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Abstract. Head and neck cancer (HNC) is the sixth most 
common type of cancer worldwide, and head and neck squa‑
mous cell carcinoma (HNSCC) accounts for 90% of HNC cases. 
Furthermore, HNSCC accounts for 400,000 cancer‑associated 
deaths worldwide each year. However, at present there is an 
absence of a versatile biomarker that can be used for diagnosis, 
prognosis evaluation and as a therapeutic target for HNSCC. 
In the present study, bioinformatics analysis was used to assess 
the relationship between hub genes and the clinical features of 
patients with HNSCC. The findings from the bioinformatics 
analysis were then verified using clinical samples and in vitro 
experiments. A total of 51 overlapping genes were identified 
from the intersection of differentially expressed genes and 
co‑expressed genes. The top 10 hub genes were obtained from 
a protein‑protein interaction network of overlapping genes. 

Among the hub genes, only secretoglobin family 1A member 1 
(SCGB1A1) was significantly associated with both overall 
and disease‑free survival. Specifically, upregulated SCGB1A1 
expression levels were associated with prolonged overall and 
disease‑free survival. Moreover, the SCGB1A1 expression 
levels were negatively correlated with drug sensitivity. Notably, 
it was demonstrated that SCGB1A1 was involved in tumor 
immunoreaction by affecting the infiltration of cells and check‑
point regulation of immune cells. Additionally, it was shown 
that SCGB1A1 regulated multiple key cancer‑related signaling 
pathways, including extracellular matrix receptor interaction, 
transforming growth factor‑β and tumor metabolism signaling 
pathways. Based on the results of the present study, SCGB1A1 
may serve as a novel biomarker for predicting the diagnosis, 
prognosis and therapeutic effectiveness of certain drugs in 
patients with HNSCC. Moreover, SCGB1A1 may serve as 
a potential therapeutic target for the management of HNSCC.

Introduction

Head and neck cancer (HNC) is the sixth most common type 
of cancer (1), accounting for 2.8% of all malignant cancer 
cases worldwide (2). HNC is a significant cause of morbidity 
and mortality across the globe, with 890,000 new cases 
reported in 2020 (3) and >400,000 deaths predicted annu‑
ally worldwide (4). Head and neck squamous cell carcinoma 
(HNSCC) accounts for 90% of HNC cases and describes 
a group of heterogeneous cancers that emerge from the upper 
aerodigestive tract that affect the oral and nasal cavity, sali‑
vary glands, oropharynx, pharynx, larynx, paranasal sinuses, 
local lymph nodes and even the middle ear (5‑7). HNSCC is 
a complex disease characterized by alterations in multiple 
genes and pathways (5,8). However, the underlying molecular 
mechanisms of its development and prognosis require further 
investigation. Identifying novel therapeutic targets and prog‑
nostic biomarkers of HNSCC will contribute to a deeper 
understanding of HNSCC and may assist in prolonging the 
survival and improving the quality of life of patients.

With the development of high‑throughput sequencing 
technologies, using mRNA‑sequencing (seq) to identify 
HNSCC‑related genes and pathways has emerged as a valuable 
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method for cancer research (9). Numerous mRNA datasets 
have been produced for studying a myriad of biological chal‑
lenges. These datasets facilitate extensive gene analysis efforts. 
For instance, the TP53 gene is frequently mutated in patients 
with HNSCC, as evidenced by numerous studies  (10‑12). 
In TP53‑mutated HNSCC, sestrin 1, UHRF1BP1 and 
microRNA‑377‑3p have been identified as prognostic 
markers (13). Furthermore, CD3D serves as an independent 
and favorable prognostic marker for immunotherapy in 
patients with HNSCC (14). The currently identified biomarkers 
for HNSCC have limited utility, primarily confined to patient 
prognosis analysis, thereby underscoring the imperative need 
for a comprehensive and versatile biomarker in this specific 
context.

In the present study, overlapping genes were identified 
by integrating differentially expressed genes (DEGs) and 
co‑expressed genes using data obtained from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO). A total of 51 overlapping genes were analyzed using 
systematic bioinformatics to explore the underlying molecular 
mechanisms of HNSCC pathogenesis and to identify a novel 
biomarker and a candidate therapeutic target for HNSCC. 
Additionally, immune analysis was performed on the selected 
targets to further predict the therapeutic value of immu‑
notherapy. The present study investigated and validated a 
novel, comprehensive tumor biomarker termed secretoglobin 
family 1A member 1 (SCGB1A1), which exhibits significant 
potential for the diagnosis, evaluation of treatment efficacy 
and analysis of patient prognosis in HNSCC. Furthermore, the 
present study investigated whether SCGB1A1 plays a pivotal 
role in the metabolic and immune regulatory processes within 
HNSCC, thereby emerging as a promising therapeutic target 
for effective management of HNSCC.

Materials and methods

Data collection. After conducting a comprehensive search 
of the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for 
HNSCC as well as normal head and neck tissues, the available 
datasets were narrowed down to 40 datasets based on specific 
criteria, such as array‑based expression profiling and human 
tissue type. The GSE30784 dataset (15,16) was selected for 
data analysis based on the sample size (the other available 
datasets included fewer samples), aiming to obtain more 
precise data. This dataset consists of 45 normal tissues and 167 
HNSCC tissues. The GPL570 platform (Affymetrix; Thermo 
Fisher Scientific, Inc.; version 1.38.0) was used to analyze the 
microarray data. For this, after downloading the GEO dataset, 
the gene expression matrix was extracted and the merge func‑
tion was utilized to convert probe names into corresponding 
gene names. Finally, 20,549 genes were selected for subse‑
quent analysis (17). In addition, relevant datasets and clinical 
information on HNSCC were also obtained from TCGA (18) 
(dataset: TCGA‑HNSC; https://portal.gdc.cancer.gov). A total 
of 83 samples (13 normal samples and 70 cancer samples) and 
14,212 genes were selected for subsequent analysis.

