and the other with a multiplicative model.

While our superimposed distribution of c values derived from simulated additive and multiplica-

tive combined responses bears a close resemblance to our observed distribution of c values in the

neighborhoods of c = 0 (addition) and c = 1 (multiplication), the tails of the observed c value distri-

bution are clearly heavier (Figure 1F). These heavier tails illustrate that biological variation, rather

than measurement error, produces a significant amount of sub-additive (c < 0) and super-multiplica-

tive (c > 1) combined transcriptional responses.

We next wondered how a gene’s combined response factor (c value) depended on dosage of the

input signals. In theory, the c value might remain stable as dosage increases, monotonically increase

or decrease as dosage increases, or may appear to be ‘random’ with respect to dose, perhaps due

to complex unobserved dose-dependent gene regulatory interactions. To distinguish between these

possibilities, we plotted how a set of upregulated genes’ c values changed as they moved from low

to medium to high dose of combination treatment with retinoic acid and TGF-b (Figure 1—figure

supplement 5B–D). To generate a subset of reliable c value estimates within our master set of

genes, we selected genes for which DADB

xbaseline
� 2 transcripts per million (TPM) and DADB

xbaseline
� xbaseline
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(Figure 1—figure supplement 5C). Since DADB

xbaseline
captures the difference between the multiplicative

and additive predictions, the estimation of c is more reliable when DADB

xbaseline
is large, because when that

number is large it is less susceptible to technical variability. We found that most genes’ c values

were stable or moderately decreased with increasing signal dose, suggesting that the function a

gene uses to combine two signals is mostly stable, with a tendency towards ‘saturation’ with increas-

ing dose (i.e. the function itself moves in the direction of sub-additivity when dosage increases).

Increases in chromatin accessibility are largely additive
Transcriptional regulation is thought to occur largely via the binding of transcription factors, but it

remains unknown how the transcription factors associated with the effects of individual signals might

interact upon the addition of both signals simultaneously. We performed ATAC-seq on the same

populations described earlier, reasoning that the observation that changes in chromatin accessibility

have been shown to correlate with changes in aggregate transcription-factor-binding activity

(Thurman et al., 2012) meant that we could infer something about transcription factor binding at

these sites. Note that the extent to which changes in chromatin accessibility quantitatively reflect

changes in transcription factor occupancy is currently unknown, and may depend on the mechanism

by which binding of transcription factors leads to opening of chromatin, such as displacement of

nucleosomes by pioneer factors, recruitment of secondary transcription factors, or recruitment of

chromatin remodeling complexes (Zaret and Carroll, 2011; Klemm et al., 2019). Reassuringly, our

initial motif enrichment analysis revealed that retinoic acid receptor alpha (RARA) and three TGF-b

pathway transcription factor motifs (SMAD3, SMAD4, and SMAD9) were highly enriched in their

respective individual signal treatment conditions (Figure 4—figure supplement 1B). Note that our

motif analysis also indicated some degree of activation of RARA by TGF-b and some degree of acti-

vation of SMAD3 and SMAD9 by retinoic acid, which led to even higher enrichment levels of these

factors in the combined treatment condition (Figure 4—figure supplement 1A). We did not, how-

ever, observe cross-activation of pSMAD2 by retinoic acid in immunofluorescence experiments (Fig-

ure 1—figure supplement 2).

We then wondered how well simple additive and multiplicative phenomenological predictions

corresponded to the increase in chromatin accessibility at upregulated peaks in the combined treat-

ment. We found that an additive model was generally highly predictive and matched the observed

increases in ATAC-seq fragment counts more accurately than the multiplicative model; the multipli-

cative model generally predicted larger changes in accessibility than we experimentally observed

(Figure 2—figure supplement 1). To quantify the degree to which the additive prediction was accu-

rate, we defined a new metric, the fold-change difference in accessibility from an additive model

prediction, hereby referred to as a peak’s ‘d’ value, to create a distribution that illustrates the extent

to which the size of a peak in the combination treatment condition deviated from additive model

predictions (Figure 2A–B). We found that at upregulated peaks, our observed distribution of d val-

ues was centered at zero, highlighting how addition appears to be the ‘default’ operation at upregu-

lated peaks (Figure 2C). This default additive behavior may correspond to a mechanistic model in

which each signal stimulates an independent set of chromatin-opening transcription factors that

independently and rarely bind DNA (Figure 2E).

Given the general accuracy of the additive model for upregulated peaks, we wondered to what

extent deviations from additive model predictions represented true deviations as opposed to just

measurement error. We produced randomly generated simulated data that matched the statistical

properties of our actual data, assuming that the combined treatment would result on average in per-

fectly additive peak sizes (see Materials and methods for details). We found that our observed data

are more widely dispersed than the simulations, indicating that a fair number of peaks are signifi-

cantly sub-additive or super-additive (Figure 2C). We found that 19% of peaks were sub-additive

and 16% of peaks were super-additive when we considered additive peaks to be those where a per-

fectly additive prediction lied within the 80% confidence interval of the measured peak fragment

counts (Figure 2D). Thus, most upregulated ATAC-seq peaks displayed additive or near-additive

combined responses, but significant fractions of peaks also displayed both sub-additive and super-

additive combined responses.
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Figure 2. Addition is the default operation at upregulated differential peaks. (A) Example tracks of ATAC-seq data. Tracks illustrate the ATAC-seq

fragment counts per million, with each value representing the average number of fragment ends per million within 75 bp of a given genomic

coordinate. Annotated peak values represent the peak integral (the total number of normalized fragment counts measured within the peak), which we

use to calculate the peak’s d value. (B) Schematic illustrating examples of two peak’s d values, where each d value represents the fold-change

difference between the measured number of ATAC-seq counts in the combination treatment and the predicted number of ATAC-seq fragment counts

when using an additive model. (C) Expected vs. observed distributions of the fold-change difference from an additive prediction for each peak. We

generated the expected distribution by simulating 10 new observations for each peak from the distributions we estimated our original upregulated

peaks to have come from, setting the mean of the combined treatment to a perfectly additive prediction (Materials and methods). (D) Classification of

