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Abstract
Genetic complexity and DNA damage repair defects are common in different cancer types and can induce tumor-specific 
vulnerabilities. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through syn-
thetic lethality and have emerged as promising anticancer therapies, especially in tumors harboring deleterious germline 
or somatic breast cancer susceptibility gene (BRCA ) mutations. However, the utility of PARP inhibitors could be expanded 
beyond germline BRCA1/2 mutated cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair 
inhibitor. US Food and Drug Administration (FDA)-approved PARP inhibitors include olaparib, rucaparib, and niraparib, 
while veliparib is in the late stage of clinical development. Talazoparib inhibits PARP catalytic activity, trapping PARP1/2 
on damaged DNA, and it has been approved by the US FDA for the treatment of metastatic germline BRCA1/2 mutated breast 
cancers in October 2018. The talazoparib side effect profile more closely resembles traditional chemotherapeutics rather 
than other clinically approved PARP inhibitors. In this review, we discuss the scientific evidence that has emerged from both 
experimental and clinical studies in the development of talazoparib. Future directions will include optimizing combination 
therapy with chemotherapy, immunotherapies and targeted therapies, and in developing and validating biomarkers for patient 
selection and stratification, particularly in malignancies with ‘BRCAness’.

Key Points 

PARP inhibitors are a family of enzymes that play a role 
in DNA repair.

Tumors carrying mutations in BRCA1/2 and other genes 
implicated in homologous repair deficiency are particu-
larly sensitive to PARP inhibition.

Talazoparib has greater stereospecific PARP-DNA trap-
ping ability than other PARP inhibitors.

Evidence supporting the use of talazoparib in the treat-
ment of ovarian cancer is limited in comparison with 
other PARP inhibitors.

Talazoparib has mostly been investigated in breast can-
cer.
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1 Introduction

Ovarian cancer is one of the most common malignancies 
of the female genital tract, ranking third after cervical and 
uterine cancer. In 2017, there were 22,440 estimated new 
diagnoses of ovarian cancer and 14,080 deaths from the 
disease in the United States; deaths were higher than from 
cancer of the corpus uteri but lower than from cervical 
cancer [1]. Usually, patients with epithelial ovarian can-
cer (EOC) respond well to the initial standard treatment, 
which includes cytoreductive surgery followed by adjuvant 
platinum-based chemotherapy. Furthermore, it has been 
supported that neoadjuvant treatment is non-inferior to 
the standard primary debulking strategy in management of 
those who were fit for either procedure [2]. However, up to 
80% of patients relapse and the estimated median progres-
sion-free survival (PFS) is approximately 12–18 months [3].

Recent advances in next-generation sequencing (NGS) 
have shown that the development of EOC is a complex 
multi-step process. Diverse genetic and epigenetic altera-
tions play a fundamental role in tumorigenesis, progres-
sion, and development of drug resistance during the treat-
ment course [4, 5]. Furthermore, two-thirds of patients are 
initially diagnosed with advanced or metastatic disease 
[6]. Together, chemoresistance and late diagnosis make 
EOC an incurable disease with an overall 5-year survival 
rate of < 30% [6].

Inhibition of poly(ADP-ribose) polymerase (PARP) in 
tumor cells in which repair of DNA is already impaired 
can lead to tumor cell death by increasing genomic insta-
bility [7]. The antitumor activity of PARP inhibition was 
first demonstrated in ovarian cancer cells [8]. Talazopar-
ib’s mechanism of action includes inhibition of PARP1/2 
enzymes, which play an instrumental role in detection and 
repair of single-strand DNA damage; subsequent PARP 
trapping, in which PARP proteins remain bound to a PARP 
inhibitor and with DNA, prevents DNA repair, replica-
tion, and transcription, ultimately leading to cell death. 
Cells with mutations in breast cancer susceptibility genes 
1 or 2 (BRCA1/2) have an impaired double-strand DNA 
break (DSB) repair mechanism and are highly dependent 
on the single-strand repair pathway, regulated by PARP [9, 
10]. In the case of genomic loss of DNA repair function 
or other impairment of homologous recombination (HR), 
synthetic lethality induced by PARP inhibition occurs and 
can be used to target tumor tissue selectively.

From the original in vitro observation to the clinical 
evidence of anticancer activity in BRCA -related recur-
rent EOC, PARP inhibitors have changed the therapeutic 
approach to patients with BRCA -mutated ovarian cancer. 
Currently, there are multiple PARP inhibitors approved 
and in clinical development for EOC therapy. Olaparib, 

rucaparib, and niraparib have all obtained US Food and 
Drug Administration (FDA) and/or European Medicines 
Agency (EMA) approval in ovarian cancer in different set-
tings while veliparib is being investigated mainly in com-
bination with chemotherapy or targeted agents and it is not 
currently approved in USA or Europe [11]. Talazoparib 
is the most potent of the PARP inhibitors, based on its 
enhanced capability to trap PARP on the DNA and its sub-
sequent higher cytotoxicity [12]. However, this enhanced 
potency is accompanied by a toxicity profile more similar 
to that observed with chemotherapeutics, as compared with 
other clinically approved PARP inhibitors [12, 13]. Inter-
estingly, combinations of PARP inhibitors with drugs that 
inhibit HR may sensitize EOC with primary or secondary 
HR proficiency to PARP inhibitors [11]. This observation 
suggests that PARP inhibitor therapeutic utility could be 
expanded beyond HR-deficient ovarian cancers.

In this review, we provide an updated overview of tala-
zoparib clinical development, we discuss available results 
from recent and ongoing clinical trials and future challenges 
including identification of a wider population that can ben-
efit from this class of agents.

2  Mechanisms of DNA Repair

DNA damage is a frequent event during cell life. It can be 
spontaneous or caused by cell metabolism or by environmen-
tal agents and can result in single-strand DNA breaks (SSBs) 
or DSBs [14]. In HR-deficient cells, DNA repair is impaired, 
leading to cell cycle arrest and/or cell death, whereas, in HR-
proficient cells, DSBs are repaired, maintaining cell viability 
[15]. HR and non-homologous end joining (NHEJ) recombi-
nation are the two major pathways responsible for repairing 
DNA DSBs [16]. HR is a high fidelity repair mechanism, 
active during phase G2-S of the cell cycle [17], whereas 
NHEJ is faster but error prone [18]. Additional DNA damage 
repair mechanisms in mammalian cells include base excision 
repair (BER), nucleotide excision repair (NER), mismatch 
repair (MMR), and translesional synthesis, which are the 
primary mechanisms to resolve DNA SSBs [19]. In the case 
of functional defects of both HR and classical NHEJ, inhibi-
tion of PARP1 avoids activation of alternative NHEJ causing 
the death of HR-deficient cells [20].