Identification of DEGs. DEG analysis was performed as 
described in our previous study with some modifications (19). 
Briefly, the ‘limma’ package in R (version; 4.0.3) was used to 

analyze the data obtained from TCGA and the GEO (20,21). 
During the gene differential analysis process, a logarithmic 
transformation was applied to the data in the GeneMatrix 
file to normalize its overall scale. The Log2FoldChange (FC) 
values ranged between 0 and 2, with only 2 genes exhibiting 
absolute values >1. To ensure suitability for subsequent anal‑
yses, the range of absolute FC values was expanded to include 
those as low as 0.2. Therefore, the DEGs between adjacent 
normal tissues and HNSCC samples were defined based on 
a |logFC|>1 and false discover rate (FDR)<0.05 for the data 
obtained from TCGA, or |logFC|>0.2 (22) and FDR<0.05 for 
data obtained from the GEO. Next, the DEGs in the datasets 
were output in the form of a volcano plot using the ‘ggplot’ 
package in R (23).

Weighted gene co‑expression network analysis (WGCNA). 
The ‘WGCNA’ package in R was used to construct the 
weighted gene co‑expression network and to classify the 
co‑expression modules  (24,25). First, gene correlations 
and an adjacency matrix were calculated. Next, this matrix 
was transformed into a topological overlap matrix (TOM) 
to reduce noise and false correlations [gene co‑expression 
matrix, S=(Sij); adjacency function, Aij=power (Sij, β)=| 
Sij| β) |GS| ˃0.5, |MM| ˃0.8]. TOM was used to convert 
the correlation between genes into a distance matrix. The 
distance matrix was used for cluster analysis, and the genes 
were classified into the same module. Finally, the signifi‑
cant modules associated with traits were determined and 
selected for subsequent analysis (24,26).

Unsupervised clustering analysis. To identify genes that were 
significantly differentially expressed in HNSCC in the data 
obtained from TCGA, unsupervised clustering analysis was 
performed using ‘ConsensusClusterPlus’ in R (27).

Screening of overlapping genes by the intersection of 
differential genes and differential modules. The overlapping 
genes between the DEGs were screened using the limma 
package, and the co‑expression genes of modules were screened 
by differential clinical characteristics. A Venn diagram was 
constructed using the ‘VennDiagram’ package in R (28).

Gene Set Enrichment Analysis (GSEA). Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses and GSEA were performed as described 
in our previous study with slight modifications (19). The R 
packages ‘clusterProfiler’, ‘ggplot2’, ‘enrichplot’ and ‘org.
Hs.eg.db’ were used to perform the GO and KEGG pathway 
analyses  (29,30). P‑ and Q‑values <0.05 were considered 
significantly enriched. GSEA of the hub genes in the 
high‑expression group [samples exhibiting expression levels 
surpassing the median expression level of the target gene 
(SCGB1A1) in the expression matrix were categorized as 
belonging to the high‑expression group] was performed using 
the KEGG gene sets and the hallmarks from the Molecular 
Signatures Database (MSigDB; version 7.5.1) gene sets were 
used to identify the enriched pathways (31). Each enrichment 
analysis was performed using 1,000x gene set permutations. 
Pathways with an FDR<0.05 and a nominal P<0.05 were 
considered significantly enriched.
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Protein‑protein interaction (PPI) network construction. The 
PPI network was constructed as described in our previous 
study with slight modifications (19). Briefly, the PPIs of the 
identified DEGs were predicted using the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING), an 
online tool for determining the interacting genes/proteins 
(https://cn.string‑db.org/) (32). Then, the intersecting genes 
were identified from the PPI network. The Cytoscape (version 
3.7.2) platform was utilized to visualize the interactive network 
of overlapping genes, and a confidence level of >0.95 was used 
to build the network (33,34).

Survival analysis of the hub genes. Survival analysis of the 
hub genes was performed as described previously with slight 
modifications (19). The R packages ‘survival’ and ‘survminer’ 
were used to analyze the clinical information of the hub genes; 
‘survival’ was used for Kaplan‑Meier survival curve analysis 
and ‘survminer’ was used for ‘ggsurvplot’ visualization and 
statistical analysis (all using the default settings)  (35,36). 
P<0.05 was considered to indicate a statistically significant 
difference.

Pan‑cancer analysis. RNA‑sequencing expression profiles 
and corresponding clinical information for pan‑cancer were 
downloaded from TCGA (https://portal.gdc.com). All the 
analysis methods were implemented by R version 4.0.3. 
If not stated otherwise, two‑group data comparisons were 
performed by the Wilcoxon test. P<0.05 were considered to 
indicate a statistically significant difference (https://www.
aclbi.com/static/index.html#/pan_cancer).

Clinical samples. Clinical samples were collected according 
to a protocol approved by the Ethics Committee of the Medical 
College of Qingdao University (Qingdao, China; approval 
no. QDU‑HEC‑2022166). All patients consented to participa‑
tion in the present study, signed informed consent forms and 
agreed to the publication of the collected data. The patient 
inclusion criteria were as follows: Patients with HNSCC 
without any other diseases, including chronic diseases. From 
March, 2023 to September, 2023, a total of 12 oral squamous 
cell carcinoma tissue samples (from 7 male and 5 female 
patients; median age, 58 years old; age range, 38‑79 years 
old) were collected during surgery at the Qingdao Municipal 
Hospital. Adjacent normal tissues were also collected from the 
same patients.