ATAC-seq peaks that were upregulated individually by retinoic acid and TGF-b. We considered a given peak to be additive when the additive model

prediction lied within the 80% confidence interval of our estimated distribution of the given peak’s normalized fragment counts in the combined

treatment condition. (E) Schematic illustrating how combined binding responses may be additive when transcription factor binding is independent and

rare.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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Super-additive peaks and pairs of individual signal-dominant peaks are
more likely to be found near genes with multiplicative transcriptional
responses
We next wondered if we could uncover the patterns of cis-regulatory element activity that may dic-

tate how a gene’s regulatory behavior would encode the observed integration of the transcriptional

effects of two signals. We reasoned that the number of upregulated ATAC-seq peaks near a gene or

the manner in which the nearby peaks themselves integrated the two signals’ effects may predict

the gene’s combined transcriptional response behavior. For each transcriptionally upregulated gene,

we counted the number of sub-additive, additive, and super-additive ATAC-seq peaks within 100 kb

of its transcription start site. We found that, on average, genes that were transcriptionally additive

had 2.7x more sub-additive ATAC-seq peaks nearby than genes with multiplicative transcriptional

responses (medium dose, p=0.0012). Genes with multiplicative and super-multiplicative transcrip-

tional responses had 2.5x or 2.6x, respectively, more super-additive ATAC-seq peaks nearby than

genes with additive transcriptional responses (Figure 3A, medium dose, p=0.0016 or p=0.00016,

respectively). Genes with multiplicative transcriptional responses also had more additive ATAC-seq

peaks nearby than every other combined transcriptional response behavior at each dose we tested,

with 1.3x more additive peaks than genes with additive transcriptional responses (Figure 3A,

medium dose, p=0.12 compared to additive transcriptional responses, p=0.00089 compared to

ambiguous transcriptional responses). The most prominent effect in this analysis was the observation

that super-additive peaks are more likely to be near genes with multiplicative and super-multiplica-

tive transcriptional responses, suggesting that cooperative interactions between transcription factors

at neighboring enhancers may increase the expression of a gene when both signals are added

together, that is, the gene’s combined response factor.

When both signals affect accessibility at the same region of DNA, interactions between each sig-

nal’s induced transcription factors and associated complexes can make it difficult to discriminate

between mechanistic models of how transcription factors interact to regulate transcription. However,

if the transcription factors affected by retinoic acid or TGF-b bind to distinct regions of DNA around

the same gene, then there are likely no interactions between induced transcription factors and one

can in principle discriminate between a simple thermodynamic model (prediction: multiplicative tran-

scriptional effects) and an independent recruitment model (prediction: additive transcriptional

effects). To increase the likelihood of selecting retinoic acid and TGF-b-exclusive transcription-factor-

binding events, we searched near genes for upregulated peaks that responded exclusively to either

retinoic acid or TGF-b. (We defined ‘exclusive’ here to mean that the peak size increase for a single

signal was �90% that of the sum of the absolute peak size changes from both individual signals.

Note that to generate a sufficiently large sample, we had to allow the selected genes to have non-

exclusive peaks nearby as well because only 8.0% of gene-adjacent differential peaks met this exclu-

sivity criteria for retinoic acid and only 3.4% met this criteria for TGF-b.) We then considered how

likely genes with different combined transcriptional response behaviors were to have at least one

retinoic acid-dominant and one TGF-b-dominant peak nearby (<100 kb to the transcription start

site). We found that at each dose, genes with multiplicative transcriptional responses were the most

likely to have at least one retinoic-acid-dominant and one TGF-b-dominant upregulated peak nearby

(Figure 3B; 2.4x increase compared to genes with additive transcriptional responses at high dose,

p=0.044), suggesting that the effects of independently upregulated peaks are most likely to act

together to multiplicatively regulate transcription, which is more consistent with the predictions of

the thermodynamic model.

Figure 2 continued

Figure supplement 1. The combined response of peaks upregulated individually by retinoic acid and TGF-b is more consistent with an additive model

than a multiplicative model.
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Figure 3. Super-additive ATAC-seq peaks are enriched near genes with multiplicative and super-multiplicative

combined transcriptional responses. (A) For each type of combined gene expression response, we show the

average number of upregulated sub-additive, additive, and super-additive ATAC-seq peaks within 100 kb of the

gene’s transcription start site. (B) For each combined transcriptional response behavior, we show the percentage

of genes that have at least one peak that responds exclusively to retinoic acid and at least one peak that responds

exclusively to TGF-b (where both peaks must lie within 100 kb of the gene’s transcription start site). For an

upregulated peak to be considered a mutually exclusive response, the change in ATAC-seq fragment counts in

the individual treatment condition must be at least 9x larger in the major signal effect than the minor signal effect.

*p<0.05; **p<0.01; ***p<0.002; ****p<0.0002. All p values were calculated using Student’s t-test. All error bars

represent the 90% confidence interval estimated using 10,000 empirical bootstrap samples of the peak sets used

in each analysis.
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Motif analysis reveals that sub-additive peaks have a depletion of AP-1
and an enrichment of CTCF motifs while super-additive peaks have an
enrichment of SMAD motifs
We next wondered if the activity of particular transcription factors was associated with combined

increases in chromatin accessibility that were either sub-additive, additive, or super-additive. To

approach this question, we first identified a set of the 50 transcription factors with the largest pre-

dicted changes in activity in our full set of differential peaks using the chromVAR package and its

associated curated cisBP database of transcription factor motifs (Schep et al., 2017). These factors

included the canonical retinoic acid and TGF-b effectors RARA, SMAD3, SMAD4, and SMAD9, as

well as forkhead box factors and ETS family factors (enriched in the retinoic acid condition), AP-1 fac-

tors (enriched in the TGF-b condition), and HOX and NF-kb factors (enriched in both the retinoic

acid and TGF-b conditions). We manually added the CTCF motif to this set of enriched motifs to see

if putative insulators behaved differently than other cis-regulatory elements. For each of these tran-

scription factors, we calculated a motif enrichment score in each condition (based on the bias-uncor-

rected deviation score from chromVAR) that represents the percentage change in ATAC-seq

fragment counts in all peaks that contain the given transcription factor’s motif (Figure 4A). For

example, the motif enrichment score of 0.19 for RARA in the retinoic acid condition means that

peaks containing RARA motifs saw an average increase of 19% in ATAC-seq fragment counts after

retinoic acid treatment (note that to decrease the variability of motif enrichment score estimates, we

pooled together the low, medium, and high doses for each condition). Retinoic acid and TGF-b

treatment thus led to activation of both distinct and shared transcription factor families, with combi-

nation treatment showing similar activation of distinct factors and higher activation of shared factors

(Figure 4A).

We then tested if any of the transcription factor motifs we identified were more enriched in sub-

additive or super-additive peaks compared to additive peaks. Because sub-additive peaks were on

average 8% narrower and super-additive peaks were on average 36% wider than additive peaks

(Figure 4B), we compared the number of motif matches found per 150 bp of each peak type. When

compared to additive peaks, sub-additive peaks showed 21% fewer total motif matches per 150 bp

in our set of enriched motifs (p=6.6e�14) and 7% fewer total motif matches per 150 bp when using

the entire cisBP database (p=1.5e�8), suggesting that sub-additive peaks are slightly depleted for

motifs overall while being even more depleted for the motifs in our enriched set (Figure 4C). Sub-

additive peaks were especially depleted for SMARCC1 motifs (0.6x the motif density of additive

peaks, p=1.2e�15) as well as AP-1 subunit motifs such as JUN (0.6x density, p=3.4e�13) and FOS

(0.6x density, p=6.2e�13; Figure 4E). Sub-additive peaks did, however, show a strong enrichment of

CTCF motifs, with 1.6x and 3.2x more motif matches per 150 bp than in additive and super-additive

peaks, respectively (p=2.9e�11 and p<2.2e�16, respectively; Figure 4E), suggesting that insulator

proteins like CTCF may attenuate the combined activity of signal-induced transcription factors or the

chromatin remodeling complexes they may recruit.