Activation of PARP1 appears to affect DNA methylation, 
thus suggesting the existence of a close connection between 
DNA methylation and PARylation. If PARylation is inhib-
ited and the BER pathway is impaired, SSBs persist and 
cause stalled replication forks and DSBs. This could lead to 
loss of genomic instability, cell death, and even carcinogen-
esis if not correctly repaired [21]. PARP1 also contributes 
to HR system functioning by either recruiting critical DNA 
repair factors such as NBS1 and MRE11 to sites of DSBs 
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or preventing the Ku70/80 proteins’ interaction with free 
DNA ends [22]. Ku proteins are essential components of 
the NHEJ pathway, and PARP1 exerts an active role in their 
inhibition [22].

PARP1 accounts for approximately 90% of the total 
PARP activity and consists of three main domains; an NH2-
terminal DNA binding domain, an automodification domain, 
and a C-terminal catalytic domain [7, 23]. The involvement 
of PARP2 and PARP3 in the DNA damage response has not 
been equally investigated. Nevertheless, PARP2 is known 
to be involved in BER/SSBs repair pathways, while PARP3 
participates in DSBs repair through NHEJ [24].

PARP inhibitors may also function by trapping PARP1 
and PARP2 at DNA lesions, thus abolishing PARylation-
mediated biological processes such as DNA damage repair. 
PARP–DNA complexes have the ability to interfere with 
DNA replication, and recent studies have indicated that 
PARP trapping is important for the cytotoxicity of PARP 
inhibitors [25, 26]. This explains the different magnitude of 
cytotoxicity exerted by different PARP inhibitors. Among 
PARP inhibitors that have already been evaluated, olaparib, 
niraparib, and rucaparib trap PARP approximately 100-fold 
more efficiently than veliparib, while talazoparib appears to 
be the most potent PARP trapper investigated so far [25].

3  BRCA  Genes and Cancer Susceptibility

Identification of BRCA  genes as risk factors for cancer devel-
opment and the availability of effective cancer treatments 
for patients with these mutations has promoted BRCA  muta-
tional analysis, genetic counseling, and risk assessment and 
treatment and has led to the framework of the management 
of breast and ovarian cancers [27]. The BRCA1 gene was 
identified in 1990 [28], whilst simultaneously, Stratton and 
Wooster working at the Institute of Cancer Research, Lon-
don, UK discovered the BRCA2 gene [29].

The BRCA1 gene is located on the long arm of chromo-
some 17, consisting of 24 exons. A large number of dele-
tions, insertions, or duplications have been reported in its 
sequence. BRCA1 takes part in response signaling of the 
DNA DSB damage, and the following repair depending on 
HR repair. It also participates in transcription regulating and 
cell-cycle checkpoint controlling. The BRCA2 gene plays a 
more direct repair role in HR repair relying on the regulation 
of RAD51, and it is located on the long arm of chromo-
some 13. It is larger than BRCA1 and consists of 27 exons. 
Approximately 2000 different mutations have been identified 
in both genes; nevertheless, they are not all risk-associated.

In terms of the risk for specific cancers in BRCA1 or 
BRCA2 mutation carriers, a prospective study reported 
cumulative risks of breast and ovarian cancer of 72% and 
44%, respectively, for germline BRCA1, and 69% and 17% 

for germline BRCA2 mutations [30]. Of note, in the gen-
eral population, the cumulative breast and ovarian cancer 
risk is 12% and 1.3%, respectively [31]. Germline BRCA1/2 
accounts for 22.6% of mutations in high-grade serous 
EOC, usually accompanied by the loss of heterozygosis 
(LOH) [32]. On the other hand, somatic mutations are pre-
sent in 6–7% [33], and BRCA1 hypermethylation occurs 
in around 10% of high-grade serous EOC [34]. Although 
BRCA -mutated ovarian cancers are frequently diagnosed at 
an advanced stage, and in young women, their prognosis 
remains better than that of BRCA  wild-type EOC [32, 35].

4  Synthetic Lethality and BRCAness

Two preclinical studies published in 2005 demonstrated the 
exquisite in vitro sensitivity of BRCA -mutated cells to treat-
ment with a selective inhibitor of PARP, providing strong 
support for their clinical development [8, 36]. The model 
proposed was based on the concept of synthetic lethality, 
which describes the combined lethal effect of two genetic 
variations that are otherwise non-lethal when occurring 
in isolation [37]. Based on this phenomenon known to 
geneticists since the last century, PARP inhibition has been 
evaluated in BRCA1/2-deficient tumor cells, with up to a 
1000-fold increased sensitivity relative to BRCA  wild-type 
tumor cells [15]. In addition to mutations in BRCA1/2 genes, 
genomic alterations involving other genes in HR pathways 
have been recognized [34], resulting in a BRCA -like pheno-
type, and conferring sensitivity to PARP inhibition [38, 39]. 
Indeed, the concept of ‘BRCAness’ has been introduced to 
describe the shared phenotype between sporadic cancers and 
familial cancers with BRCA1/2 mutations. This BRCAness 
phenotype may be attributed in part to defective HR sec-
ondary to several mechanisms, including hypermethylation 
of the BRCA1 promoter, somatic mutations of BRCA1/2, or 
EMSY amplification. Furthermore, several somatic muta-
tions in genes beyond BRCA  have been recognized so far, 
which are also involved in HR repair, such as ATM, ATR, 
BAP1, CDK12, CHEK2, FANCA, FANCC, FANCD2, 
FANCE, FANCF, PALB2, NBS1, WRN, RAD51C, RAD51D, 
MRE11A, CHEK1, BLM, and RAD51B. This is therapeuti-
cally important as the activity of PARP inhibitors has now 
been demonstrated in trials to extend beyond germline BRCA  
mutation-associated ovarian cancer [40]. The first demon-
stration of a clinically meaningful activity of olaparib in 
BRCA -proficient ovarian tumors was provided by Gelmon 
and colleagues in a phase II study (NCT00679783) [41]. 
Moreover, therapeutic interventions in BRCA  proficient 
tumors and in tumors without BRCAness that could result 
in HR impairment with subsequent sensitization to PARP 
inhibitors is an approach that merits further investigation.
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Ongoing efforts are directed towards the clinical appli-
cation of synthetic lethality and the development of novel 
inhibitors that target the various components of the DNA 
repair mechanisms. Indeed, blocking of the BER pathway 
with PARP inhibitors significantly improves survival of can-
cer patients. Within this context, it has been demonstrated 
that Αtaxia telangiectasia and Rad3-related protein (ATR) 
inhibitor NU6027 inhibits RAD51 foci formation and exhib-
its a synthetic lethal relationship with BER inactivation in 
ovarian cancer cell line [42]. Similarly, targeted modulation 
of HR and NHEJ factors may develop novel cancer inhibi-
tors. DNA-dependent protein kinase (DNA-PKcs) involved 
in the NHEJ process has been suggested as a therapeutic 
target [43].