Cell culture and treatment. CAL27 and SCC‑9 cells (both 
from Hunan Fenghui Biotechnology Co., Ltd.) were cultured 
in DMEM‑H and DMEM‑H/F12 (both from Gibco; Thermo 
Fisher Scientific, Inc.), respectively, supplemented with 10% 
FBS (TransGen Biotech Co., Ltd.) in a humidified incubator 
supplied with 5% CO2 air at 37˚C. Cells were treated with 0, 
1 or 3 µM doxorubicin (DOX; Selleck Chemicals) in medium 
for 12 h.

Lentiviral (Lv) vector. The Lv‑SCGB1A1 overexpression 
vector was constructed in our laboratory. The SCGB1A1 
sequence was downloaded from the NCBI (https://www.ncbi.
nlm.nih.gov/gene/7356), and the primers for SCGB1A1 were 
designed using SnapGene 4.0 (https://www.snapgene.com/). 

The primer sequences were as follows: Forward 5'‑ATG​AAA​
CTC​GCT​GTC​ACC​CTC​ACC‑3' and reverse 5'‑CTA​ATT​
ACA​CAG​TGA​GCT​TTG​GGC​TAT​TTT​TTC​C‑3'. The ampli‑
fied products were then inserted into the PCDH vector (Hunan 
Fenghui Biotechnology Co., Ltd.) and used to establish a 
stably expressing cell line. The negative control (LV‑control) 
was an empty plasmid that did not express SCGB1A1. The 
2nd generation system (Hunan Fenghui Biotechnology Co., 
Ltd.) was used to producing lentivirus. For this, 80% confluent 
293T cells (Hunan Fenghui Biotechnology Co., Ltd.) in 
a 10‑cm dish were transfected with 10  µg SCGB1A1 or 
control plasmid, 5 µg PMD2G plasmid and 5 µg PsPAX2 
plasmid using Lipofectamine 3000 Transfection Reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.), according to 
the manufacturer's instructions. The cells were incubated in 
a humidified incubator supplied with 5% CO2 air at 37˚C. 
After 6  h, the transfection medium was replaced with 
DMEM‑H containing 5% FBS and cultured for another 48 h 
for the generation of lentivirus. The lentiviral particles were 
collected using Amicon® Ultra‑15 (Merck KGaA). CAL27 
cells were transduced with SCGB1A1 or control lentivirus 
at MOI=10 and the transduction medium contained 1% 
lentiBOOST (Sirion Biotech GmbH) to promote viral trans‑
duction. After 18 h, the transduction medium was replaced 
with normal medium. After another 72 h, 4 µg/ml puromycin 
(Selleck Chemicals) was used for selection and maintenance 
of the stable cell line. The stable cell line was used for subse‑
quent experiments 1 week later.

To investigate the influence of SCGB1A1 overexpression 
on cell viability, 2x104 cells/well were seeded into 96‑well 
plates and the cell viability was detected by Cell Counting 
Kit‑8 (CCK‑8) assay once a day, continuously for 6 days. 
The CCK‑8 assay (Dalian Meilun Biology Technology Co., 
Ltd.; cat. no.  MA0218) was performed according to the 
manufacturer's protocol.

Immunohistochemistry. Paraffin‑embedded sections 
of oral squamous cell carcinoma tissues and normal 
tissues were collected for immunohistochemical staining. 
Immunochemical staining was performed as described in our 
previous study (37). Briefly, tissues were fixed in 4% parafor‑
maldehyde at 4˚C for 24 h, followed by embedding in paraffin. 
The tissues were cut into 5 µm sections and used for subse‑
quent experiments. The sections were blocked with goat serum 
(Solarbio; cat. no. SL038) at room temperature for 1 h, then 1X 
endogenous peroxidase blocking buffer (Beyotime Institute of 
Biotechnology; cat. no. P0100B) was used to block endogenous 
peroxidase/phosphatase activity. Samples were incubated 
with a primary antibody against SCGB1A1 (1:100; Affinity 
Biosciences; cat. no. DF6581) at 4˚C overnight, followed by 
the secondary antibody [Goat Anti‑Rabbit IgG (H+L) HRP; 
1:200; Affinity Biosciences; cat. no. S0001] at room tempera‑
ture for 1 h. Finally, the samples were incubated with DAB 
at room temperature for 10 min. Images were obtained using 
an OLYMPUS CKX53 in light mode. Figure analysis was 
performed using ImageJ 1.51 (National Institutes of Health).

CCK‑8 assay. A total of 2x104 cells/well were seeded into 
96‑well plates and incubated overnight for adherence. The 
cells were subsequently treated with 0, 1 or 3 µM DOX for 
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12 h. After treatment, a CCK‑8 assay was performed according 
to the manufacturer's protocol.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
RT‑qPCR was used for the detection of hub gene expression 
as described previously (38). Total RNA was extracted from 
clinical samples and treated cells using an RNA isolation 
kit (Tiangen Biotech Co., Ltd.). RT to generate cDNA was 
performed using the TransScript II One‑Step gDNA Removal 
and cDNA Synthesis SuperMix (TransGen Biotech Co., Ltd.) 
according to the manufacturer's instructions. TransStart Green 
qPCR SuperMix (TransGen Biotech Co., Ltd.) was used for 
qPCR. The thermocycler conditions were as follows: 94˚C for 
10 min, then 94˚C for 5 sec and 60˚C for 30 sec for 40 cycles. 
The expression levels of the hub genes were normalized to that 
of β‑actin and calculated using the 2‑ΔΔCq method (38). The 
sequences of the primers used for amplification are listed in 
Table SI.