Super-additive peaks generally had the same motif densities as additive peaks, with the exception

of an increase in the density of SMAD motifs (1.8x, 1.4x, and 1.5x increase of SMAD3, SMAD4, and

SMAD9 motif density compared to additive peaks; p=4.4e-4, p=8.5e�5, p=1.5e�5) and a depletion

of several ETS family factors (0.6x the motif density of additive peaks for ELF1, p=0.048; Figure 4E).

The higher frequency of SMAD motifs in super-additive peaks suggests that SMAD transcription fac-

tors may interact with retinoic-acid-induced chromatin remodeling factors or retinoic-acid-induced

transcription factors.

We next wondered how strong of an effect each motif had on its ‘host’ peak’s tendency to have a

super- or sub-additive combined response. To estimate this effect, we took each motif, found all

peaks that contained that motif that were upregulated by both TGF-b and retinoic acid individually,

and computed the deviation from the additive prediction (d value) (Figure 4F). Here, we found that

the presence of SMAD or NF-kb motifs resulted in the largest increases in a peak’s tendency to be

super-additive, possibly suggesting that SMAD proteins have one of the most potent interactions

with a retinoic-acid-induced transcription factor or chromatin remodeling complex in our system.

Note that since we observed that both retinoic acid and TGF-b led to increases in NF-kb factor activ-

ity (Figure 4A), the increase in d value associated with NF-kb motifs’ could reflect synergistic

Sanford et al. eLife 2020;9:e59388. DOI: https://doi.org/10.7554/eLife.59388 11 of 25

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.59388


p
e

rc
e

n
t 

c
h

a
n

g
e

 f
ro

m
 c

o
n

tr
o

l 
in

 A
T
A

C
-s

e
q

 f
ra

g
m

e
n

t 
c
o

u
n

ts

a
t 

th
e

 s
e

t 
o

f 
p

e
a

k
s
 t

h
a

t 
c
o

n
ta

in
 a

 s
p

e
c
if
ic

 m
o

ti
f 

m
a

tc
h

retinoic acid treatment

R
A

R
A

S
M

A
D

3

S
M

A
D

4

S
M

A
D

9

J
U

N

J
U

N
B

J
U

N
D

J
D

P
2

F
O

S

F
O

S
B

F
O

S
L

1

F
O

S
L

2

B
A

C
H

1

B
A

C
H

2

B
A

T
F

F
O

X
A

1

F
O

X
A

2

F
O

X
A

3

F
O

X
C

2

F
O

X
D

3

H
O

X
A

1
3

H
O

X
B

1
3

H
O

X
C

1
0

H
O

X
C

1
2

H
O

X
C

1
3

H
O

X
D

1
3

N
F

K
B

1

R
E

L

R
E

L
A

C
D

X
1

C
D

X
2

C
T

C
F

N
F

E
2

N
F

E
2

L
2

M
A

F
F

M
A

F
K

B
C

L
1
1

A

B
C

L
1
1

B

G
R

H
L

1

S
P

I1

S
P

IB

S
P

IC

E
H

F

E
L

F
1

E
L

F
2

E
L

F
3

E
L

F
4

E
L

F
5

E
L

K
4

E
T

S
2

S
M

A
R

C
C

1

AP-1 subunits forkhead box ETS familyHox genes

AP-1 subunits forkhead box ETS familyHox genes

AP-1 subunits forkhead box ETS familyHox genes

m
e

d
ia

n
 d

 v
a

lu
e

 a
t

m
o

ti
f-

c
o

n
ta

in
in

g
 p

e
a

k
s

R
A

R
A

S
M

A
D

3

S
M

A
D

4

S
M

A
D

9

J
U

N

J
U

N
B

J
U

N
D

J
D

P
2

F
O

S

F
O

S
B

F
O

S
L

1

F
O

S
L

2

B
A

C
H

1

B
A

C
H

2

B
A

T
F

F
O

X
A

1

F
O

X
A

2

F
O

X
A

3

F
O

X
C

2

F
O

X
D

3

H
O

X
A

1
3

H
O

X
B

1
3

H
O

X
C

1
0

H
O

X
C

1
2

H
O

X
C

1
3

H
O

X
D

1
3

N
F

K
B

1

R
E

L

R
E

L
A

C
D

X
1

C
D

X
2

C
T

C
F

N
F

E
2

N
F

E
2

L
2

M
A

F
F

M
A

F
K

B
C

L
1
1

A

B
C

L
1
1

B

G
R

H
L

1

S
P

I1

S
P

IB

S
P

IC

E
H

F

E
L

F
1

E
L

F
2

E
L

F
3

E
L

F
4

E
L

F
5

E
L

K
4

E
T

S
2

S
M

A
R

C
C

1

n
u

m
b

e
r 

o
f 

m
o

ti
f 

m
a

tc
h

e
s

p
e

r 
1

5
0

 b
p

 o
f 

s
e

q
u

e
n

c
e

0

0.2

0

0.2

0.1

R
A

R
A

S
M

A
D

3

S
M

A
D

4

S
M

A
D

9

J
U

N

J
U

N
B

J
U

N
D

J
D

P
2

F
O

S

F
O

S
B

F
O

S
L

1

F
O

S
L

2

B
A

C
H

1

B
A

C
H

2

B
A

T
F

F
O

X
A

1

F
O

X
A

2

F
O

X
A

3

F
O

X
C

2

F
O

X
D

3

H
O

X
A

1
3

H
O

X
B

1
3

H
O

X
C

1
0

H
O

X
C

1
2

H
O

X
C

1
3

H
O

X
D

1
3

N
F

K
B

1

R
E

L

R
E

L
A

C
D

X
1

C
D

X
2

C
T

C
F

N
F

E
2

N
F

E
2

L
2

M
A

F
F

M
A

F
K

B
C

L
1
1

A

B
C

L
1
1

B

G
R

H
L

1

S
P

I1

S
P

IB

S
P

IC

E
H

F

E
L

F
1

E
L

F
2

E
L

F
3

E
L

F
4

E
L

F
5

E
L

K
4

E
T

S
2

S
M

A
R

C
C

1

retinoic acid receptor alpha

0%

50%

0%

50%

0%

50%

median d value in set of upregulated peaks containing a given motif (medium dose)

