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Teleost fish are the most diverse group of vertebrates and provide opportu-
nities to study the evolution of sex determination (SD) systems. Using
genomic and functional analyses, we identified a male-specific duplication
of anti-Müllerian hormone (amh) gene as the male master sex-determining
(MSD) gene in Sebastes schlegelii. By resequencing 10 males and 10 females,
we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific
region, which contained an amh gene (named amhy). We then demonstrated
that amhy is a duplication of autosomal amh that was later translocated to the
ancestral Y chromosome. amha and amhy shared high-nucleotide identity
with the most significant difference being two insertions in intron 4 of
amhy. Furthermore, amhy overexpression triggered female-to-male sex
reversal in S. schlegelii, displaying its fundamental role in driving testis
differentiation. We developed a PCR assay which successfully identified
sexes in two species of northwest Pacific rockfish related to S. schlegelii. How-
ever, the PCR assay failed to distinguish the sexes in a separate clade of
northeast Pacific rockfish. Our study provides new examples of amh as the
MSD in fish and sheds light on the convergent evolution of amh
duplication as the driving force of sex determination in different fish taxa.
1. Introduction
Teleost fish are the largest and most diverse group of vertebrates and provide
many opportunities to study the evolution of sex determination (SD) systems.
SD mechanisms of teleost fish can be divided into three types: genetic SD
(GSD), environmental SD (ESD), and a combination of GSD and ESD [1]. In
GSD systems, master sex-determining (MSD) genes are thought to play a crucial
role in gonad differentiation by regulating the expression of other genes. After
much effort in recent decades, a few MSD genes have been identified in fish,
such as dmrt1 in the medaka species Oryzias latipes [2], O. curvinotus [3], Chinese
tongue sole (Cynoglossus semilaevis) [4,5], sdY in rainbow trout (Oncorhynchus
mykiss) [6], gsdf in the medaka species O. luzonensis [7] and breast cancer
anti-resistance 1 (BCAR1) gene in channel catfish (Ictalurus punctatus) [8].
A male-specific duplication of anti-Müllerian hormone (amh) has also been ident-
ified as an MSD gene in Patagonian pejerrey (Odontesthes hatcheri) [9], Nile
tiplapia (Oreochromis niloticus) [10] and northern pike (Esox lucius) [11].
Beyond identification of specific sex-determining genes, single-nucleotide poly-
morphisms (SNPs) within genes have also been reported to be responsible for
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SD in some fish, such as amhr2 in fugu (Takifugu rubripes) [12]
and Hsd17b1 in Seriola dorsalis [13].

In contrast with mammals and birds, in which almost all
species share the same SD systems (XX/XY in mammals and
ZZ/ZW in birds), teleost fish have evolved many different SD
systems. These SD systems can vary even among closely
related species, as found in genus Oryzias [14–17], and some-
times even among different populations or lineages within a
species, as in the southern platyfish (Xiphophorus maculatus)
[18] and Nile tilapia [19]. As SD systems and MSD are not
well conserved among teleosts, it is a challenge to infer evol-
utionary patterns and conserved themes from one species to
another. However, a recent study investigated the evolution
of SD in Esociformes and discovered that the northern pike
MSD gene evolved from a gene duplication that occurred
before 65 Mya, which has remained sex-linked on undifferen-
tiated sex chromosome for at least 56 Mya (although a few
species and populations have undergone an SD transition)
[11]. In addition, a duplicated Y-specific amhy was associated
with the male phenotype in Odontesthes silversides [20].
These results suggest that SD systems are conserved in
some clades of teleost fishes.

The rockfish genus Sebastes is highly diverse and includes
approximately 110 speciesworldwide [21],most ofwhich inha-
bit the north Pacific Ocean, concentrated predominantly
around an Asian centre near Japan and a North American
centre off the coast of California [22]. Sebastes species exhibit
great diversity in body colour, ecology, behaviour and maxi-
mum lifespan, which has made them the focus of substantial
evolutionary and conservation research [21,23]. The evolution
of viviparity in this genus has also long fascinated scientific
curiosity [24]. In some species, older and larger females exhibit
higher fecundity and therefore fisheries management requires
sex identification for increased efficacy [25]. Despite the
significant phenotypic variation among rockfish taxa, it is
often difficult to phenotypically identify sex, and consequently
researchers and fisheries managers must either distinguish the
shape of male and female urogenital papillae in sexually
mature adults [23,26,27], or conduct lethal dissection and
examine of gonads. Therefore, identification of a genetic sex
marker would be extremely useful for the improved manage-
ment and conservation of rockfishes, and it would allow
researchers to monitor environmental effects on SD.