Western blotting. The treated cells were lysed in RIPA lysis 
buffer (Shanghai Epizyme Biotech Co., Ltd.; cat. no. PC102) 
containing 1% protease inhibitor (Shanghai Epizyme Biotech 
Co., Ltd.; cat. no. GRF101). The protein concentrations were 
then determined using a BCA kit (Shanghai Epizyme Biotech 
Co., Ltd.; cat. no. ZJ101). Equal amounts of protein (20 µg) 
per lane were loaded and separated on a 12.5% SDS‑PAGE 
gel, then proteins were transferred onto a PVDF membrane, 
which was blocked in 5% skim milk (Shanghai Epizyme 
Biotech Co., Ltd.; cat. no. PS112) dissolved in 1% tris‑buff‑
ered saline Tween‑20 (TBST) (Shanghai Epizyme Biotech 
Co., Ltd.; cat. no. TF103) at room temperature for 1 h with 
slight shaking. The membranes were next incubated with the 
primary SCGB1A1 (1:2,000; Rabbit; Affinity Biosciences; cat. 
no. DF6581) and actin (1:10,000; Rabbit; Affinity Biosciences; 
cat. no. AF7018) antibodies overnight at 4˚C. After washing 
three times with 1% TBST, the membranes were incubated 
with secondary antibody [Goat Anti‑Rabbit IgG (H+L) HRP; 
1:10,000; Affinity Biosciences; cat. no. S0001] for 1 h at room 
temperature. After washing three times with 1% TBST, the 
blots were visualized using Omni‑ECL™ (Shanghai Epizyme 
Biotech Co., Ltd.; cat. no. SQ201). Images were obtained using 
an integrated chemiluminescence imaging system (Shanghai 
Epizyme Biotech Co., Ltd.; cat. no. XF101). Semi‑quantitative 
analysis was performed using ImageJ 1.51 (National Institutes 
of Health).

Drug sensitivity and molecular docking analysis. RNA‑seq 
expression data from HNSCC samples were downloaded 
from TCGA as aforementioned (https://portal.gdc.com). 
pRRophetic was used to predict the response of SCGB1A1 
to drugs in the Cancer Genome Project database (ftp://ftp.
sanger.ac.uk/pub4/cancerrxgene/releases), based on expres‑
sion levels of SCGB1A1, the IC50 values of different drugs 
between SCGB1A1 high and low groups were compared 
using the Wilcoxon rank‑sum test (39,40). The 2D structures 
of drugs were downloaded from PubChem (https://pubchem.
ncbi.nlm.nih.gov/), transformed into 3D structures and 
optimized using Chem3D (https://library.bath.ac.uk/chem‑
istry‑software/chem3d). Non‑polar hydrogens were added to 
the 3D structures using AutoDockTools (ADT; version 1.5.6; 

https://autodocksuite.scripps.edu/adt/) (41). The 3D structure 
of SCGB1A1 was downloaded from the RCSB Protein Data 
Bank (https://www.rcsb.org/; accession no. 7vf3) (42). The 
water molecules and molecular ligands were removed in ADT 
and non‑polar hydrogens were added. AutoDock Vina (version 
1.1.2) was used to simulate the docking of the drugs with 
the SCGB1A1 protein, and the docking conformations were 
visualized using PyMOL (version 2.3; Schrodinger, LLC) (43).

Immunological analysis. Immunological analysis was 
performed online according to the included instructions 
(https://www.home‑for‑researchers.com/static/index.html#/).
RNA‑seq expression profiles and the corresponding clinical 
information for HNSCC were downloaded from TCGA as 
aforementioned. The R package ‘ggalluvial’ was used to build 
the Sankey diagram. All the analytical methods and R packages 
were implemented by R (foundation for statistical computing 
2020) version 4.0.3 (44). To assess the reliability of the results 
of the immune score evaluation, ‘immuneeconv’ was used, an 
R software package that integrates six of the latest algorithms, 
including TIMER, xCell, MCP‑counter, CIBERSORT, EPIC 
and quanTIseq (45‑48). SIGLEC15, IDO1, CD274, HAVCR2, 
PDCD1, CTLA4, LAG3 and PDCD1LG2 are the transcripts 
associated with immune checkpoint‑related genes, thus the 
expression of these 8 genes was assessed (44,49‑52). Results 
derived from normal and cancer tissues were compared using 
the Wilcoxon test.

GeneMANIA analysis. GeneMANIA analysis was performed 
using the URL: http://genemania.org, application version: 
3.6.0. The analyses are conducted based on the descriptions 
provided by others, following the default conditions (53).

Gene mutation analysis. Mutation analysis of glycolysis‑related 
genes and cluster analysis of DEGs was performed using the 
somatic mutation data from TCGA. The ‘maftools’ function 
in R was used for mutation analysis, while organizing and 
visualizing the results using different functional packages (54).

Statistical analysis. Data are presented as the mean ± SD of 
at least three independent experiments. Differences between 
multiple groups were compared using one‑way ANOVA 
followed by Tukey's post hoc test. The comparison of only two 
groups was conducted using paired t‑test. The cell viability 
curve data were analyzed using an un‑paired t‑test. All 
statistical analyses were performed using GraphPad Prism 
version 5.0 (Dotmatics). P<0.05 was considered to indicate 
a statistically significant difference.