additive peaks
sub-additive peaks

super-additive peaks

su
b-

ad
di

tiv
e 

pe
ak

s

ad
di

tiv
e 

pe
ak

s

su
pe

r-a
dd

iti
ve

 p
ea

ks

average peak width

by type of upregulated peak

0

200

400

su
b-

ad
di

tiv
e 

pe
ak

s

ad
di

tiv
e 

pe
ak

s

su
pe

r-a
dd

iti
ve

 p
ea

ks

su
b-

ad
di

tiv
e 

pe
ak

s

ad
di

tiv
e 

pe
ak

s

su
pe

r-a
dd

iti
ve

 p
ea

ks

average motif density by type of upregulated peak

all enriched motifs all cisBP database motifs

a
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 

m
o

ti
f 

m
a

tc
h

e
s
 p

e
r 

1
5

0
 b

p
 

o
f 

s
e

q
u

e
n

c
e

0

200

400

a
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 

m
o

ti
f 

m
a

tc
h

e
s
 p

e
r 

1
5

0
 b

p
 

o
f 

s
e

q
u

e
n

c
e

0

10

20

0%

20%

40%

p
e

rc
e

n
t 

o
f 

p
e

a
k
s
 w

it
h

 a
 R

A
-d

o
m

in
a

n
t

m
o

ti
f 

a
n

d
 a

 T
G

F
-

-d
o

m
in

a
n

t 
m

o
ti
f

su
b-

ad
di

tiv
e 

pe
ak

s

ad
di

tiv
e 

pe
ak

s

su
pe

r-a
dd

iti
ve

 p
ea

ks

frequency of dual-motif matches

by type of upregulated peak

expected percentage
measured percentage

motif locations
SMAD3 FOXA1 JUNRARA SMAD3 FOXA1

ATAC-seq signal
ethanol control

retinoic acid

TGF-

retinoic acid and TGF-

average density of specific motifs by type of upregulated peak

combination treatment
additive prediction

peak set all dual-upregulated peaks

(N = 8,288

peaks with SMAD3 motifs peaks with ETS2 motifs peaks with CTCF motifs

median d value 0.004 0.25 0.007 -0.09

27%

lower

21%

lower

10%

lower

 A

 E

 B  C

 F

 D

Figure 4. Sub-additive peaks are depleted for AP-1 motifs, enriched for CTCF motifs, while super-additive peaks are enriched for SMAD motifs. (A)

Motif enrichment analysis in each condition for the top 50 most variable transcription factor motifs identified by chromVAR. (CTCF was manually added

to this set, making the total 51). Y-axis represents the percentage change in ATAC-seq signal at motif-containing peaks compared to ethanol control

samples. For each condition, we pooled together the replicates for each of the three dosages, resulting in nine replicates each for retinoic acid, TGF-b,

Figure 4 continued on next page
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activation of NF-kb factors rather than cooperative interactions between NF-kb factors and other

induced transcription or chromatin remodeling factors.

We hypothesized that cooperative interactions between transcription factors may lead to super-

additive increases in chromatin accessibility. To evaluate if our data supported this hypothesis, we

tested if super-additive peaks were more likely to have both a retinoic-acid-enriched motif and a

TGF-b-enriched motif. We defined retinoic acid-enriched factors to be retinoic acid receptor, FOX,

and ETS-family factors, and we defined TGF-b-enriched motifs to be SMAD, AP-1, BACH, BATF,

SMARCC1, NFE2, NFE2L2, MAFF, and MAFK factors. We found that all categories of peaks (includ-

ing super-additive) were less likely to have dual-motifs than expected based on a null distribution we

generated by randomly shuffling motif matches across peaks (Figure 4D, p<0.001 for sub-additive,

additive, and super-additive peaks, see Materials and methods for null distribution details. The

higher expected rates of dual motif matches may be explained by the fact that binding sites for the

same transcription factor are often found in clusters Gotea et al., 2010; the motif shuffling process

disperses these binding sites more evenly). Super-additive peaks were closer to their higher

expected rate than sub-additive and additive peaks (with super-additive, additive, and sub-additive

peaks having dual-motif match rates that were 10%, 21%, and 27% lower than expected, respec-

tively). While the effect is modest, the relatively higher rate of dual-motif matches in super-additive

peaks provides some support for the idea that peak super-additivity may result from cooperative

interactions between retinoic acid and TGF-b transcriptional effectors.

Discussion
Here, we have asked how cells respond transcriptionally to combinations of signals. In principle, the

transcriptional response to such combinations could range over a spectrum of different possibilities,

and the mechanistically motivated ‘additive’ and ‘multiplicative’ modes need not be favored. We

were thus surprised to see that combined responses did seem to favor the simple additive and multi-

plicative phenomenological models.

Additive and multiplicative outcomes need not in principle be favored in any way. Mechanistic

models of transcriptional regulation, in particular kinetic models, can yield a range of phenomeno-

logical predictions, spanning these two possibilities and more (Scholes et al., 2017). The primary

reason behind the popularity of the independent recruitment model (which predicts additive behav-

ior) and the thermodynamic model (which predicts multiplicative behavior) is their simplicity, hence

our surprise. It is of course important to realize that just because the predictions of a particular

mechanistic model match these experimental outcomes does not mean that there are not other

models that may also match our experimental findings. Indeed, these simple models, which inher-

ently posit that regulation acts via a single rate-limiting step, are incompatible with recent results

demonstrating that regulation can act via multiple steps, and also typically have not been applied to

complex regulatory mechanisms that involve long-range promoter-enhancer contacts

(Bartman et al., 2019; Blau et al., 1996; Fuda et al., 2009; Nechaev and Adelman, 2011;

Stampfel et al., 2015). Further combined theoretical and experimental work would be required to

Figure 4 continued

and combination treatment. (B) Average peak width of peaks upregulated individually by retinoic acid and TGF-b by type of combined response. (C)

Average motif density in each type of peak upregulated individually by retinoic acid and TGF-b, using the enriched motif set and the full cisBP

database. (D) Expected vs. measured percentage of dual-motif matches (one retinoic-acid-dominant motif and one TGF-b dominant motif) for each

type of upregulated peak. We calculated the expected percentage by randomly shuffling motif matches within each peak set (see methods for details).

Error bars represent the 5th and 95th percentile of the null distribution for expected percentages and the 90% bootstrapped confidence interval for

measured percentages. (E) Motif density by type of upregulated peak for each motif in our enriched set. (F) For a given enriched motif, the median d

value at medium dose for all upregulated peaks that contain the motif (higher d values indicate more super-additivity in peaks containing a given motif;

the median d value for all upregulated peaks was 0.004). All error bars (except for the error bars for expected percentages in D) represent the 90%

confidence interval estimated using 1000 empirical bootstrap samples of the peak sets used in each analysis.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Canonical retinoic acid and TGF-b signaling motifs (RARA, SMAD3, SMAD4, SMAD9) are enriched in their respective signal

treatment conditions.
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determine the experimental signatures beyond simple additivity or multiplicativity that could distin-

guish such models from each other.