SD in Sebastes remains poorly understood. Previous
research indicates that temperature affects sex differentiation
in Sebastes, but results have been contradictory. A study by
Lee et al. [28] found that high temperatures resulted in a
male-dominant population of S. schlegelii, whereas a later
study of the same species found the opposite result [29].
Moreover, an entirely female population was induced by
high temperature in oblong rockfish S. oblongus [30]. Research
on GSD mechanisms in Sebastes has yielded similarly mixed
results. A previous study identified 33 candidate male-
specific markers in two rockfishes, S. chrysomelas and S. carna-
tus, using double digest restriction site-associated DNA
sequencing (ddRAD-seq), and a PCR restriction fragment
length polymorphism (PCR-RFLP) assay developed from
one of these markers was able to identify sex in both species
[31]. However, this PCR-RFLP assay did not successfully
identify sex in six other Sebastes species, but rather was
species-specific [32]. So far, no MSD gene has been identified
in Sebastes species due to the lack of well-developed reference
genomes [31,33].
The black rockfish (Sebastes schlegelii) inhabits the coasts of
Japan, South Korea and China [34,35] and supports an impor-
tant commercial fishery [36]. As a viviparous species, sexes can
be easily identified by the appearance of external genitalia
in sexually mature males. In addition, S. schlegelii exhibits
sexual dimorphic growth, with females growing about 25%
faster than males. A cytogenetic study has revealed a diploid
number of 48 chromosomes, but no morphologically
distinguishable sex chromosome [37]. Observations on the
sexually dimorphic expression patterns of two candidate SD
genes dmrt1 and sox3 provided no evidence for their roles in
SD [38,39], and the MSD of S. schlegelii remains elusive. The
availability of a chromosome-level genome of S. schlegelii
[40] provides an ideal opportunity to search for an MSD.

In this study, we used resequencing and functional analy-
sis to identify a duplicated amh from a male-specific region,
which functions to drive testis differentiation, as a candidate
male MSD gene for S. schlegelii. We further investigated the
conservation of this putative MSD gene by PCR amplifying
and Sanger sequencing the same region in three Sebastes
species from the northwest Pacific Ocean. We also PCR
amplified the same region in seven species of rockfish from
the northeast Pacific Ocean, which represent a different
evolutionary clade within Sebastes [21].
2. Results
2.1. Identification of two copies of amh in

Sebastes schlegelii
A total of 508.66 G clean data was retained for all the samples,
ranging from 17.69 G to 31.04 G for each sample, more than
98% of which were mapped to the S. schlegelii genome (elec-
tronic supplementary material, table S2). A DNA segment
about 5 kb long on HiC_scaffold_12 was identified as a
male-specific region where no reads could be detected from
the females covering this area (figure 1a). An amh gene was
identified in this region, whichwas named as amhy (Y chromo-
some-specific amh). Using whole-genome blast search [41],
another amh gene was identified on HiC_scaffold_6. This
amh gene showed high similarity with the amhy gene, with
shared nucleotide identity ranging from 91.8% to 97.3%
between exon sequences (figure 1d ). The most significant
differences between the two genes were two insertions of
131 bp and 166 bp in intron 4 (figure 1d ) of amhy. The pre-
dicted proteins for amha and amhy both comprised 530
amino acids, which included the typical C-terminal TGF-β
domain (amino acids 438–530) with seven canonical cysteine
residues (electronic supplementary material, figure S1).
Amino acid identity of the two proteins was 92.1% for the
entire protein, 91.3% for the AMH_N domain and 94.6% for
the TGF-β domain. In addition, the coverage depth of the
region containing the amh gene on HiC_scaffold_6 displayed
no differences in male and female (figure 1b). Thus, amh on
HiC_scaffold_6 was named as autosomal anti-Müllerian
hormone (amha).

2.2. Sex-marker exploitation
The specific insertions in intron 4 of amhy provided an oppor-
tunity to develop a sex marker. A pair of primers spanning
the insertion of 166 bp were designed and optimized for
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Figure 1. Identification of two copies of amh genes and exploitation of a sex marker in S. schlegelii. (a) Visualized log2 coverage depth for resequencing data of
HiC_scaffold_12 (partial). The log2 coverage of the region that contained amhy was obviously low in female. (b) Visualized log2 coverage depth in the region of
HiC_scaffold_6 (partial), which contained amha showed equal depth both in female and male. (c) Sequence alignment between 5 kb upstream region of amha and
amhy. The start codon ATG was positioned at 0. (d ) Schematic gene structure of amha and amhy from the start to stop codon. A pair of primers designed to
distinguish genetical sexes is labelled. (e) PCR amplification produced two bands in male but only one in female.
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PCR amplification using genomic DNA. The PCR assay was
tested on S. schlegelii and it successfully distinguished males
with two bands and females with one band (figure 1e).
Sanger sequencing showed that the longer PCR product in
males was from amhy, whereas the shorter band in males
and the single PCR product in females were from amha (elec-
tronic supplementary material, figure S2). These results
indicate that amhy is indeed male-specific in S. schlegelii.
2.3. Expression analysis of amha and amhy
A total of 66 published transcriptomes [40] were used for
expression analysis of amh genes in different tissues of
adult S. schlegelii amhy was predominantly expressed in
testes and expressed at a low level in male liver and brain
tissue. No transcripts of amhywere detected in any female tis-
sues. amha displayed significantly higher expression in the
gonads compared to other tissues (figure 2a). Furthermore,
two transcripts of amha and two transcripts of amhy were
also detected from the assembled transcriptomes of ovary
and testis tissue. The alignment of transcripts identified a
5 bp ‘CAGAA’ insertion in the seventh, last exon (figure 2b).
This led to premature transcription termination, which
resulted in the lack of TGF-β domain. The expression analysis
of the four transcripts showed that the dominant transcript
was always the one with complete TGF-β domain (figure 2c).