Results

The aim of the present study was to identify a potential 
biomarker and a candidate therapeutic target for HNSCC. The 
workflow of the present study is shown in Fig. 1.

DEG identification, WGCNA and cluster analysis. The GEO 
(20,549 genes; Table SII) and TCGA (14,212 genes; Table SIII) 
HNSCC datasets were used to identify DEGs. The DEGs iden‑
tified from TCGA (2,479 genes) or GEO (841 genes) datasets 
are shown in Fig. 2A and Table SIV or Fig. S1A and Table SV, 
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respectively. The DEGs that were significantly differentially 
expressed between normal and tumor tissues, along with DEG 
expression profiles in 70 (TCGA) and 184 (GEO) patients with 
HNSCC, were included in the construction of a co‑expression 
network with 9 (TCGA) and 13 (GEO) genes as the soft thresh‑
olding power β (Figs. 2B and S1B). A total of four WGCNA 

modules were identified (Figs. 2C and S1C). The relationships 
between the DEGs and the four co‑expression modules were 
explored in Figs. S1D and 2D. The results showed that the 
DEGs were most commonly associated with the designated 
turquoise and red modules. The association between module 
membership and gene significance for a tumor in the turquoise 

Figure 1. Workflow of the present study. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; OS, overall survival; DFS, disease‑free 
survival; RT‑qPCR, reverse transcription‑quantitative PCR; DEG, differentially expressed gene; WGCNA, weighted gene co‑expression network analysis; 
HNSC, head and neck squamous cell carcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; 
IHC, immunohistochemistry; CCK8, Cell Counting Kit 8; SCGB1A1, secretoglobin family 1A member 1.

Figure 2. Analysis of DEGs and WGCNA of the data obtained from TCGA. (A) Volcano plot of the data obtained from TCGA. (B) WGCNA power selection. 
(C) Dendrogram of the WGCNA modules. (D) Relationship between the co‑expression modules and external traits. (E) Scatter plot of module membership and 
gene significance for cancer in the turquoise module. DEG, differentially expressed gene; WGCNA, weighted gene co‑expression network analysis; TCGA, 
The Cancer Genome Atlas.
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and red modules was then analyzed (Figs. S2E and S1E and 
Tables SVI and SVII), which showed that gene significance 
for a tumor in the DEGs was significantly associated with 
the corresponding module membership. Using TCGA‑HNSC 
dataset for unsupervised clustering analysis, the data were 
divided into two categories: Clusters 1 and 2 (Fig. 3A), and 
there was a significant difference in the median survival 
between these two clusters (Fig. 3B). To understand the rela‑
tionship between these two clusters in immune cell infiltration, 
the CIBERSORT algorithm was used to study the infiltration 
of 22 types of immune cells. The results demonstrated that the 
differential genes in Clusters 1 and 2 had different immune 
infiltration scores for different immune cells. The proportions 
of Naïve B cells, plasma cells, CD8+ T cells, T follicular helper 
cells and regulatory T cells in Cluster 2 were higher than that 
in Cluster 1, while the proportions of resting CD4+ memory 
T cells, resting natural killer cells, M0 and M1 macrophages 
and neutrophils in Cluster 1 were higher (Fig. 3C).

Functional enrichment analysis. A total of 51 overlapping 
genes were identified by integrating DEGs and co‑expressed 
genes from TCGA and GEO datasets (Fig. 4A). GO func‑
tional enrichment analysis showed that the overlapping genes 
were involved in the biological processes of ‘ossification’, 
‘regulation of inflammatory response’ and ‘regulation of 
sodium ion transmembrane transporter activity’, the cellular 
components of ‘coated vesicle’, ‘bicellular tight junction’ 
and ‘tight junction’ and the molecular functions of ‘retinol 

dehydrogenase activity’, ‘steroid hormone receptor activity’ 
and ‘phosphatidylserine binding’ (Fig. 4B). KEGG pathway 
analysis indicated that the overlapping genes were involved in 
the ‘Lysosome’, ‘Tight junction’, ‘Pathogenic Escherichia coli 
infection’, ‘Retinol metabolism’, ‘Rheumatoid arthritis’ and 
‘Leukocyte transendothelial migration’ pathways (Fig. 4C).

Survival analysis and expression characteristics of SCGB1A1. 
A PPI network was constructed using the STRING database 
with 72 edges and 51 nodes (Fig. S2A and B). CytoHubba was 
used to filter the hub genes in the PPI network. The top 10 
hub genes were CLDN8, CAB39L, PLP1, GPX3, ATP6V0A4, 
GPD1L, cathepsin C (CTSC), SCGB1A1, ATP binding cassette 
subfamily A member 8 (ABCA8) and SLC26A2 (Fig. S2C).

Kaplan‑Meier curves were used for survival analysis, and 
the results revealed that ABCA8 and SCGB1A1 were signifi‑
cantly associated with overall survival (Figs. 5A, B and S3). 
Patients with upregulated expression levels of ABCA8 and 
SCGB1A1 had a longer overall survival time. In addition, CTSC 
and SCGB1A1 were significantly associated with disease‑free 
survival (Figs. 5C, D and S4). Patients with a low expression 
level of CTSC and a high expression level of SCGB1A1 had 
a longer disease‑free survival time. Further analysis showed 
that the expression levels of SCGB1A1 were also associated 
with the pathological TNM stage and grade of patients with 
HNSCC (Fig. S5A and B). In summary, the expression level of 
SCGB1A1 could be used to evaluate the prognosis of patients 
with HNSCC.