Although they were the minority of cases, we did observe a large number of sub-additive and

super-multiplicative combined responses. Super-multiplicative combined responses may reflect

cooperative interactions between retinoic acid and TGF-b-induced factors, in which binding of a reti-

noic acid factor to DNA strengthens the binding of a TGF-b factor to nearby DNA or vice versa. This

type of interaction is consistent with our finding that super-multiplicative gene expression responses

are associated with nearby super-additive ATAC-seq peaks (on the assumption that super-additivity

of ATAC-seq peaks reflects cooperative binding of transcription factors to DNA) (Figure 3A). How-

ever, given that ATAC-seq peaks likely have additional routes to super-additive increases in accessi-

bility (perhaps involving chromatin remodeling factors affected by our signals), further work would

be needed to demonstrate that super-multiplicative transcriptional responses are indeed a result of

direct binding interactions at enhancers. Sub-additive transcriptional responses have been proposed

to reflect saturation of cis-regulatory elements (Bothma et al., 2015; Scholes et al., 2019). Satu-

rated cis-regulatory elements would in principle show up as sub-additive ATAC-seq peaks in our

analysis, but we did not observe an increase in sub-additive peaks near genes with sub-additive com-

bined responses (with the exception of a small increase at high dose; Figure 3A). This lack of associ-

ation suggests that saturation of DNA binding sites may not be sufficient to explain sub-additive

combined transcriptional responses; instead, the sub-additive behavior may be a property specifi-

cally encoded through the interactions between regulatory factors. It could also be that chromatin

accessibility does not quantitatively reflect saturating transcription factor binding.

Our combined transcriptional responses were measured using bulk RNA-sequencing, which aver-

ages the transcriptional effects of retinoic acid and TGF-b across millions of cells. Heterogeneity in

the response of individual cells could mean that what we observed, for instance, as a multiplicative

transcriptional response at the population level is actually a mixture of sub and super-multiplicative

transcriptional responses at the single-cell level. Future studies might combine microfluidic delivery

of cell signals with live imaging of transcription to measure the response to both individual and com-

bined signal treatments in the same single cells, thereby revealing the extent to which the combined

response factor for a given gene displays cell-to-cell heterogeneity (Zhang et al., 2019). High

amounts of heterogeneity could suggest a need for even greater flexibility in biophysical models of

combined transcriptional responses.

In our dataset, the combined response factor remained largely constant over a range of doses.

This constancy suggests that whatever the functional interaction is between the factors responsible

for the particular mode of combined response, that interaction is quantitatively maintained through

doses (with some evidence for saturation at high dose). Such behavior may constrain potential mod-

els for interactions, because in principle the interactions could be highly dose dependent. Another

open question is whether the mode of combined response for a particular gene depends on the par-

ticular signals applied or contextual factors that may vary between cell lines. Further studies may

reveal these dependencies.

Another interesting feature of our data was the general lack of strong correspondence between

changes in chromatin accessibility and changes in transcriptional output. While we were able to iden-

tify some trends, we could not find any strict rules for e.g. what transcription factors associated with

what types of combined responses. We found this lack of correspondence surprising, given that tran-

scription factors are the dominant form of transcriptional regulation. There are many potential

explanations for this observation. One is that the degree of chromatin accessibility is not as corre-

lated with aggregate transcription factor occupancy levels as we expected. For instance, it may be

that accessibility may only change for some types of transcription factor-DNA interactions and not

others. Another possibility is that our analysis does not take into account precisely which peaks near

a given gene correspond to regulatory elements and which ones do not. This mapping remains

largely unknown, although information about what pieces of chromatin spatially contact which other

ones may help narrow down the choices (Fulco et al., 2019; Jin et al., 2013; Rao et al., 2014;

Ruf et al., 2011). Finally, it is also simply possible that the rules governing transcriptional output are

highly complex and thus not straightforward to discern from the analyses we performed. In particu-

lar, it could be that the genome sequence itself is simply too limited to provide enough sampling of

the possible configuration space of transcription-factor-binding motifs to extract rules. The use of
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massively parallel reporter assays (Kwasnieski et al., 2014; Patwardhan et al., 2012) or similar syn-

thetic approaches (Bogard et al., 2019; Rosenberg et al., 2015) may help reveal such rules.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) MCF-7 (breast carcinoma) ATCC ATCC HTB-22,
(lot 64125078),
RRID:CVCL_0031

Peptide, recombinant
protein

TGF-b Sigma Cat# T7039

Chemical compound,
drug

All trans retinoic acid Sigma Cat # R2625

Other Charcoal- stripped FBS Gemini Cat # 100–119

Commercial assay or kit miRNeasy RNA extraction kit Qiagen Cat # 217004

Commercial assay or kit NEBNext Poly(A) mRNA
Magnetic Isolation Module

New England Biolabs Cat # E7490

Commercial assay or kit NEBNext Ultra II RNA Library
Prep Kit for Illumina

New England Biolabs Cat # E7770

Sequence-based
reagent

NEBNext Multiplex Oligos
for Illumina

New England Biolabs Cat # E7600

Commercial assay or kit Tagment DNA Enzyme
and Buffer

Illumina Cat # 20034197

Sequence-based
reagent

ATAC-seq indices
(custom oligos)

Integrated DNA Technologies See (Buenrostro et al., 2013)
for custom index sequences

Antibody Anti-RARA
(Rabbit polyclonal)

Sigma Cat # HPA058282,
RRID:AB_2683666

1:200 dilution

Antibody Anti- pSMAD2
(Rabbit monoclonal)

Cell Signaling Technology Cat # 18338T,
RRID:AB_2798798

1:800 dilution

Antibody Anti-rabbit IgG, Alexa
Fluor 647 (Goat polyclonal)

Thermo Fisher Scientific Cat # A-21244,
RRID:AB_2535812

1:1000 dilution

Cell culture and signal delivery
We acquired one vial of MCF-7 cells from ATCC (lot 64125078), which we expanded in DMEM/F12

with 5% FBS and 1% penicillin/streptomycin. Prior to adding retinoic acid and TGF-b, the cells expe-

rienced a total of 13 passages and 1 freeze/thaw cycle. Because normal FBS can have significant

amounts of retinoic acid (Napoli, 1986), we cultured the cells in a modified medium containing char-

coal-stripped FBS, with each batch consisting of 50 ml charcoal-stripped FBS (Gemini, 100–119), 5

ml penicillin/streptomycin (Invitrogen, 15140–122), and 500 ml DMEM/F12 (Gibco, 10565018). We

grew the MCF-7 cells in this charcoal-stripped FBS-containing medium for a total of 70 or 71 days

prior to treating them with retinoic acid and TGF-b. Our MCF-7 cells were negative for mycoplasma

contamination after all RNA and ATAC sequencing experiments, and we validated our MCF-7 cells’

identity using ATCC’s human STR profiling cell authentication service.