Further, 38 transcriptomes of gonads covering different
developmental stages and sex-determining periods were
sequenced. amhy started to express in male samples at
20 dpp (days post parturition), though at a very low level.
Peak expression of amhy was detected at 50 dpp during the
sex-differentiation period. amhy did not show any expression
at 90 dpp whenmale sex was determined (figure 2d ). No tran-
scripts of amhywere detected in any female samples. amhawas
expressed in both sexes starting from 20 dpp to 2.5-year-old
adults, with much higher levels observed in mature gonads.
In most cases, male samples expressed more amha than amhy
(figure 2d ).

In situ hybridization (ISH) was also performed on histo-
logical sections of the gonads of male and female samples at
180 dpp, 1 year old and 2 years old. Given the high similarity
of amhy and amha, common probes of amhy and amha (marked
as amhy + amha) and amha-specific probes were synthesized,
respectively. Across different developmental stages of testis
tissue, both amhy and amha were detected in Sertoli cells
(figure 2e–g). In ovary tissue, amha was observed in primary
oocytes (figure 2e–g).

2.4. Overexpression of amhy caused female-to-male sex
reversal in Sebastes schlegelii

amh overexpression plasmid feeding can trigger female-to-
male transition in orange-spotted grouper (Epinephelus
coioides) [42,43], which indicated that plasmid feeding is feas-
ible for overexpression experiment in fish. The effect of
overexpression of amhy in S. schlegelii was investigated
in vivo. 40 dpp fry were divided into three groups. Fry feed
with a commercial diet was the empty control. Fry feed
with a commercial diet containing the empty plasmid was
the empty plasmid control. The amhy overexpression group
was feed with the commercial diet containing amhy overex-
pression plasmid. The genetically determined sex ratio of
the three treatment groups was approximately 1 : 1, with
the empty control being 28 female : 32 male, the empty plas-
mid control 31 female : 29 male, and the amhy overexpression
group 29 female : 31 male. Histological examination of
gonads for 180 dpp revealed that overexpression of amhy
resulted in incomplete sex reversal for all 29 females, whereas
no sex reversal was observed in females belonging to the
empty control (n = 28) and empty plasmid control groups
(n = 31). The gonads of genetic females at 180 dpp from the
empty control and empty plasmid control groups displayed
typical ovary structures, including the ovary cavity, oogonia
and primary oocytes (figure 3a–f ). The gonads of genetic
males displayed typical testis structure including the sperm
duct (figure 3g–i). In the group with amhy overexpression,
the gonads of all genetic females displayed a clear testicular
structure with a sperm duct-like cavity (figure 3j–l), as well
as a clear ovary cavity, which indicated incomplete sex reversal.

Furthermore, the expression profiles of a set of sex-differ-
entiation or sex-specific genes were characterized using
eight transcriptomes of gonads from control female, amhy
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Figure 2. Expression pattern of amh genes in tissues of S. schlegelii. (a) amhy was predominantly expressed in testes and expressed at a low level in male liver and
brain. No transcripts of amhy were detected in any of the female tissues. amha displayed significantly higher expression in the gonads compared to other tissues.
Different letters mark the significant differences ( p < 0.05) of amha or amhy expression among different tissues. Asterisk indicates the significant differences ( p <
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between amha and amhy in the same stage. (e) Spatial expression of amha and amhy mRNA in 180 dpp gonads. ( f ) Spatial expression of amha and amhy mRNA in
1-year-old gonads. (g) Spatial expression of amha and amhy mRNA in 2-year-old gonads. Abbreviations: Sg, spermatogonia; Sc, spermatocytes; St, spermatid;
Sz, spermatozoon; Se, Sertoli cells; Oc, oocytes.
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overexpression female and normal male at 180 dpp. The
expression levels of female-related genes, such as cyp19a1a,
sox3, foxl2, gdf9, bmp15 and figla were significantly decreased
whereas the male-related genes, such as amhr2, gsdf, dmrt1,
sox9, cyp11b and hsd11b2 were significantly increased in
amhy overexpression female (figure 3m). Moreover, amhy
overexpression female exhibited similar gene expression pat-
terns to those of normal male, which provided evidence of
sex reversal at molecular level.
2.5. The origin and phylogenetic analysis of amh genes
of Sebastes schlegelii

A syntenty map was generated for amha, amhy and their adja-
cent genes to estimate their genomic origins (figure 4a,b).
Eleven teleost species including S. schlegelii were used for
synteny analysis with spotted gar (Lepisosteus oculatus) as
the outgroup. The genes adjacent to amha were highly con-
served in all selected teleosts (figure 4a). amhy was only
present in S. schlegelii HiC_scaffold_12, although a group of
adjacent genes was conserved among all selected teleost
species (figure 4b). Two genes (kcnab1 and ssr3) upstream of
S. schlegelii amhy were absent in other species. These results
support HiC_scaffold_6 as the conserved location of the
S. schlegelii ancestral amh gene (amha), where amhy originated
from a duplication of amha and followed by translocation to
the future sex chromosome, HiC_scaffold_12. Chromosome
synteny analysis between S. schlegelii and S. umbrosus indi-
cated that all the homologous chromosomes showed very
high collinearity. It is interesting to see that the chromosomes
where amha is located (HiC_scaffold_6 in S. schlegelii and
NC_051273.1 in S. umbrosus) showed very high collinearity
between these two species (figure 4c, highlighted in blue).
However, amhy is located in two different homologous
chromosomes (figure 4c, highlighted in green and red).