Figure 3. TCGA data clustering and immune cell characterization. (A) Unsupervised clustering analysis of TCGA‑HNSC. (B) Survival analysis of patients 
using unsupervised cluster analysis. (C) Unsupervised cluster analysis of the differences in the levels of 22 types of immune cells between the two clusters. 
Cluster 1 is shown in blue and cluster 2 is shown in red. TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma.
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cDNA from 12 pairs of normal and cancer tissues were 
used in RT‑qPCR, to verify the results of the bioinformatics 
analysis. As shown in Fig. 5E‑G, only SCGB1A1 expression 
changes were consistent with the bioinformatics analysis. The 
expression levels of SCGB1A1 in normal tissues were signifi‑
cantly higher than in the cancer tissues. The trend in SCGB1A1 
expression was also confirmed using immunohistochemical 
staining (Fig. 5H and I). The viability of cancer cell lines 
stably overexpressing SCGB1A1 was lower than that of the 
control group cancer cells (Fig. 5J). Furthermore, pan‑cancer 
analysis revealed that the expression levels of SCGB1A1 
in normal tissues were significantly higher than in tumor 
tissues (Fig. 5K). According to the expression characteristics, 
SCGB1A1 may be used as a novel biomarker to improve the 
diagnosis of HNSCC.

Drug sensitivity and molecular docking analysis. To further 
explore the role of SCGB1A1 in HNSCC therapy, two types of 
oral squamous cell carcinoma cell lines were used as in vitro 
models and treated with DOX, a chemotherapeutic agent 
primarily employed for the treatment of cancer, including 
HNSCC. The expression level of SCGB1A1 was upregulated 
during DOX‑induced tumor cell apoptosis (Fig.  6A‑D). 
Therefore, SCGB1A1 may serve as a biomarker for evaluating 
the effectiveness of cancer therapy.

In addition, the results of a drug sensitivity analysis 
indicated that the SCGB1A1 expression level in cancer cells 
exhibited a significant increase after DOX treatment (Figs. 6E, 
F and S6). Furthermore, certain drug molecules could bind 
directly to the SCGB1A1 protein, such as Tubastatin A and 
TG101348 (Fedratinib) (Fig. 6G and H), which may exert 
anticancer properties by regulating the SCGB1A1 protein. 

These data may explain why patients with upregulated expres‑
sion of SCGB1A1 had a longer survival time. In summary, it 
was demonstrated that SCGB1A1 may serve as a candidate 
therapeutic target for the management of HNSCC.

Immunological function analysis of SCGB1A1. It is 
well‑established that the immune microenvironment has a 
notable influence on the effectiveness of cancer treatment (55). 
Of note, the results of the present study showed that SCGB1A1 
expression was negatively correlated with immune adjustment 
by regulating the infiltration, activation and differentiation of 
immune cells, such as CD8+ cells, CD4+ cells, dendritic cells 
and macrophages (Fig. 7A). Furthermore, SCGB1A1 expres‑
sion was also correlated with immune checkpoint proteins, 
including CD274 and PDCD1LG2 (Fig. 7B). These results 
demonstrated that SCGB1A1 may be a candidate therapeutic 
target for the management of HNSCC.

Regulatory mechanism analysis of SCGB1A1. Due to SCGB1A1 
exerting numerous functions in HSNCC therapy, the under‑
lying mechanisms of SCGB1A1 were further explored. Gene 
interaction networks were built to understand the functional 
biological mechanisms of SCGB1A1 using GeneMANIA. 
A total of 20 genes associated with SCGB1A1 were identi‑
fied, and the results showed that these genes were involved in 
the ‘Regulation of cell‑cell adhesion mediated by cadherin’, 
‘Intracellular steroid hormone receptor signaling pathway’, 
‘Steroid hormone mediated signaling pathway’, ‘Cell‑cell adhe‑
sion mediated by cadherin’, ‘Cellular response to steroid hormone 
stimulus’ and ‘Hormone‑mediated signaling pathway’ (Fig. 7C). 
To further elucidate the molecular mechanisms of SCGB1A1 in 
HNSCC, GSEA was performed using TCGA RNA‑seq data. 

Figure 4. Functional enrichment analysis of the overlapping genes. (A) Filtering of the overlapping genes. (B) Gene Ontology functional enrichment analysis. 
(C) Kyoto Encyclopedia of Genes and Genomes pathway analysis of the enriched genes. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas.

https://www.spandidos-publications.com/10.3892/ol.2024.14660
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As shown in Fig. 7D, downregulated expression of SCGB1A1 
was associated with ‘ECM RECEPTOR INTERACTION’, 
‘ADIPOCYTOKINE SIGNALING PATHWAY’, ‘TGF BETA 
SIGNALING PATHWAY’, ‘PATHWAYS IN CANCER’ and 
‘FOCAL ADHESION’, which were highly associated with cancer 
cell proliferation, metabolism, immune escape and migration. As 
shown in Figs. 7E and S7, the mechanism of action of SCGB1A1 
was primarily enriched for metabolism pathways when it was 
upregulated, such as ‘GLYCOLYSIS GLUCONEOGENESIS’, 
‘ASCORBATE AND ALDARATE METABOLISM’, 
‘DRUG METABOLISM CYTOCHROME P450’, ‘STARCH 
AND SUCROSE METABOLISM’, ‘METABOLISM OF 
XENOBIOTICS BY CYTOCHROME P450’, ‘PENTOSE 
A N D GLUCU RONATE INTERCON VERSIONS’, 
‘PORPHYRIN AND CHLOROPHYLL METABOLISM’, 
‘TYROSINE METABOLISM’, ‘RETINOL METABOLISM’ 
and ‘ARACHIDONIC ACID METABOLISM’. Based on these 
findings, SCGB1A1 may be a potential target for HNSCC therapy.