5  Clinical Development of Poly(ADP‑ribose) 
Polymerase (PARP) Inhibitors

PARP inhibitors were originally developed for cancer treat-
ment as radio- and chemosensitizing drugs. Their activity 
is based on the concept of synthetic lethality. Olaparib, 
rucaparib, niraparib, veliparib, and talazoparib have been 
developed to a different extent either as a single agent or in 
combination therapy for the management of EOC.

Historically, the EMA approved in 2014 a capsule formu-
lation of olaparib in a maintenance setting for BRCA  carriers 
with recurrent high-grade serous EOC, fallopian tube, or 
primary peritoneal carcinoma [40]. The maximum tolerated 
dose (MTD) of 400 mg twice daily was established based 
on the dose-limiting toxicities of fatigue, somnolence, and 
thrombocytopenia. A few months later, the FDA granted 
approval to olaparib for germline BRCA -mutated advanced 
EOC, fallopian tube, or primary peritoneal carcinoma, 
in patients previously treated with three or more lines of 
chemotherapy [44]. The tablet formulation of olaparib has 
been approved by both agencies for the maintenance therapy 
of platinum-sensitive recurrent ovarian cancer regardless 
of BRCA  mutational status [40, 45]. Due to the enhanced 
bioavailability, the approved dose of the tablet is 300 mg 
twice daily [46]. The FDA approved olaparib maintenance 
treatment on December 19, 2018, based on the results of 
the SOLO-1 trial (NCT01844986), examined the efficacy 
of olaparib versus placebo in subjects with BRCA -mutated 
advanced EOC, fallopian tube, or primary peritoneal carci-
noma, who responded to first-line platinum-based chemo-
therapy [47]. The estimated median PFS was not met in 
the olaparib arm and was 13.8 months in the placebo arm 
[hazard ratio (HazR) 0.30, 95% confidence interval (CI) 
0.23–0.41; p < 0.001]. Overall survival (OS) data were 
not yet realized in the study. Very recently, the phase III 
PAOLA-1/ENGOT-ov25 trial (NCT02477644) assessed the 
addition of olaparib to bevacizumab maintenance therapy 

in unselected patients with advanced EOC, fallopian tube, 
or primary peritoneal carcinoma, who achieved complete 
response (CR) or partial response (PR), following first-line 
platinum-based therapy accompanied by bevacizumab [48]. 
As presented at the 2019 European Society for Medical 
Oncology (ESMO) congress, overall median PFS was signif-
icantly longer with the doublet compared with bevacizumab 
monotherapy (22.1 vs 16.6 months, respectively; HazR 0.59, 
95% CI 0.49–0.72; p < 0.001). The cohorts with a BRCA  
mutation or HR deficiency achieved even longer PFS.

Following approval of olaparib, rucaparib and niraparib 
received authorization for the treatment of relapsed BRCA 
-mutated ovarian cancer. Rucaparib was approved by the FDA 
in December 2016 and by the EMA in May 2018 for the treat-
ment of high-grade serous EOC, fallopian tube, or primary 
peritoneal carcinoma patients with germline or somatic BRCA  
mutations, relapsed after at least two chemotherapy lines. The 
efficacy was demonstrated by a pooled analysis of two multi-
center, single-arm clinical trials; study 10 and ARIEL 2 study 
[49–51]. The established MTD in study 10 was 600 mg twice 
daily, whereas rucaparib treatment showed an ORR of 59.5%, 
with a median duration of response of 7.8 months in 42 pre-
treated, platinum-sensitive, high-grade serous EOC patients 
carrying a germline BRCA  mutation [49]. ARIEL 2 enrolled 
192 platinum-sensitive EOC patients, stratified into three sub-
groups according HR deficiency status: BRCA1/2 mutated, 
BRCA  wild-type with LOH high, and BRCA  wild-type with 
LOH low, respectively [50]. The median PFS was signifi-
cantly longer in the BRCA mutated subgroup (12.8 months; 
HazR 0.27; p < 0.0001) and in the BRCA  wild-type/LOH 
high (5.7 months; HazR 0.62; p = 0.011), as compared with 
BRCA  wild-type/LOH low subgroup (5.2 months). Similarly, 
the objective response rate (ORR) was higher in the BRCA1/2 
mutated and BRCA  wild-type/LOH high, than the BRCA  wild-
type/LOH low subgroup (80, 29, and 10%, respectively).

In March 2017, the FDA approved niraparib at a dosage 
of 300 mg daily as maintenance treatment of recurrent EOC, 
fallopian tube, or primary peritoneal carcinoma in patients 
obtaining CR or PR to platinum-based chemotherapy. The 
EMA’s approval for the same indication was established 
in November 2017. In October 2019, the FDA approved 
niraparib for patients with advanced HR-deficient EOC, or 
primary peritoneal cancer treated with at least three prior 
chemotherapy regimens, based on the results of the Quadra 
trial (NCT02354586) [52]. Efficacy was investigated in 98 
patients with either tumor BRCA -mutated (n = 63) and/or a 
genomic instability score ≥ 42 (n = 35). The ORR was 24% 
(95% CI 16–34), whereas the estimated median duration of 
response reached 8.3 months (95% CI 6.5–not estimable). 
In the subset of BRCA -mutated EOC, the ORR was 39% 
(95% CI 17–64) in patients with platinum-sensitive disease, 
compared with 29% (95% CI 11–52) and 19% (95% CI 4–46) 
in those with platinum-resistant and platinum-refractory 
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disease, respectively. Adverse events led to dose reduc-
tion or interruption in 73% of patients treated with nira-
parib in Quadra. Furthermore, the phase III PRIMA study 
(NCT02655016) compared niraparib with placebo in newly 
diagnosed, advanced, platinum-sensitive EOC regardless of 
BRCA  mutation status. Niraparib extended PFS significantly 
more than placebo in both the overall population and the 
subset of patients with HR deficiency [53].