For our dose-response experiment, we split two ~ 80% confluent 10 cm dishes equally into 12 dif-

ferent 10 cm dishes, and waited 24 hr prior to adding media containing retinoic acid (Sigma, R2625),

TGF-b (Sigma, T7039), or both signals. Because the cells grew faster when exposed to retinoic acid

and slower when exposed to TGF-b, we included two additional control conditions that had 50%

and 150% of the starting cell density to test for potential cell-density effects (these additional condi-

tions covered the range of cell-densities seen at the endpoint of our experiments). We treated cells

for 72 hr in three doses of retinoic acid (50 nM, 200 nM, and 400 nM), TGF-b (1.25 ng/ml, 5 ng/ml,

10 ng/ml), or both signals (50 nM retinoic acid + 1.25 ng/ml TGF-b, 200 nM RA + 5 ng/ml TGF-b,

400 nM RA + 10 ng/ml TGF-b). The medium dose we chose for TGF-b, 5 ng/ml, is used in several

studies of MCF-7 cells (Mahdi et al., 2015; Noman et al., 2017; Tian and Schiemann, 2017), and
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the medium dose we used for retinoic acid, 200 nM, is between the 100 nM dose used in Hua et al.,

2009 and the 1 uM dose used in Cunliffe et al., 2003. All conditions had the same 0.0125% concen-

tration of ethanol. At 72 hr, we then trypsinized the cells in each well, removing 50,000 of them for

immediate ATAC-seq library preparation and lysing the rest of them in Qiazol (storing immediately

at �80˚C) for subsequent RNA extraction and bulk RNA-seq library preparation.

Immunofluorescence experiments and imaging
For immunofluorescence experiments, we seeded eight-well glass chambers (Lab-tek 12-565-470)

with hormone-starved MCF-7 cells for 24 hr before treating the cells with the medium dose of TGF-b

(5 ng/ml), retinoic acid (200 nM), or vehicle (0.0125% ethanol). Following treatment, we fixed cells

for 12 min in 3.7% formaldehyde (Sigma F1635) diluted in 1x PBS. We stored samples at 4C in 1x

PBS, then performed the immunofluorescence protocol exactly as described by Cell Signaling Tech-

nology, using a dilution of 1:800 for the primary anti-pSMAD2 antibody (Cell Signaling Technology

18338T), 1:200 for the primary anti-RARA antibody (Sigma HPA058282), and 1:1000 for the goat

anti-rabbit secondary antibody conjugated with Alexa Fluor 647 (Thermo Fisher Scientific A-21244).

In brief, we blocked samples with 5% goat serum for 60 min, incubated with primary antibody over-

night at 4C, washed three times with 1X PBS for 10 min each, incubated with secondary antibody at

room temperature for 90 min in the dark, then washed the cells another three times in 1X PBS. We

stained cellular nuclei with DAPI prior to imaging. We imaged the cells with an inverted Nikon TI-E

microscope with a 20x Plan-Apo l (Nikon MRD00205) objective and with DAPI and Atto647N filter

sets. We collected all images at 20x magnification.

Immunofluorescence image analysis
To quantify the nuclear pSMAD2 and RARA signal in our immunofluorescence experiments, we

developed a custom image analysis pipeline in Python that was centered around the usage of Cell-

pose (Stringer et al., 2020) to detect the nuclear boundaries of each cell. We first used the DAPI

channel to manually select three to six high-quality images per condition. High-quality images had

minimal stacking of cells, little correlation between DAPI and immunofluorescence signal, and had

well-focused nuclei throughout the image. We then used the DAPI channel images as input to Cell-

pose, with an expected diameter parameter of 32 pixels. Using Cellpose’s identified nuclear bound-

aries, we then calculated the average intensity inside each nucleus using the corresponding

immunofluorescence channel (pSMAD2 or RARA). To correct for differences in background, we then

subtracted the average intensity of the annulus surrounding each nucleus in each image, using a

disc-shaped structured element, the SciPy binary_dilation function, and the nuclear mask matrix

defined by Cellpose to generate the surrounding annulus for each nucleus. We then used this nor-

malized nuclear intensity value for comparing the pSMAD2 and RARA levels between each

condition.

RNA extraction, library preparation, and sequencing
We extracted RNA from previously frozen MCF-7 cell Qiazol lysates using the Qiagen miRNeasy kit

(217004). We then used the NEBNext Ultra II RNA Library Prep Kit for Illumina (E7770) with the NEB-

Next Poly(A) mRNA Magnetic Isolation Module (E7490) and NEBNext Multiplex Oligos for Illumina

(E7600) to prepare individual libraries. We then pooled our three replicates’ libraries together and

performed paired-end sequencing on an Illumina NextSeq 500, using a 75-cycle NextSeq 500/550

High Output Kit v2.5 (20024906), yielding ~15 million read pairs per sample.

RNA-sequencing analysis pipeline
We aligned reads to the hg38 assembly using STAR v2.7.1a and counted uniquely mapped reads

with HTSeq v0.6.1 and the hg38 GTF file from Ensembl (release 90). We performed differential

expression analysis using DESeq2 v1.22.2 (Love et al., 2014) in R 3.5.1, using a minimum absolute-

value log-fold-change of 0.5 and a q value of 0.05. For genes with multiple possible transcription

start sites, we used the genomic coordinates of the ‘canonical’ transcription start site available in the

knownCanonical table from GENCODE v29 in the UCSC Table Browser.
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ATAC library preparation and sequencing
At the endpoint of each cell condition, we immediately performed the Omni-ATAC protocol

(Corces et al., 2017) on 50,000 live MCF-7 cells, using Illumina Tagment DNA Enzyme TDE1

(20034197) at the tagmentation step and double-sided bead purification at the endpoint with Agen-

court AMPure XP magnetic beads (A63880). The exact protocol we used is available in the protocols

folder at https://github.com/emsanford/combined_responses_paper (Sanford, 2020a; copy archived

at swh:1:rev:e25f3d9eefd72ac1ab2885d9b0f3ad0c3cf0b3b8). We then performed paired-end

sequencing using one 75-cycle NextSeq 500/550 High Output Kit v2.5 (20024906) for each replicate,

yielding ~42 million read pairs per sample.

ATAC-sequencing analysis
We created a paired-end read analysis pipeline using the ENCODE ATAC-seq v1 pipeline specifica-

tions. Briefly, we aligned our ATAC-seq reads to the hg38 assembly using bowtie2 v2.3.4.1, filtered

out low-quality alignments with samtools v1.1, removed duplicate read pairs with picard 1.96, and

generated artificial single-ended text-based alignment files containing inferred Tn5 insertion points

with custom Python scripts and bedtools v2.25.0. To call peaks, we used MACS2 2.1.1.20160309

with the command, ‘macs2 callpeak –nomodel –nolambda –keep-dup all –call-summitsX-B –

SPMR –formatXBED -q 0.05 –shiftX75 –extsize 150’. While we created this pipeline for use on

the Penn Medicine Academic Computing Services’ high performance cluster, it is also publicly avail-

able at github.com/arjunrajlaboratory/atac-seq_pipeline_paired-end (Sanford, 2020b; copy archived

at swh:1:rev:c4c819e3ad5828b953fbd2ec05163e590518ae4b). Our pipeline generates a series of

post-sequencing quality control metrics, which we have provided in Supplementary file 1.