A maximum-likelihood phylogeny was constructed for 37
protein-coding sequences of amh genes (both amha and amhy).
Samples used for phylogenetic reconstruction included
reported male-specific duplications of amh genes in Patago-
nian pejerrey [9], northern pike [11], Old World silverside
[44] and Odontesthes species [20], as well as six amh genes
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identified from three other Sebastes species: S. umbrosus,
S. koreanus and S. pachycephalus (two genes for each species,
respectively; figure 4d ). In Sebastes, all duplicated amhy
genes clustered together across the four sample species, and
this group was then most closely related to the original
amha genes in the same species (figure 4d ). The same pattern
was also observed for Odontethes (figure 4d ). For the other
sample taxa, amh genes clustered according to taxonomic
identity (i.e. species or genus) with significant bootstrap
values (figure 4d ). Since amhy genes did not group across
genera, this phylogenetic pattern suggests that the origin of
each duplicated sex-specific amh gene is independent and
lineage-specific.

2.6. The duplication of amh within the Sebastes genus
To further characterize the evolution of amha and amhy in the
genus Sebastes, we searched for the orthologous genes in
nine published genomes of Sebastes species (S. aleutianus,
S. koreanus, S. minor, S. nigrocinctus, S. nudus, S. norvegicus,
S. rubrivinctus, S. steindachneri and S. umbrosus). Two species,
S. koreanus and S. nudus, are closely related to S. schlegelii, and



spotted gar Chr:LG19

fkbp8

vmn2r1 kcnab1 ssr3 amhy tiparp lekr1 ccnl1a

ell dot1l sf3a2 amh oaz1a

black rockfish HiC_scaffold_6

honeycomb rockfish NC_051273.1

zebrafish Chr:22

Northern pike Chr:LG08

Fugu Chr:20

stickleback Chr:group VIII

large yellow croaker Chr:XVII

tongue sole Chr:2

guppy Chr:LG4

platyfish Chr:9

nile tilapia - Chr:LG23

spotted gar Chr:LG14

black rockfish HiC_scaffold_12

honeycomb rockfish NC_051275.1

zebrafish Chr:18

Northen pike Chr:LG01

Fugu Chr:11

stickleback Chr:groupI

large yellow croaker Chr:VII

tongue sole Chr:4

guppy Chr:LG13

platyfish Chr:18

nile tilapia Chr:LG14

amhy_Sebastes schlegelii

amhy_Sebastes pachycephalus

amhy_Sebastes koreanus

amhy_Sebastes umbrosus

amha_Sebastes umbrosus

amha_Sebastes schlegelii

amha_Sebastes pachycephalus

amha_Sebastes koreanus

amh_Gasterosteus aculeatus

amhy_Gasterosteus aculeatus

amhy_Odontesthes hatcheri

amhy_Odontesthes argentinensis

amhy_Odontesthes smitti

amhy_Odontesthes regia

amhy_Odontesthes incisa

amha_Odontesthes incisa

amha_Odontesthes hatcheri

amha_Odontesthes argentinensis

amha_Odontesthes smitti

amha_Odontesthes regia

amha_Hypoatherina tsurugae

amhy_Hypoatherina tsurugae

amh_Xiphophorus maculatus

amh_Poecilia reticulata

amh_Poecilia formosa

amh_Oreochromis niloticus

amhy_Oreochromis niloticus

amh_dicentrarchus labrax

amh_Tetraodon nigroviridis

amh_Takifugu rubripes

amha_Esox lucius

amhy_Esox lucius

amh_Oncorhynchus mykiss

amh_Danio rerio

amh_Astyanax mexicanus

amh_Lepisosteus oculatus

amh_Haplochromis burtoni

(a) (c)

(b)