As far as veliparib is concerned, the phase III VELIA 
trial (NCT02470585) presented at the 2019 ESMO congress 
demonstrated that patients with high-grade serous EOC, fal-
lopian tube, or primary peritoneal carcinoma experienced 
a 32% reduction in the risk of progression or death with 
frontline combination veliparib plus carboplatin and pacli-
taxel followed by veliparib maintenance treatment [54]. 
The VELIA study randomized patients in three arms. The 
control arm consisted of carboplatin and paclitaxel with 
placebo followed by placebo as maintenance (n = 375). In 
the second arm, veliparib was added at 150 mg twice daily 
to carboplatin and paclitaxel as induction therapy followed 
by placebo maintenance (n = 383). In the third arm, the 
maintenance treatment consisted of veliparib 400 mg twice 
daily (n = 382). The overall median PFS for the induction 
and maintenance phases combined in the veliparib arm was 
23.5 months compared with 17.3 months in the placebo 
arm (HazR 0.68, 95% CI 0.56–0.83; p < 0.001). The benefit 
was more pronounced in BRCA  mutants as the median PFS 
was 34.7 months compared with 22.0 months for veliparib 
and placebo, respectively (HazR 0.44, 95% CI 0.28–0.68; 
p < 0.001). A response to chemotherapy was not needed 
for inclusion in this trial, and PFS was measured from rand-
omization (start of chemotherapy), in contrast to the trials of 
PARP inhibitor used only as maintenance treatment (SOLO-
1, PAOLA-1/ENGOT-ov25, and PRIMA).

Finally, in 2018, both olaparib and talazoparib were 
FDA approved for BRCA  carriers diagnosed with epidermal 
growth factor receptor 2 (HER2)-negative metastatic breast 
cancer, with disease recurrence following chemotherapy 
regardless of treatment setting [55, 56].

Talazoparib is a potent PARP1/2 inhibitor (PARP1 IC50: 
0.57 nM), effective against BRCA1/2 and PTEN mutants in 
preclinical models. Its molecular formula is  C19H14F2N6O 
and has a molecular weight equal to 380.359 g/mol. The 
chemical structure of talazoparib is shown in Fig. 1. It is 
well distributed into tissues, and its half-life observed at the 
MTD of 1.0 mg once daily is nearly 48 h. Talazoparib is 
characterized by greater stereospecific PARP-DNA trapping 
ability than other PARP inhibitors, and also potentiates cyto-
toxic effects of temozolomide, carboplatin, and the active 
metabolite of irinotecan SN-38 [12, 26].

PARP inhibitors differ in their potency for catalytic inhi-
bition and ability to trap PARP, which are related to the size, 
structure and allosteric differences in the NAD+ binding 

site of the relevant molecule. In this regard, talazoparib has 
the greatest in vitro cytotoxicity and PARP-trapping [26], 
followed by niraparib, whereas veliparib is the weakest 
one [25, 57]. This results in significant differences in doses 
among PARP inhibitors. As the most potent PARP trapping 
agent, talazoparib is recommended at a dose of 1 mg daily, 
as compared with 300 mg or greater for the remaining PARP 
inhibitors [58].

In terms of cost effectiveness, olaparib, niraparib, and 
rucaparib extend PFS in platinum-sensitive recurrent 
EOC, but are not currently priced in alignment with this 
benefit, with the exception of olaparib in recurrent, BRCA 
-mutated ovarian cancer [59]. It is essential that compari-
sons between trials require robust statistical methods, care-
fully selected data, and proper adjustments to ensure the 
control of inter-trial variability. Interestingly enough, a 
recent study compared olaparib in the upfront (SOLO-1) 
versus recurrent maintenance setting (SOLO-2). Although 
the higher cost associated with olaparib in SOLO-1 reflects 
the longer time patients stay on drug due to extended PFS, 
the incremental cost-effectiveness ratio recommends early 
initiation of first-line maintenance therapy among women 
with germline BRCA -mutated advanced EOC [60]. Overall, 
mature OS data are required to confirm whether olaparib, 
niraparib, and rucaparib are cost effective at the current high 
prices. It seems that the high costs of the drugs rather than 
associated adverse events may limit their cost effectiveness. 

Fig. 1  Talazoparib compound summary
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Nevertheless, they may have only a modest budget impact 
from the public healthcare systems perspective.

6  Developing Predictive Biomarkers 
for PARP Inhibitors

As interest has evolved beyond germline BRCA1/2 muta-
tions, multiplexed NGS assays of both germline and somatic 
DNA have accelerated the identification of cancers suscepti-
ble to PARP inhibitor therapy [61, 62]. Genomic signatures 
or scars could be used as an alternative to single gene muta-
tion, deletion, or methylation analyses [63]. However, HR 
deficiency genomic signatures can be the result of so-called 
mutational genomic scars, which persist while the cancer 
cells reactivate HR.

Single nucleotide polymorphism array-based signa-
tures of chromosome instability have been evaluated to 
measure ‘genomic scarring’. There are several important 
‘scars’ used in HR deficiency tests. Numeric chromosomal 
instability represents the amplification or deletion of large 
fragments of chromosomes [64, 65]. Additional assays 
illustrating the burden of genomic instability include telo-
meric allelic imbalance (TAI), large-scale transition (LST) 
and LOH. They have been tested as predictive biomarkers 
of sensitivity to PARP inhibitors [66]. Among them, two 
have been approved by the FDA as companion diagnostics 
for PARP inhibitors in ovarian cancer. ‘FoundationFocus 
CDx BRCA LOH’ evaluates the frequency of LOH events 
throughout the genome, whereas ‘myChoice HRD’ (Myr-
iad) is a composite signature of LOH, TAI, and LST events 
[67]. The ARIEL2 trial (NCT01891344) suggests that an 
assay using LOH to identify genomic scarring may be use-
ful to predict PARP inhibitor response in ovarian cancer 
without BRCA1/2 mutations [50]. The study demonstrated 
significant difference in PFS between the rucaparib-treated 
high genomic LOH and biomarker-negative groups (HazR 
0.67, 95% CI 0.45–0.99; p = 0.04), accompanied by more 
than doubling of the ORR (BRCA -like 36% versus bio-
marker-negative 16%).