Since we had three biological replicates per ATAC-seq condition, we used an established ‘major-

ity rule’ to retain only the peak summits that were found in at least two replicates (Yang et al.,

2014) (we used a peak size of 150 bp, centered on MACS2 summit locations, to mimic the span of

one nucleosome). Using these condition-specific peak files, we then used bedtools to create one

‘master consensus peak file’ by merging each condition’s peak summit file together in a manner that

disallowed overlapping peaks. We then used the number of ATAC-seq fragment counts at each

peak in this master consensus peak file for differential peak analysis.

We wrote a custom peak analysis algorithm that took advantage of our additional ethanol control

conditions to estimate a false discovery rate for differential peak identification. In this algorithm, we

first count the number of ATAC-seq reads at each peak in the master consensus peak file. We then

normalize the fragment counts at each peak to correct for differences in total sequencing depth. In

this normalization step, we divide the number of reads in peaks for a given sample by
sample0s total number of reads in peaks

average number of reads in peaks across all samples
. Then, for each condition, we calculate the average number of

normalized read counts at each peak. Following this, we fill in an estimated false discovery rate in

each cell of a 50 � 50 grid containing 50 exponentially-spaced steps of minimum fold-change values

(ranging from 1.1 to 10) and 50 exponentially-spaced steps of minimum number of normalized frag-

ment counts in the condition with the larger number of counts (ranging from 10 to 237). To calculate

the estimated false discovery rate, we counted the number of differential peaks between signal-

treated conditions and the normal density ethanol control as well as the number of differential peaks

between additional ethanol controls (50% and 150% starting cell density) and the normal density

ethanol control. We then used the average number of differential peaks in the additional controls to

estimate the number of false positive peaks per experimental condition, then calculated the final

estimated false discovery rate (FDR) for a given parameter pair using the following formula:

estimated FDR ¼
number of conditionsð Þ estimated number of false positive peaks per conditionð Þ

total number of differential peaks in experimental conditions

After calculating the estimated FDR for each cell of the 50 � 50 grid, we then pooled together

the differential peaks contained in any cell containing an FDR less than 0.25%. After pooling

together the peaks in each of these cells and counting the number of differential peaks in the signal-

treated conditions and additional controls, the combined estimated FDR was 0.65%. We then

noticed that our original peak set’s fixed nucleosomal peak size of 150 bp led to many genomic

regions containing several adjacent peaks that appeared to form a single, larger peak. Because of

this, we merged our peaks together when they were within 250 base pairs of each other, then we
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performed a second round of the same differential peak calling algorithm on the merged peaks,

requiring a minimum fold change of 1.5 and a minimum normalized fragment count value of 30. In

this final peak set, there are a total of 34,323 differential peaks, with a pooled estimated false dis-

covery rate of 0.43%.

We performed motif analysis on our set of differential peaks using chromVAR v1.5.0

(Schep et al., 2017), its associated curated cisBP database of transcription factor motifs, and the

motifmatchR Bioconductor package. We treated each replicate as one sample for a given condition,

and we pooled together the different dosages of the same signal(s) to decrease the variance of the

transcription factor motif deviation scores for retinoic acid, TGF-b, and combined treatment. We

slightly modified the chromVAR code to extract an internal metric that equals the fractional change

in fragment counts at motif-containing peaks for a given motif.

Statistical model for categorical classification of combined responses
For a given gene in a given experimental condition, we assumed that its transcripts per million (TPM)

value for one replicate was drawn from a Gaussian distribution. We estimated the parameters of

these Gaussian distributions to create an 80% confidence interval for which to compare additive and

multiplicative predictions. For each dosage of the combination treatment, we classified a gene as

sub-additive if the additive and multiplicative predictions were higher than the 80% confidence inter-

val, additive if only the additive prediction laid in the confidence interval, multiplicative if only the

multiplicative prediction laid in the interval, super-multiplicative if both additive and multiplicative

predictions were below the confidence interval, and ambiguous if both the additive and the multipli-

cative prediction laid within the interval.

To estimate the mean expression value of a gene in an experimental condition (e.g. 200 nM reti-

noic acid), we simply calculated the average TPM value across the three replicates. To improve our

variance estimates, we took advantage of an observation we made during extensive manual review

that the coefficient of variation (CV) appeared to be the same between each dosage we tested for

retinoic acid, TGF-b, and combined treatment (Figure 1—figure supplement 1E–F). We then

assumed that each dosage of a condition shared one CV term, which we calculated by averaging

each dose’s CV estimate using the unbiased estimator:

CV gene; signal; dosageð Þ ¼ 1 þ
1

4n

� �

s

�x

CV gene; signalð Þ ¼
1

m

X

m

1

CV gene; signal; dosagemð Þ

where n is the number of replicates (three in our case), s is the sample standard deviation, and x is

the mean of the measured TPM values, and m is the number of doses tested (three in our case).

Finally, we used this averaged CV estimate to estimate a variance parameter for the Gaussian distri-

bution we assumed to underlie the TPM values for a given gene and signal. For a given gene, dos-

age, and signal, our final estimated Gaussian distribution was:

TPM gene; signal; dosageð Þ ~Gaussian xgene;signal;dosage ; xgene;signal;dosage � CV gene; signalð Þ
� �2

� �

Where xgene;signal;dosage is the measured average TPM value for a given gene exposed to a specific

dose of retinoic acid, TGF-b, or combination treatment. The benefit of using our shared CV term

across dosages was to move from using the information from three samples to using the information

from nine samples when estimating the variances of these distributions.

To classify ATAC-seq peaks as sub-additive, additive, or super-additive, we used the same

approach described above for RNA-seq TPM values, but with a given peak’s normalized fragment

count value. We then classified peaks as sub-additive or super-additive if the additive prediction was

higher than or lower than (respectively) the estimated Gaussian distribution’s 80% confidence

interval.
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Statistical model for simulated additive and multiplicative predictions
To simulate new ATAC-seq and RNA-seq measurements, for each gene and condition we randomly

sampled three new observations from a folded Gaussian distribution (folded to avoid negative

expression or normalized fragment count values) with the parameters we previously estimated for

the purpose of categorically classifying combined response behaviors. For the combined treatment,

we set the mean of the distribution to be either a perfectly additive or perfectly multiplicative pre-

diction. We then calculated the average of the three new simulated observations and used these

average values to determine a gene’s c value at a given dose or an ATAC-seq peak’s d-value at a

given dose. Using this process, we calculated 250 simulated c values for each dose of each upregu-

lated gene in our master set and 10 simulated d values for each ATAC-seq peak that was upregu-

lated individually by retinoic acid and TGF-b. In the simulated data mixture model where genes can

be strictly additive or multiplicative, at each we randomly assigned a gene to be additive or multipli-

cative based on the ratio of the dose-specific frequencies we observed in the categorical classifica-

tion of the combined response.