(d)
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all three species occur in the northwest Pacific Ocean (Clade
C containing the subgenus Sebastocles; figure 5a) [21]. Three
species, including S. aleutianus found in the north Pacific
Ocean, and S. minor and S. steindachneri from the northwest
Pacific Ocean, belong to a separate phylogenetic clade that
probably split earlier in the evolution of the Sebastes genus
(Clade A with the subgenus Zalopyr; figure 5a) [21]. Three
species, S. nigrocinctus, S. rubrivinctus and S. umbrosus,
occur in the Northeast Pacific Ocean and belong to a separate,
more derived clade of Sebastes that dominates rockfish
diversity in that region (Clade D including the subgenera
Pteropodus, Rosicola, Sebastomus, Sebastichthys and Sebastosomus;
figure 5a) [21]. Finally, S. norvegicus occurs in theNorthAtlantic
Ocean and belongs to another clade located between the
S. schlegelii and S. aleutianus clades (Clade B containing the
subgenus Sebastes; figure 5a) [21].
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Two amh genes were identified from six of the nine
Sebastes species (figure 5b). Only one amh gene was detected
from the S. norvegicus (Clade B), S. minor (Clade A) and
S. rubrivinctus (Clade D) genome assemblies. It should be
noted that none of these species are closely related to S. schle-
gelii (Clade C), which potentially suggests divergence within
Sebastes for the amhy gene. The putative amhy gene was
detected in the six remaining species (spread across Clades
A, C and D) and all species contained the 166 bp insertion
located on intron 4. Notably, both amh genes contained the
two insertions in S. aleutianus (Clade A), whereas both amh
genes only contained the 131 bp insertion in S. umbrosus
(Clade D). However, when comparing the coding sequence,
the two genes of S. aleutianus corresponded to amha-like and
amhy-like, respectively (electronic supplementary material,
figure S3). It is difficult to determine whether this difference
in S. aleuntianus is caused by an incorrect assembly of the
genome region, or if the amha gene in S. aleutianus does
indeed include these two insertions.

The alignment of all the identified amh genes (sometimes
with incomplete sequences) indicated that the primers
designed for SD in S. schlegelii could be successfully applied
to other Sebastes species. We tested the feasibility of these
primers as a sex identification assay using two species
of northwest Pacific rockfish that are both related to
S. schlegelii—S. koreanus and S. pachycephalus (Clade C)—as
well as seven species of distantly related northeast Pacific rock-
fish: S. carnatus, S. diaconus, S. entomelas, S. flavidus, S. melanops,
S. mystinus and S. pinniger (Clade D). In the northwest Pacific
rockfish species, PCR amplification results matched for
S. schlegelii, with two bands in males and one band in females
(figure 5c). Sequencing of the amhy and amha PCR products
in these two species confirmed the occurrence of one insertion
of 166 bp in intron 4, as well as highly conserved intron
nucleotide sequences (electronic supplementary material,
figure S4). By contrast, in the northeast Pacific rockfish, PCR
amplification produced one or two bands for all samples of
each species, and males and females were not distinguished
(figure 5d ). These results indicate that the amhy gene is not
sex-dependent among northeast Pacific rockfish in Clade D.
3. Discussion
Male-specific duplication of amh has been proved to be
conserved in two clades of teleost fish, namely northern pike
[11] and among Odontesthes silversides [20]. This work pro-
vides a third example of an amh duplication event, within a
clade of Sebastes rockfish. A phylogenetic analysis suggests
that male-specific amhy genes have evolved independently
within each teleost lineage. The repeated, independent recruit-
ment of the same gene for SD supports the ‘limited options’
hypothesis for the evolution of genetic SD mechanisms [45].

We observe that the scale of genetic divergence between
the amha and amhy paralogs varies across species. The north-
ern pike shows the highest degree of sequence divergence
between two paralogs, with an average of 79.6% genomic
sequence identity [11]. In Nile tilapia, amhy and amha only
differs by one SNP [10]. The shared identity between the
two paralogues of Patagonian pejerrey ranges from 89.1%
to 100% depending on the exon [9]. In S. schlegelii, amha
and amhy share high-nucleotide identity ranging from
91.8% to 97.3% between exon sequences. The major differ-
ences are two insertions in amhy intron 4. The sequence
divergence between the amhy and amha paralogs in species
may be an indicator of duplication history or the selection
pressure upon the sex-determining genes during evolution.
It is noteworthy that compared to amha, the duplicated
amhy always contains insertions in the introns, such as
557 bp insertion in intron 3 in Patagonian pejerrey [9],
396 bp insertion in intron 1 in northern pike [11], 195 bp
insertion in intron 1 in the Old World silverside [44], and
approximately 0.5 kb insertion in intron 3 in the genus Odon-
testhes [20]. Introns 1 and 3 appear to be hotspots for
insertions. It would be interesting to see if the intron inser-
tions play some functional roles.
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In some special events, the duplicated amhy loses some
exons or conserved domains. For example, in the case of
Hypoatherina tsurugae, amhy lacks exons 2 and 3 but contains
a complete TGF-β domain, suggesting the ability of binding
to its receptor amhr2 and then activating the downstream sig-
nalling of testis differentiation [44]. In Nile tilapia, a tandem
duplication caused two copies of amhy in the Y chromosome,
one of which contained 5 bp (ATGTC) insertion in the exon 6,
producing a protein lacking TGF-β domain, which was
regarded as the degenerative gene named amhΔy [10].
A recent study reported that the association of amhΔy with
sex was more conserved than the missense SNP of amh in
different Nile tilapia strains [19]. We also observed ‘trun-
cated’ transcripts produced by alternative splicing from
S. schlegelii. Two alterative transcripts were detected both for
amha and amhy in S. schlegelii. It is probable that amhy still
keeps the same alternative splicing mechanism with amha
after duplication and translocation. Interestingly, Nile tilapia
produced three copies of amh genes to create one ‘truncated’
protein (AmhΔy), whereas S. schlegelii took the alternative spli-
cing strategy to produce the ‘truncated’ protein. This AmhΔy
protein in Nile tilapia lacking the TGF-β domain cannot
directly bind to amhr2 [10]. Further investigation of how such
‘truncated’ proteins participate in testicular development
and how the two amh genes cooperate to initiate testicular
differentiation of S. schlegelii needs to be explored further.