Functional assays may directly inform on the capacity 
of the tumor cell to repair the damage, translating upstream 
DNA/RNA alterations. Accumulation of RAD51 at the DNA 
lesion is a recognized marker of HR proficiency; its absence 
following DNA damage represents a functional biomarker 
of HR dysfunction [68]. As such, γH2AX-RAD51 recently 
showed promising results in breast cancer biopsies, predict-
ing PARP inhibitor sensitivity but also capturing the emer-
gence of secondary resistance [69]. Indeed, the demethyla-
tion of RAD51C is associated with mRNA re-expression and 
development of resistance [70].

Finally, the role of Schlafen 11 (SLFN11) as a predictive 
biomarker for PARP inhibitor sensitivity was supported by 

the reported bimodal distribution in SLFN11 expression in 
treatment-naive patient tumor samples [71].

7  Development of Talazoparib in Ovarian 
Cancer

Evidence supporting the use of talazoparib specifically 
in the treatment of EOC is limited in comparison with 
other PARP inhibitors and it is still at an early stage of 
clinical development. However, some studies have evalu-
ated the activity of talazoparib in several solid tumors. 
Chronologically, talazoparib therapy was evaluated in a 
two-part, phase I, first-in-human trial in 2017, in patients 
with germline BRCA1/2 mutated advanced or recurrent 
solid tumors, or selected sporadic cancers (NCT01286987) 
[13]. Thirty-four ovarian cancer patients were enrolled in 
nine cohorts and received doses of 25–1100 μg daily. A 
sustained PARP inhibition was observed at doses ≥ 60 μg 
daily. The recommended MTD was 1 mg daily. Seventeen 
patients with BRCA1/2-mutant high-grade serous EOC 
were treated at doses of at least 0.1 mg daily, and radio-
logical, biochemical, and clinical benefit responses were 
achieved by 44, 70, and 82%, respectively. The median PFS 
reached was 36.4 weeks. In BRCA1/2 patients, the ORR 
to talazoparib was 50% (7/14). Tolerance over a treatment 
period exceeding 2 years was reasonable. Fatigue, nausea, 
and alopecia were observed in 30% of patients, followed by 
myelosuppression-related dose reductions (15%) and grade 
3/4 anemia (13%), thrombocytopenia (14%), and neutro-
penia (6%). No patients withdrew permanently from treat-
ment because of toxicity.

In 2017, Dhawan et al. published the results of a phase 
I/II trial on the safety and efficacy of talazoparib in com-
bination with carboplatin in patients with solid tumors 
regardless of germline mutational status [72]. Two out 
of 24 enrolled patients (8%) were diagnosed with EOC, 
and 20% had a BRCA1/2 mutation. Grade 3/4 toxici-
ties included fatigue (13%), neutropenia (63%), throm-
bocytopenia (29%), and anemia (38%). Neutropenia 
was more prominent in germline BRCA  carriers. Three 
patients (14%) showed a PR or CR among BRCA -mutated 
patients. Among 21 evaluable patients, 11 (52%) experi-
enced disease stabilization (range 7–22 weeks; median 
10.5 weeks).

Furthermore, POSITION is a phase I study evaluating the 
effects of talazoparib on DNA copy number, RNA expres-
sion and protein levels in patients with stage IIIA–IV ovar-
ian cancer (NCT02316834) [73]. Additionally, two trials 
have already been withdrawn. NCT02326844 was a phase 
II single-arm study of talazoparib in women with recurrent 
BRCA1/2-mutated ovarian cancer who have progressed on 
prior PARP inhibitor therapy after attaining a response [74]. 
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The rationale was to establish whether re-challenge with 
an alternative PARP inhibitor can induce a further clinical 
response. Finally, a withdrawn phase II randomized study, 
NCT02836028, had been planned to compare the efficacy 
and safety of talazoparib monotherapy versus talazoparib 
with temozolomide in patients with BRCA -mutated or HR-
deficient relapsed ovarian cancer [75]. Clinical trials of tala-
zoparib for treatment of ovarian cancer are summarized in 
Table 1.

8  Development of Talazoparib in Breast 
Cancer

Among solid tumors, talazoparib has mostly been inves-
tigated in breast cancer. At the 2017 San Antonio Breast 
Cancer Symposium, the results of the EMBRACA study 
(NCT01945775) were presented. This open-label, rand-
omized, two-arm, phase III trial compared the efficacy and 
safety of talazoparib with the physician’s choice of chemo-
therapy, which included eribulin, vinorelbine, capecitabine, 
or gemcitabine [56]. Patients with advanced and unresect-
able or metastatic HER2-negative breast cancer and a ger-
mline BRCA1/2 mutation were randomly assigned in a 2:1 

Table 1  Clinical trials exploring talazoparib in ovarian cancer (www.clini caltr ials.gov)

BRCA  breast cancer susceptibility genes, CR complete response, CTH chemotherapy, EOC epithelial ovarian cancer, HRD homologous recombi-
nation deficiency, LOH loss of heterozygosis, mo months, ORR objective response rate, PARP poly(ADP-ribose) polymerase, PFS progression-
free survival, PR partial response, SD stable disease

Study Phase Patient s (n) Description Population Outcome Trial, status

de Bono et al. [13] I 113 Talazoparib 1 mg daily 1. Solid tumors (34/113 
platinum-treated 
EOC, primary perito-
neal or fallopian tube 
cancer)

2. gBRCAm (25/34 
EOC)

1. ORR: 41.7%
2. gBRCAm: ORR: 

55% in platinum-
sensitive

ORR: 20% in platinum-
resistant

3. PFS: 36.4 mo

NCT01286987 Com-
pleted

Dhawan et al. [72] I 24 Talazoparib + carbo-
platin

Talazoparib starting 
dose of 0.75 mg daily

One cycle equaled 
21 days

1. Solid tumors (2/24 
EOC)

2. 14/24 (58%) of 
patients received prior 
platinum CTH

3. gBRCAm (7/24, 
29%)