Use of simulated data to infer the location of a secondary peak in the
observed combined response factor (c value) histogram
To generate a hypothetical plot of observed c values in which the primary peak of additive responses

centered at c = 0 was depleted, we subtracted the additive component of a c value histogram gen-

erated by simulated data. These simulated c values were generated using gene and condition-spe-

cific Gaussian distributions in a process outlined above and in Figure 1—figure supplement 1. At

each dose, we simulated data as a mixture of additive and multiplicative combined responses, set-

ting the exact proportion of simulated additive versus multiplicative combined responses based on

the ratio of additive to multiplicative combined transcriptional responses seen at each dose of the

observed data (Figure 1E; Figure 1—figure supplement 1B). We then scaled the size of this ‘mixed’

simulated c value distribution to the peak heights at c = 0 and c = 1 in the observed c value histo-

gram by minimizing the squared distance between the simulated and observed histogram bars

directly abutting c = 0 and c = 1 (4 histogram bars total). We then subtracted the additive compo-

nent of the simulated c value distribution and locally (in the range of c = �4 to c = 5) fit a Gaussian

density function to the residual histogram using the nls function in R.

We also estimated the probability of obtaining the number of combined transcriptional responses

in each bin of our observed c value histogram if all combined responses were additive. To do this,

we scaled the peak height of our observed data at c = 0 to the peak height of an additively simu-

lated distribution of c values. We then repeatedly (1000 times) ran new simulations of additive com-

bined responses, simulating one observation per gene in our master set of 1384 genes. We used a

bin width of 0.25 and allowed for overlapping bins. Because the probability of obtaining the

observed number of counts was extremely low for many bins and because the variability in the num-

ber of observations in a given bin was well described by a Poisson distribution (outside the range of

�0.3 < c < 0.3), we used a Poisson cumulative density function to estimate the probability of wit-

nessing the number of observed counts (or greater) in each c value bin of the simulated additive

data.

Generating a null distribution for dual-motif matches
To generate a null distribution for dual-motif matches, we first separated our set of upregulated

peaks into sub-additive, additive, and super-additive peaks. Within these peak subsets, we counted

the number of retinoic acid-dominant (FOX, and ETS-family factors), TGF-b-dominant (SMAD, AP-1,

BACH, BATF, SMARCC1, NFE2, NFE2L2, MAFF, and MAFK), and neither-signal-dominant (HOX,

NFKB, CDX, CTCF, BCL, and GRHL1) motifs at each peak. Due to similar features of their position-

weight matrices, we avoided over-counting similar motifs by reporting the maximum number of

motif matches for a single type of motif within a group of motifs. The motif groups we used were as

follows: retinoic acid receptor consisted of RARA, group FOX consisted of FOXA1, FOXA2, FOXA3,

FOXC2, FOXD3; group ETS consisted of SPI, SPIB, SPIC, EHF, ELF1, ELF2, ELF3, ELF4, ELF5; group

SMAD consisted of SMAD3, SMAD4, SMAD9; group AP-1 consisted of JUN, JUNB, JUND, JDP2,

FOS, FOSB, FOSL1, FOSL2, BACH1, BACH2, BATF (note the inclusion of non-canonical AP-1 factors

due to their similar motif position weight matrices); group SMARCC1 consisted of SMARCC1; group
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NFE consisted of NFE2, NFE2L2; group MAF consisted of MAFF, MAFK; group HOX consisted of

HOXA13, HOXB13, HOXC10, HOXC12, HOXC13, HOXD13; group NFKB consisted of NFKB1, REL,

RELA; group CDX consisted of CDX1, CDX2; group CTCF consisted of CTCF; group BCL consisted

of BCL11A, BCL11B; group GRHL1 consisted of GRHL1. For example, if a peak had three JUN

motifs, two FOS motifs, two JDP2 motifs, and one BACH1 motif, we would count this as three AP-1

motifs. We then randomly shuffled these grouped motif matches within each peak set, with each

peak retaining its original number of total motif matches (thus a peak with zero motif matches also

had zero motif matches and a peak with four grouped motif matches always had four grouped motif

matches after each random shuffle). After each of 1000 random shuffles, we calculated the fraction

of peaks in each peak set that contained both a retinoic acid-dominant and a TGF-b dominant motif.

Statistical analysis
With the exception of DeSeq2’s adjusted p value and our manually calculated p value for the null

distribution we generated for dual-motif matches at upregulated ATAC-seq peaks, we calculated all

reported p values in the figures and main text using Welch’s unequal variances t-test in R. (Note that

we did not correct for multiple comparisons.)

Data and code availability
All custom data analysis code is available at https://github.com/emsanford/combined_responses_

paper. The ATAC-seq pipeline we used is available at https://github.com/arjunrajlaboratory/atac-

seq_pipeline_paired-end (copy archived at swh:1:rev:

c4c819e3ad5828b953fbd2ec05163e590518ae4b). The RNA-seq pipeline we used is available at

https://github.com/arjunrajlaboratory/RajLabSeqTools (Sanford et al., 2020; copy archived at swh:

1:rev:c8b8c79b2ec9c1bd9eb7ced427bb2aec25f19506).
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Appendix 1

Mathematical formulation of an additive combined response,
multiplicative combined response, and the combined response factor (c
value)
Suppose that gene X is expressed at baseline and increases its transcription in response to either

signal A or signal B:

expression of gene X at baseline¼ Xbaseline

expression of gene X after receiving signal A¼XbaselineþDA

expression of gene X after receiving signal B¼Xbaseline þDB

If the combined transcriptional response to receiving both signals A and B were additive, the

increase in transcription of gene X would reflect the sum of the effects DA and DB:

additive combined response of gene X to signals A and B¼ XbaselineþDAþDB

If the combined response were multiplicative, the increase in transcription of gene X would reflect

the product of the fold change experienced under signals A and B:

multiplicative combined response ¼ Xbaseline � fold-changeA� fold-changeB

¼ Xbaseline �
XbaselineþDA

Xbaseline

�
XbaselineþDB

Xbaseline

Multiplying out the terms of the previous expression, we see that the difference between an multipli-

cative and additive combined response is exactly DA�DB

Xbaseline
:

multiplicative response ¼ Xbaseline�
Xbaseline þDA

Xbaseline

�
XbaselineþDB

Xbaseline

¼ Xbaseline�
X2

baseline þðXbaseline�DAÞþ ðXbaseline�DBÞþ ðDA�DBÞ

X2

baseline

¼
X2

baselineþðXbaseline �DAÞþ ðXbaseline �DBÞþ ðDA �DBÞ

Xbaseline

¼ XbaselineþDAþDBþ
DA�DB

Xbaseline

¼ additive responseþ
DA�DB

Xbaseline

We defined a term, c, the combined response factor, that can be determined after measuring a

gene’s expression at baseline and in response to both single and combined signal treatments:

gene X0s combined response¼ Xbaseline þDAþDB þ c�
DA�DB

Xbaseline

For a gene that increases transcription in response to both signals, the combined response is per-

fectly additive when c¼ 0, perfectly multiplicative when c¼ 1, sub-additive when c<0, and super-mul-

tiplicative when c>1. Thus, a gene’s combined response factor, which can be solved for after

profiling gene expression in unperturbed and signal-treated cells, provides us with a metric for

describing combined transcriptional responses along a continuum that spans addition and

multiplication.
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