In several species like Patagonian pejerrey [9], Nile tilapia
[10] and northern pike, the duplicated amh gene has been
reported to be male-specific and has been validated to be
the MSD gene. The amhy identified in S. schlegelii is also
male-specific and can drive the testis differentiation cascade.
A previous study reported that morphological differentiation
of S. schlegelii ovaries and testes was not synchronous, with
ovary differentiation occurring at approximately 25 dpp and
testis differentiation at approximately 85 dpp [29]. In our
study, amhy started to be expressed at 20 dpp prior to the mor-
phological differentiation of ovaries and testes in S. schlegelii.
This pattern matches results for Nile tilapia [10] and northern
pike [11], suggesting that the putative function of amhy is
to suppress ovary development in genetic males. RNA-seq
analysis and ISH in different development stage testis indi-
cated that both amhy and amha were expressed in Sertoli
cells. These results agreed with previously reported results
in medaka [46], zebrafish [47], Japanese eel [48] and Japanese
flounder [49], which indicates the conserved role of amh in
testis differentiation among teleosts. Additionally, the amh
gene expression has been recorded in follicular cells and its
expression seems to be specific to granulosa cells in medaka
[46] and zebrafish [47]. This appears to be conserved even
among mammals [50,51]. However, amhawas detected in pri-
mary oocytes in ovaries at different developmental stages in
S. schlegelii, indicating that amha may play some roles in
oocytes maturation, which differs from reports for other tele-
osts and mammals. However, the exact roles of amh in this
regard need in-depth observation.

Previous studies have conducted overexpression assays to
investigate the function of putative MSD genes in SD. In the
medaka Oryzias latipes, overexpression of DMY cDNA con-
trolled by the CMV promoter using pIRES-hrGFP-1a vector,
caused XX sex reversal [52]. In another medaka species,
O. luzonensis, the presence of a genomic fragment that
included GsdfY also caused XX sex reversal [53]. Overexpres-
sion of the duplicated amh gene in Nile tilapia [10] and
northern pike [11] resulted in sex reversal in both species.
In this study, amhy overexpression resulted in female-
to-male sex reversal for all tested genetic females, which
indicated that the amhy protein was sufficient to trigger testi-
cular development in S. schlegelii. Gene expression analysis of
sex-reversed female suggested that amhy determined the sex
of S. schlegelii probably by suppressing gonadal aromatase
expression and/or activating a male-specific signalling path-
way. These results provided sufficient evidence to support
amhy as the MSD gene in S. schlegelii.

The amhy PCR assay developed here can be successfully
applied in at least two other northwest Pacific rockfish
species closely related to S. schlegelii (Clade C), but it was
not successful for distinguishing males and females in at
least one major clade of Sebastes found in the northeast Pacific
Ocean (Clade D). This pattern in our results indicates that the
amhy MSD gene may not be universal among Sebastes. The
amhy gene may be the ancestral MSD gene in Sebastes,
which has been lost by the clade of northeast Pacific rockfish
(Clade D). Alternatively, amhy may have evolved as the MSD
gene in only the clade of northwest Pacific rockfish that
contains S. schlegelii (Clade C). If it is the latter case, amh dupli-
cation happened in the ancestral genome of Sebastes, but the
gene was translocated to different positions in the genome
for different clades of rockfish, based on the observation that
amhy was found on two different homologous chromosomes
in S. schlegelii and S. umbrosus. Obviously, amhy is the sex-
determining gene in S. schlegelii but not in S. umbrosus. We
suspect that the translocated position determined whether
the translocated amhy became the sex-determining gene or
not. Further PCR assays and sequencing results are required
from a wider diversity of species to determine the repre-
sentation of the amhy MSD among Sebastes rockfish. The
developed PCR assay has the potential to improve fisheries
management and conservation in S. schlegelii and closely
related species including S. koreanus and S. pachycephalus.
Using this assay, the sex of individuals can be genetically
identified at any developmental stage without relying on the
examination of urogenital papillae in sexually mature adults,
or the lethal dissection of gonads. This discovery will aid
stock assessment efforts in aquaculture, and any future
population genetic research.