4. sBRCAm (3/24, 
12.5%)

1. 14% ORR
2. 52% SD
3. Dose reduction: 50%
4. Dose interruptions: 

75%
5. Pharmacokinetics

Completed

POSITION [73] I 30 Talazoparib 1 mg daily 1. EOC, primary perito-
neal or fallopian tube 
cancer

2. Neoadjuvant setting

Basal levels and effects 
of talazoparib on 
DNA copy number, 
LOH, and mutation, 
and level of RNA 
and protein expres-
sion in HRD-related 
pathways before and 
after treatment

NCT02316834
Ongoing

NCT02326844 [74] II 3 Talazoparib 1 mg daily 1. Recurrent and/or 
metastatic EOC

2. Progression on PARP 
inhibitors mono-
therapy

3. gBRCAm

1. Objective response 
(CR + PR)

2. Safety
3. Duration of response
4. PFS

NCT02326844
Terminated (closed by 

the Cancer Therapy 
Evaluation Program)

NCT02836028 [75] II N/A Arm 1: talazoparib 
1 mg daily

Arm 2: talazoparib 
1 mg daily + temo-
zolomide 37.5 mg/m2 
on days 1–5

1. Recurrent EOC, 
primary peritoneal or 
fallopian tube cancer

2. <3 prior lines of 
CTH

3. gBRCAm, or sBR-
CAm, or HRD(+)

ORR NCT02836028
Withdrawn

http://www.clinicaltrials.gov
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ratio to talazoparib 1 mg once daily (n = 287) or chemother-
apy (n = 144). The primary endpoint was PFS, whilst sec-
ondary endpoints included safety, OS, ORR, clinical benefit 
rate (CBR), at 24 weeks, and quality-of-life measurements. 
Within a follow-up of 14.5 months, median PFS was 8.6 
and 5.6 months in the talazoparib and chemotherapy arms, 
respectively (HazR 0.54, 95% CI 0.41–0.71; p < 0.0001). 
This represents a 46% reduction in the risk of disease pro-
gression, whereas all key secondary efficacy endpoints dem-
onstrated benefit with talazoparib treatment. ORR in the 
talazoparib cohort was more than double compared with the 
control arm (62.6 vs 27.2% for chemotherapy; p < 0.0001). 
This benefit was consistent and unrelated to hormone recep-
tor expression, BRCA  mutational status, previous systemic 
treatment, and history of intracranial disease. Talazoparib 
was generally well tolerated; nevertheless, grade 3/4 myelo-
suppression was higher with talazoparib than chemotherapy 
(55 vs 39%), but still manageable by dose modifications or 
treatment delays. This grade 3/4 hematological toxicity 
is more prominent in EMBRACA as compared with the 
previously reported NCT01286987 dose-escalation study 
of talazoparib. Nevertheless, the combination of talazo-
parib with carboplatin in the study of Dhawan et al. [72] 
was associated with higher rates of grade 3/4 neutropenia 
(63%). Non-hematologic toxicity was minimal and patients 
experienced fewer grade 3/4 gastrointestinal side effects with 
talazoparib as compared with chemotherapy (5.6 vs 11.9%, 
respectively). The FDA granted priority review designation 
for talazoparib based on the results of the EMBRACA study.

Efficacy of talazoparib in the EMBRACA study was com-
parable to that observed in a similar phase III, OlympiAD 
trial (NCT02000622), which compared olaparib versus 
single-agent chemotherapy in metastatic breast cancer [55]. 
The primary endpoint of median PFS in the OlympiAD trial 
was 7.0 months in the olaparib group versus 4.2 months in 
the standard therapy group (HazR 0.58, 95% CI 0.43–0.80; 
p < 0.001); nevertheless, there was no difference in OS 
between the two arms (19.3 vs 19.6 months, respectively; 
HazR 0.90, 95% CI 0.63–1.29; p = 0.57), likely due to a high 
degree of cross over. Patients previously treated with plati-
num chemotherapy were less likely to benefit from olaparib 
(HazR 0.67, 95% CI 0.48–1.14), suggesting overlap in the 
mechanisms of resistance to olaparib and platinum agents.

Encouraging signs of efficacy of talazoparib came also 
from the phase II ABRAZO trial (NCT02034916), con-
ducted in patients with germline BRCA1/2 mutated, locally 
advanced or metastatic breast cancers with or without prior 
exposure to platinum agents [76]. Those who were enrolled 
on the platinum-exposed arm were further required to have 
a platinum-sensitive disease with a documented PR or CR to 
platinum agents and no history of disease progression on a 
platinum agent. Patients who had not been exposed to plati-
num were required to have had two or more non-platinum 

regimens in the metastatic setting. The primary outcome 
was ORR, whereas CBR, PFS, and OS were among the sec-
ondary outcome measures. Response rates to talazoparib 
were higher in platinum-naive patients [37.1% (95% CI 
21.49–55.08)] than those with prior platinum exposure [0.8% 
(95% CI 10.47–34.99)], suggesting some degree of cross-
resistance between platinum agents and the PARP inhibitor. 
This has also been demonstrated in women with high-grade 
serous EOC. Median PFS was 4.0 months (95% CI 2.8–5.4) 
with a median OS of 11.8 months (95% CI 8.8–15.0) in 
patients with prior platinum exposure (n = 49), as com-
pared with 5.6 months (95% CI 5.5–7.8) and 16.5 months 
in those who were platinum-naive (n = 35), respectively. The 
reported ORR in patients with triple-negative breast cancer 
and hormone receptor-positive disease was 26% and 29%, 
respectively, whilst for BRCA1 and BRCA2 mutations carri-
ers, it was 24% and 34%, respectively. As with other PARP 
inhibitors, myelosuppression was the predominant toxicity 
[anemia (52%), thrombocytopenia (33%), and neutropenia 
(27%)], in addition to nausea (42%), and diarrhea (33%).

Currently, there is a trend for investigation of PARP 
inhibitors in earlier stages of the disease, given that fewer 
resistance mechanisms will be present in this setting. Single-
agent talazoparib has been assessed preoperatively in BRCA 
-mutated metastatic breast cancer in a small phase II trial 
(NCT03499353) [77]. The treatment produced significant 
pathologic CR with manageable toxicity. Clinical trials 
exploring talazoparib in ovarian cancer are listed in Table 2.