Analysis of glycolytic genes. To understand the association 
between SCGB1A1 and the glycolytic pathway, 21 key glyco‑
lytic genes were obtained by intersecting the clustering 

differential genes obtained through previous clustering 
analysis with 200 glycolysis‑related genes collected in the 
GSEA MSigDB gene sets (Fig. 8A). First, the mutations of 21 
glycolysis‑associated genes were examined and found that 18 
genes, such as collagen type V α1 chain (COL5A1), PHKA2, 
CHST6, MERTK, DSC2, PYGL, ABCB6, GPC3, IDUA, GCLC, 
BIK, nuclear autoantigenic sperm protein (NASP), P4HA2, 
B4GALT4, CXCR4, ELF3, ENO2 and NT5E, exhibited varying 
degrees of mutations, with a maximum degree of mutation of 
3% (Fig. 8B). Among them, three types of mutations were 
more common: Missense mutations, nonsense mutations and 
splice site. In addition, the coexistence and exclusion relation‑
ships of these 18 mutated glycolytic genes were also analyzed 
and it was found that CXCR4 and ABCB6, and B4GALT4 and 
BIK exhibited coexistence relationships (Fig. 8C).

Immunological characteristics and the relationship with 
prognosis of glycolytic genes. The immune characteristics 
of glycolysis‑related genes were assessed to understand the 
relationship between glycolysis and tumor immune escape. 
First, a proportional risk regression model was used to clas‑
sify genes for risk. Next, 79 immune checkpoint genes were 

Figure 5. Survival analysis and expression characteristics of SCGB1A1. (A) Overall survival analysis of ABCA8. (B) Overall survival analysis of SCGB1A1. 
(C) Disease‑free survival analysis of ABCA8. (D) Disease‑free survival analysis of SCGB1A1. (E) ABCA8, (F) SCGB1A1, and (G) CTSC expression levels in 
the clinical samples. (H) Immunohistochemical staining of SCGB1A1 in the clinical sample. Representative SCGB1A1+ cells are marked with blue arrows. 
Scale bar, 50 µm. (I) Statistical analysis of SCGB1A1+ cells after immunohistochemical staining. (J) The knockdown of SCGB1A1 expression following 
Lv‑SCGB1A1 transduction. The viability of Lv‑SCGB1A1‑infected and Lv‑Control‑infected CAL27 cells were determined using a Cell Counting Kit‑8 
assay. (K) Analysis of SCGB1A1 expression levels in the pan‑cancerous tissue. **P<0.01, ***P<0.001, ****P<0.0001. ABCA8, ATP binding cassette subfamily 
A member 8; CTSC, cathepsin C; HR, hazard ratio; ns, not significant; Lv‑SCGB1A1, lentiviral SCGB1A1; TPM, transcripts per million; SCGB1A1, 
secretoglobin family 1A member 1.
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Figure 7. Immunological functional analysis of SCGB1A1. (A) Correlation analysis of SCGB1A1 with immune characteristics. (B) Analysis of the correlation of SCGB1A1 
with immune checkpoint proteins. (C) Protein‑protein interaction networks of SCGB1A1. (D and E) Gene Set Enrichment Analysis of SCGB1A1. *P<0.05,**P<0.01 and 
***P<0.001. HNSC, head and neck squamous cell carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; SCGB1A1, secretoglobin family 1A member 1.

Figure 6. Drug sensitivity and molecular docking analysis. (A) CCK‑8 assay to determine the viability of DOX‑treated CAL27 cells. (B) The mRNA expression 
levels of hub genes in the DOX‑treated CAL27 cells. (C) CCK‑8 assay to determine the viability of DOX‑treated SCC‑9 cells. (D) The mRNA expression levels 
of hub genes in the DOX‑treated SCC‑9 cells. The expression level of SCGB1A1 protein induced by DOX in (E) CAL27 and (F) SCC‑9 cells was assessed using 
western blotting. (G) Tubastatin A and (H) TG101348 sensitivity and molecular docking analysis of SCGB1A1. *P<0.05, ***P<0.001. CCK‑8, Cell Counting 
Kit‑8; DOX, doxorubicin; OD, optical density; ABCA8, ATP binding cassette subfamily A member 8; CTSC, cathepsin C; SCGB1A1, secretoglobin family 
1A member 1.