In conclusion, we identified a duplication of amh in
S. schlegelii, which generated a male-specific copy named
amhy. We revealed that amhy was essential for male SD in
S. schlegelii and provided substantial evidence to support
amhy as the MSD gene. We hypothesized that the GSD using
amhy was conserved in the clade of northwest Pacific rockfish
(Clade C), and we developed an effective and efficient sex
marker for this group. An amh MSD gene may therefore be
the ancestral state of Sebastes, which has been subsequently
lost in the clade of northeast Pacific rockfish, or it may have
evolved specifically among northwest Pacific rockfish.
4. Material and methods
4.1. Samples
Fifty specimens of S. schlegelii (body length: 20.3 ± 1.5 cm,
weight: 261.5 g ± 25.0 g) were captured from a deep-sea
cage in Zhucha Island (Qingdao, Shandong, China) and
then transported to the laboratory at Ocean University of
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China. Fish were cultured in the laboratory for 3 days before
dissection. Gonads were dissected to determine the physio-
logical sex of each individual. A piece of muscle tissue was
fixed in 95% ethanol. Ten male samples and ten female
samples were selected for resequencing. The fry of S. schlegelii
were obtained from 3-year-old brood stock and cultured in
Weihai Taifeng Hatchery Co., Rushan, China. Thirty fry
were sampled every 10 days starting at 20 dpp until
90 dpp. Considering that the gonads were too small to be
isolated, the entire trunks were fixed in RNA-later for RNA
isolation. Meanwhile, muscle tissue from each sample was
fixed in 95% ethanol for DNA extraction and further genetic
sex identification. Gonads from different developmental
stages were sampled from 180 dpp, 200 dpp, 1-year-old,
1.5-year-old and 2-year-old individuals cultured in Weihai
Yinze Biotechnolgy Co., Wendeng, China. Twelve individ-
uals (six male and six female) were sampled for each stage.
One piece of gonad was immediately frozen in liquid nitro-
gen and stored at −80°C for RNA extraction. The other
piece of gonad was fixed in 4% paraformaldehyde (PFA)
for 24 h at 4°C and then dehydrated with methanol. Samples
from three northwest Pacific rockfish species (S. schlegelii,
S. koreanus and S. pachycephalus; all belonging to Clade C;
figure 5a) and seven species of northeast Pacific rockfish
species (S. carnatus, S. diaconus, S. entomelas, S. flavidus,
S. melanops, S. mystinus and S. pinniger; all in Clade D;
figure 5a) were used to test the efficiency and effectiveness
of the sex marker. The northwest Pacific species samples
were bought from the Xuejiadao Seafood Market in Qingdao,
China. A total of 40 individuals (20 males and 20 females) for
S. schlegelii, 23 individuals for S. koreanus (10 males and
13 females) and 32 individuals for S. pachycephalus (15
males and 17 females) were used for validation. Samples of
S. carnatus were collected as part of a previous study from
waters off southern California [31], and the remaining six
northeast Pacific samples were collected off Oregon by the
Oregon Department of Fish and Wildlife. Full sampling
information is provided in the electronic supplementary
material for a previous study that used the same samples
[32]. Two males and two females were used for each northeast
Pacific species, except for S. mystinuswhere only one male and
one female were used (electronic supplementary material,
figure S5).
4.2. Resequencing and coverage analysis
Genomic DNA was extracted from muscle of S. schlegelii
using Tris-Phenol method and subjected to quality control.
An input amount of 1μg high-quality DNA was used for
the WGS library construction using MGIEasy DNA Rapid
Library Prep Kit (BGI, catalog no. 1000006985), and 100 bp
paired-end reads were generated on an DIPSEQ T1 platform.
Raw reads were cleaned using SOAPnuke [54] to remove
adapter sequences and low-quality reads. Clean reads were
mapped to the reference genome of S. schlegelii using BWA
[55] with default parameters. Samtools v. 1.4 [56] was then
used to calculate coverage depth of scaffolds for each
sample. Coverage depth was normalized with log2(coverage
depth value) and then used to compare the difference
between sexes with a sliding window of 1000 bp. We added
1 to each value to avoid infinitely high numbers associated
with log2 0.
4.3. Sequence analysis of amha and amhy
Shared identity between amha and amhy gene exon sequences
and protein sequences of S. schlegelii was calculated using
EMBOSS Water [57] implemented on EMBL-EBI [58,59] with
default parameters. The signal peptide and conserved domains
of amh genes were annotated using SMART [60]. BLAST
(blastn version 2.2.26) was used to identify amh genes from
the genome of nine Sebastes genus species (assembly ID:
SRub1.0 for S. rubrivinctus, fSebUmb1.pri for S. umbrosus,
ASM191080v2 for S. aleutianus, ASM191078v2 for S. steindach-
neri, ASM191076v2 for S. minor, ASM433533v1 for S. koreanus,
ASM47523v3 for S. nigrocinctus, ASM433536v1 for S. nudus
and ASM90030265v1 for S. norvegicus) with e-value of 2 ×
10−5 and alignment length no less than 500 bp. The alignments
of the amh genes of S. schlegelii and incomplete amh genes of
other Sebastes genus species were performed and visualized
using the mVISTA Shuffle-LAGAN program [61,62] with
default parameters.

4.4. Expression analysis of amha and amhy
A total of 104 transcriptomes, 66 of which are available at
CNSA (CNGBNucleotide Sequence Archive) under the acces-
sion ID CNP0000222 [40] and 38 newly built libraries covering
sex-determining period (20, 30, 50, 70 and 90 dpp) and differ-
ent developmental stages of gonads (200 dpp, 1.5 years old)
were used to analyse the expression of two amh genes. These
new libraries were sequenced 150 bp from each end using
the NovaSeq 6000 platform. Basic statistics of the 38 tran-
scriptomes were listed in electronic supplementary material,
table S3. TPM (transcripts per kilobase million), a more accu-
rate measure of RNA abundance than RPKM (reads per
kilobase million) [63], was calculated using Salmon version
0.7.2 [64] with default parameters and visualized using
GraphPad Prism 7. To compare the expression of amha or
amhy among different tissues or different developmental
stages, pair-wise comparison of gene counts was performed
by DEseq 2 [65]. p-value of each comparison was extracted
for amha and amhy. Differences were considered significant
when p < 0.05. To detect the expression differences between
amha and amhy in the same tissue or the same stage, indepen-
dent t-test was conducted by SPSS (V. 20.0.0). Differences were
considered significant when p < 0.05.