9  Expanding the Indications for Talazoparib 
to Other Tumor Types with Homologous 
Recombination (HR) Defects

It has been identified that patients with germline BRCA1/2 
mutations beyond ovarian or breast cancer could respond 
to olaparib [78]. Based on that, PARP inhibitors can be 
expanded into additional HR-defective tumors.

Genomic studies have demonstrated that 8–12% of meta-
static prostate cancers are characterized by BRCA2 muta-
tions and homozygous deletions [79]. Incorporation of muta-
tions in other genes involved in the DSB DNA repair, such as 
ATM, RAD51, PALB2, FANC, and PTEN, leads to elevation 
up to 20–25% of metastatic prostate cancers that harbor gene 
defects in different DNA-damage response pathways [80]. 
PARP1 represents a novel therapeutic target in prostate can-
cer based on the cross-talk between the androgen receptor 
and DNA-damage response pathways [81]. In the previously 
reported study by de Bono et al. [13], 4 out of 13 patients 
with pancreatic cancer treated with talazoparib at 1.0 mg 
once daily experienced CBR of 31% for at least 16 weeks. 
Among those responders, one harbored a PALB2 mutation, 
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which is suggestive of potentially expanding applications for 
talazoparib therapy.

Beyond that, Table 3 depicts two additional trials of sin-
gle-agent talazoparib that are currently recruiting patients 
with solid tumors. Phase II study NCT02286687 will explore 
talazoparib activity in advanced neoplasms with BRCA1/2 
germline or somatic alterations, PTEN mutations or PTEN 
loss and HR deficiency defect [82], whilst the phase I/II 
NCT01989546 study will evaluate talazoparib efficacy in 
platinum-sensitive BRCA1/2-mutant tumors [83]. In this 
study, tumor biopsies for DNA damage response mark-
ers are taken prior to treatment, during cycle 1, and if the 
disease progresses. On the other hand, a phase I study 
(NCT02567396) designed to assess the utility and tolerabil-
ity of talazoparib in the treatment of advanced or metastatic 
non-resectable solid tumors with liver or kidney dysfunction 
has been withdrawn [84].

10  PARP Inhibitors and Antiangiogenic 
Agents

The rationale for the combination of PARP inhibitors with 
anti-angiogenic agents is based on the fact that PARP inhibi-
tion decreases angiogenesis, whereas hypoxic state and vas-
cular endothelial growth factor receptor 3 (VEGFR3) inhibi-
tors induce down-regulation of HR repair proteins, such as 
BRCA1/2 and RAD51. However, hypoxia is also associated 
with hypoxia inducible factor 1 alpha (HIF1α) up-regulation. 
Due to PARP1 involvement in HIF1α stabilization, inhibi-
tion of PARP may prevent HIF1α accumulation that leads 
to targeted hypoxic-induced apoptosis.

The combination of the antiangiogenic agent cediranib 
and olaparib versus olaparib monotherapy has been 
evaluated in a randomized, open label, phase II study 
(NCT01116648) [85]. Interim analysis revealed a signifi-
cantly longer PFS of 17.7 months in the experimental arm 
compared with 9.0 months for patients treated with single-
agent olaparib (HazR 0.42; p = 0.005). The purpose of the 
GY004 trial (NCT02446600) was to compare olaparib mon-
otherapy versus doublet therapy of olaparib and cediranib 
versus standard platinum-based chemotherapy in patients 
with platinum-sensitive recurrent ovarian cancer [86]. Simi-
larly, the ICON 9 trial (NCT03278717) is examining main-
tenance therapy with the doublet of cediranib and olaparib, 
versus single agent olaparib [87]. With regards to platinum-
resistant disease, three phase II/III trials are currently in 
progress [88–90].

As previously mentioned, PAOLA-1/ENGOT-ov25 
(NCT02477644) is the first phase III trial that evaluated effi-
cacy and safety of a PARP inhibitor plus bevacizumab as first-
line maintenance therapy in advanced EOC [48]. Patients were 
randomized 2:1 to receive oral olaparib at 300 mg twice daily 

or placebo for up to 24 months. All subjects received standard 
maintenance bevacizumab (15 mg/kg every 3 weeks) for up to 
15 months, and were stratified by first-line treatment outcome 
and tumor BRCA  mutation. The reported median PFS was 
22.1 months on the olaparib arm, compared with 16.6 months 
on the placebo (HazR 0.59, 95% CI 0.49–0.72; p < 0.0001). 
In the subset with BRCA mutation, median PFS with olapa-
rib treatment was 37.2 months, compared with 21.7 months 
with placebo (HazR 0.31, 95% CI 0.20–0.47). BRCA  wild-
type patients demonstrated median PFS of 18.9 months with 
olaparib versus 16.0 months with placebo (HazR 0.71, 95% CI 
0.58–0.88). Among tumors with HR deficiency, median PFS 
with olaparib was 37.2 months, compared with 17.7 months 
with placebo (HazR 0.33, 95% CI 0.25–0.45). HR-deficient 
BRCA  wild-type patients treated with olaparib reached a 
median PFS of 28.1 months versus 16.6 months with placebo 
(HazR 0.43, 95% CI 0.28–0.66). However, the benefit of olapa-
rib in negative or unknown HR deficiency status was limited; 
median PFS was 16.9 months versus 16.0 months for olaparib 
and placebo, respectively (HazR 0.92, 95% CI 0.72–1.17). 
Overall, PAOLA-1/ENGOT-ov25 met its primary objective, 
demonstrating a statistically significant prolongation of PFS 
in the intent-to-treat population. Patients with BRCA  mutation 
and those with HR deficiency are most likely to benefit from 
this maintenance therapeutic strategy.

Similarly, in the phase II OVARIO study (NCT03326193), 
niraparib plus bevacizumab is evaluated as a maintenance 
treatment in patients with advanced EOC who have recovered 
from primary debulking surgery and have responded to front-
line platinum-based chemotherapy with bevacizumab [91]. 
The starting dose of niraparib was based on baseline body 
weight and/or platelet count, whereas bevacizumab dosage 
was 15 mg/kg on a 3-weekly schedule up to 15 months, until 
disease progression or unacceptable toxicity.