https://www.spandidos-publications.com/10.3892/ol.2024.14660
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collected (56) and the correlation heatmap with glycolysis 
genes was analyzed. It was found that BIK, COL5A1 and 
CYB5A were negatively correlated with the majority of 
immune checkpoint genes, while IDUA, MERTK and NASP 
were positively correlated with the majority of immune check‑
point genes (Fig. 9A). In subsequent prognostic analysis, it was 
found that high expression of COL5A1 was associated with 
a good prognosis, while downregulated expression of NASP 
was associated with a worse prognosis (Figs. 9B and S8). 
Subsequently, the correlation between immune cells and these 
2 genes was analyzed, and it was found that COL5A1 was 
significantly positively correlated with resting CD4+ memory 
T cells and M0 macrophages, while it was significantly nega‑
tively correlated with T follicular helper cells and activated 
CD4+ memory T cells (Fig. 9C). The NASP glycolytic gene 
was significantly positively correlated with T follicular helper 
cells and activated CD4+ memory T cells (Fig. 9D), while it 
was significantly negatively correlated with M0 macrophages 
and other cells (Fig. S9). In recent years, emerging immu‑
notherapies, including immune checkpoint inhibitors, have 
achieved notable results in clinical practice. To investigate the 
role of the glycolytic genes, COL5A1 and NASP, in immuno‑
therapy, patients were stratified based on their individual gene 
expression levels and it was observed that the COL5A1 or 
NASP low expression groups exhibited significant therapeutic 
efficacy upon CTLA4 treatment (Fig. 9E and F). In the gene 
correlation analysis, it was found that SCGB1A1 was positively 
correlated with NASP (Fig. 9G), while its correlation with 
other glycolytic genes was low (Fig. S10).

Discussion

HNSCC is one of the most common types of cancer and is 
associated with high morbidity and mortality rates (57,58). 
Exploring novel biomarkers and therapeutic targets for 
HNSCC may contribute to the diagnosis, prognostic evalua‑
tion and therapeutic management of HNSCC, and may also 
decrease the economic burden on patients and society.

SCGB1A1 is an important gene that is implicated in several 
pulmonary diseases, including asthma, chronic obstructive 
pulmonary disease and lung cancer (59). A study conducted 
by Xu et al  (60) revealed the crucial role of SCGB1A1 in 
modulating alveolar macrophage‑mediated inflammation and 
immune responses, as well as attenuating cytokine surges 
within the lungs. Yu et al (61) demonstrated that excessive 
expression of SCGB1A1 in the heart can result in the devel‑
opment of myocardial hypertrophy. Moreover, SCGB1A1 
can inhibit the Th17 response by regulating dendritic cells 
in allergic rhinitis (62). Downregulation of SCGB1A1 affects 
tumorigenicity in non‑small cell lung cancer (63) and mouse 
lung cancer models (64). These studies therefore indicate a 
potential role for SCGB1A1 in the development of numerous 
diseases. However, to the best of our knowledge, the roles of 
SCGB1A1 in HNSCC have not been previously reported in 
the literature. In the present study, it was found that SCGB1A1 
may serve as a novel biomarker for the diagnostic and prog‑
nostic evaluation of HNSCC. Notably, the expression levels of 
SCGB1A1 were significantly positively associated with patient 
outcomes.

Figure 8. Mutational properties of glycolysis‑related genes. (A) Venn diagram of glycolytic genes and unsupervised clustering analysis of the genes. (B) Mutation 
characteristics of the 21 genes in the TCGA‑HNSC dataset. (C) Co‑occurrence characteristics of the glycolytic genes in TCGA‑HNSC. TCGA, The Cancer 
Genome Atlas; HNSC, head and neck squamous cell carcinoma.
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Additionally, SCGB1A1 may also serve as a potential ther‑
apeutic target for the management of HNSCC. The SCGB1A1 
protein is 10 kDa, imbues acid, heat and protease resistance 
and can be produced in large quantities through recombinant 
protein expression. These characteristics of SCGB1A1 make 
it an ideal candidate for further comprehensive investigation, 
thereby augmenting the potential of targeted therapy with this 
protein (65). The present study revealed that the expression 
levels of SCGB1A1 were strongly correlated with drug sensi‑
tivity and the immune microenvironment. Further exploration 
found that SCGB1A1 was involved in several pathways that are 
significantly associated with several types of cancer. However, 
the predicted non‑specific effect of targeting or administering 
SCGB1A1 may limit its clinical utilization. The delivery of 
SCGB1A1 into cancer cells using oncolytic viruses can poten‑
tially address this issue. Nevertheless, further verification is 
necessary to confirm the feasibility of this strategy.

Adipocytokines have been reported to impact cancer cell 
proliferation, invasion and migration directly. TGF‑β is an 
immune‑suppressive cytokine that restricts the activity of 
effector immune cells, which can result in tumor development 
by generating and maintaining a highly immune‑suppressive 
tumor environment (66). Focal adhesion molecules play a key 
role in allowing cells to attach to the extracellular matrix and 
mediate numerous biological functions. Reduced expression of 
focal adhesion molecules has been associated with enhanced 
cell migration and cancer metastasis (67). In addition, the results 
of the present study demonstrated that the expression level of 

SCGB1A1 was highly correlated with glycolytic enzymes, which 
may confer heightened susceptibility of tumor cells to cytotoxic 
T lymphocytes and initiate innate immune responses (68,69). 
Moreover, the immune checkpoint molecules associated with 
SCGB1A1 exhibit promising antitumor activity in the clinical 
treatment of patients with HNSCC (70). Therefore, SCGB1A1 
may serve as an attractive therapeutic target for the management 
of cancer due to its multiple regulatory functions.

In the present study, a relatively limited number of clinical 
samples were obtained to validate the accuracy of the bioinfor‑
matics analyses. In future, the sample size will be expanded in 
further research endeavors to further substantiate the precision 
of the bioinformatics analysis results and to investigate the 
underlying mechanism of action of SCGB1A1. In conclusion, 
the biomarker, SCGB1A1, exhibits versatility in its application 
for the diagnosis, evaluation of treatment response, immune 
assessment and prognosis evaluation of HNSCC. Furthermore, 
SCGB1A1 demonstrates potential as a promising therapeutic 
target.
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