4.5. Sex marker developed to distinguish genetical
male and female in genus Sebastes

A pair of primers (Fw50-GTAAACCAAGAACTGAGGAG-
GAG-30, Rv50-GAGAAAAGCAGAAGTGGAATCA-30, also
shown in electronic supplementary material, table S4) span-
ning the 166 bp insertion in amhy intron 4 was designed for
PCR amplification in male and female S. schlegelii samples.
The following PCR amplification program was carried out:
5 min at 95°C, 32 cycles of 30 s at 95°C, 30 s at 57°C, 40 s at
72°C per cycle, 5 min at 72°C, held at 4°C. PCR amplification
for the validation of the applicability of the primers in
S. koreanus, S. pachycephalus and the northeast Pacific species
(S. carnatus, S. diaconus, S. entomelas, S. flavidus, S. melanops,
S. mystinus and S. pinniger) was also performed with the
same program. PCR products were detected by 1.5% or
1.6% agarose gel electrophoresis.
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4.6. Phylogenetic and synteny analyses
A set of amh protein-coding sequences were collected and
retrieved from NCBI or the Ensembl database (accession
numbers listed in the electronic supplementary material,
table S1). The alignment of the amh proteins sequences was
performed using MAFFT v. 7.475 [66] and a maximum-like-
lihood phylogeny was constructed using IQ-TREE version
1.6.12 with 1000 bootstraps [67]. Genomicus version 102.01,
a synteny browser (https://www.genomicus.biologie.ens.
fr/ [68,69]), was used to generate the synteny sketch map
of spotted gar, zebrafish (Danio rerio), northern pike, fugu
(Takifugu rubripes), threespine stickleback (Gasterosteus aculea-
tus), Nile tilapia, platyfish (Xiphophorus maculatus), large
yellow croaker (Larimichthys crocea), tongue sole (Cynoglossus
semilaevis) and guppy (Poecilia reticulata). The synteny sketch
map of S. schlegeliiwas generated from the published genome
[40] (accession ID CNP0000222) according to the annotated
genes based on their location. The synteny sketch map of
S. umbrosus was also generated from the published genome
(assembly id: fSebUmb1.pri). Chromosome-scale synteny
analysis of S. schlegelii and S. umbrosus was performed
using MCScanX [70] and visualized using TBtools v. 1.075
[71]. Protein-coding genes were used for synteny analysis
and only the best BLAST results were retained.

4.7. In situ hybridization
ISH of testis and ovary was performed as previously described
[72]. The probes of amha and that of amhy and amha were
amplified, respectively, from cDNA using two pairs of primers
list in the electronic supplementary material, table S4. The
results were imaged by AZ100 (Nikon, Tokyo, Japan).

4.8. Overexpression of amhy in fry of Sebastes schlegelii
The overexpression vector was constructed as described in a
previous study [10]. Shortly, the amhy ORF was subcloned
into themultiple cloning sites downstream of the CMVpromo-
ter of pIRES-hrGFP-1a vector. Then, the plasmids were
extracted and diluted to 10 µg/µl. The procedures of plasmids
packaging and feeding were similar to the studies in orange-
spotted grouper (Epinephelus coioides) [42,43] with some differ-
ences. Briefly, the empty plasmids (pIRES-hrGFP-1a) and amhy
overexpression plasmids (pIRES-hrGFP-1a-amhy)were encap-
sulated by liposome6000 (Beyotime) at the volume ratio of 1 : 1,
making the final concentration of construct 5 µg µl−1. The con-
structs were then mixed with a commercial diet at the ratio of
1 ml kg−1 diet; 1500 40 dpp fry were randomly selected and
divided into three groups: empty control (n = 500), control
group (n = 500) and amhy overexpression group (n = 500).
These three groups were cultured in separate tanks with differ-
ent feeds but same amount. The empty control was fed with a
normal commercial diet. The control group was fed with a diet
containing empty plasmids. The amhy overexpression group
was fed with a diet containing amhy overexpression plasmids.
The treatment lasted 50 days. Sixty individuals were randomly
selected from each group and sacrificed at 180 dpp (90 days
after the completion of treatment). Gonads and muscles were
sampled for histological analysis. Physiological sex for each
individual was determined by the morphology of gonads
and routine hematoxylin-eosin staining. The genetic sex of
these samples was determined using the sexmarker developed
in this study. Gonads from control female, amhyoverexpression
female and normalmalewere also sampled in triplicates for the
following RNA extraction and transcriptome libraries con-
struction. Gene expression and statistical analysis were
carried out as described above.
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