Finally, AVANOVA (NCT02354131) is a phase II supe-
riority trial, comparing single-agent niraparib 300 mg with 
combination niraparib-bevacizumab (15 mg/kg once every 
3  weeks), until disease progression [92]. Ninety-seven 
enrolled women with high-grade serous or endometrioid 
platinum-sensitive EOC were assessed based on myChoice 
HR-deficient scores. Niraparib plus bevacizumab signifi-
cantly improved PFS compared with niraparib alone [median 
PFS 11.9 months (95% CI 8.5–16.7) vs 5.5 months (95% 
CI 3.8–6.3), respectively; HazR 0.35, 95% CI 0.21–0.57; 
p < 0.0001].

11  PARP Inhibitors and Immune Checkpoint 
Inhibitors

The therapeutic strategy of combining PARP inhibitors with 
immunotherapies is based on the hypothesis that BRCA1/2 
and wild-type BRCA1/2 HR deficiency ovarian tumors 
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display a higher neo-antigen load than HR-proficient can-
cers [93]. The targeted blockade of the PD-L1 pathway can 
restore antitumor immunity and potentiate the antitumor 
activity of PARP inhibitors. Currently, there are available 
data from olaparib-durvalumab, and niraparib-pembroli-
zumab combinations [94, 95]. The reported toxicities are 
compatible with those that were observed for the relevant 
agents in monotherapy settings.

The phase I/II basket MEDIOLA trial (NCT02734004), 
evaluated the combination of olaparib and durvalumab 
in selected advanced solid cancers [94]. The phase I trial 
in patients with triple-negative breast and gynecological 
cancers demonstrated early evidence of efficacy, without 
overlapping toxicities [95]. In the phase II study among 32 
patients with germline BRCA1/2 mutant platinum-sensitive 
ovarian cancer, disease control rate at 12 weeks and ORR 
were 81% and 63%, respectively. The most common reported 
adverse events of grade 3 or more were anemia (12%) and 
increased lipase (9%), along with any-grade hypothyroidism 
(15%) and rash (12%) [94].

The phase I/II TOPACIO trial (NCT02657889) enrolled 
heavily pretreated patients with platinum-resistant, or sec-
ondarily platinum-refractory EOC [96]. Based on dose 
finding in phase I, the recommended phase II dose of nira-
parib and pembrolizumab was 200 mg orally once daily and 
200 mg intravenously 3-weekly, respectively. Among 60 
patients evaluable for initial response assessment, 64% had 
platinum-resistant, 19% had platinum-refractory, and 17% 
had platinum-sensitive ovarian cancer, respectively [97]. The 
overall ORR and disease control rate were 25% and 68%, 
respectively, whilst in the BRCA1/2 mutant cohort they were 
higher (45% and 73%, respectively). Interestingly enough, 
the ORR in BRCA wild-type and HR deficiency negative 
subgroups was 24% and 27%, respectively. This is sugges-
tive of treatment efficacy even in populations not typically 
responsive to single-agent PARP inhibitors. Preliminary 
data revealed adverse events compatible with treatment with 
single agents. Grade 3 or more toxicities included anemia 
(17%), fatigue (6%), and thrombocytopenia (3%) [98].

Currently, there are five ongoing phase III studies in the 
maintenance setting. FIRST (NCT03602859) was designed 
to assess platinum and the PD-L1 inhibitor TSR-042, fol-
lowed by niraparib and TSR-042 maintenance therapy, 
versus standard platinum-based treatment followed by 
maintenance niraparib or placebo, as first-line treatment 
of advanced EOC [99]. The ENGOT-ov46/AGO/DUO-O 
study (NCT03737643) evaluates the efficacy and safety 
of the standard platinum-based chemotherapy and beva-
cizumab followed by maintenance bevacizumab as mono-
therapy, or in combination with durvalumab, either alone 
or combined with olaparib [100]. ATHENA is a four-arm 
study (NCT03522246) that is currently evaluating the com-
bination of rucaparib with nivolumab for those responded 

to front-line platinum-based chemotherapy [101]. Pem-
brolizumab in combination with chemotherapy followed 
by olaparib maintenance therapy is being investigated in 
the phase III, randomized, double‐blind ENGOT‐ov43/
KEYLYNK‐001 study (NCT03740165) in first‐line treat-
ment of patients with BRCA1/2 wild-type advanced EOC 
[102]. Randomization is in a 1:1:1 ratio to pembrolizumab 
+ chemotherapy followed by olaparib maintenance; pem-
brolizumab + chemotherapy followed by placebo; or pla-
cebo + chemotherapy followed by placebo. Bevacizumab 
use is determined at the investigator’s discretion before 
randomization. Finally, JAVELIN Ovarian PARP 100 
(B9991030) is an open-label, international, multi-center, 
randomized study designed to evaluate the efficacy and 
safety of the combination of avelumab and chemotherapy 
followed by avelumab and talazoparib maintenance com-
pared with chemotherapy and bevacizumab followed by 
bevacizumab maintenance in treatment-naïve patients 
with locally advanced or metastatic EOC (NCT03642132) 
[103]. Approximately 720 patients will be randomized in 
a 2.5:1:2.5 ratio to receive paclitaxel + carboplatin + ave-
lumab, followed by avelumab + talazoparib maintenance 
for up to 24 months (Arm A); paclitaxel + carboplatin, 
followed by talazoparib maintenance for up to 24 months 
(Arm B); or paclitaxel + carboplatin + bevacizumab, fol-
lowed by bevacizumab maintenance for up to 21 doses or 
22 per local approval (Arm C). Patients are stratified by 
germline BRCA1/2 mutation.

12  Talazoparib Combination Therapies

PARP inhibitors have been combined with chemotherapy 
based on the fact that they block BER, and consequently 
may potentiate the efficacy of cytotoxins [104]. A major 
concern for this therapeutic strategy is the high risk of over-
lapping myelotoxicity; for this reason, initiation of standard 
chemotherapy doses has been accompanied by dose escala-
tion of the PARP inhibitor. Furthermore, intermittent dosing 
schedules and supportive treatment with granulocyte colony-
stimulating factors are also reasonable strategies to improve 
the tolerability of chemotherapy in combination with PARP 
inhibitors.

A phase III  neoadjuvant  Br ighTNess t r ia l 
(NCT02032277) in patients with stage II–III, operable 
triple-negative breast cancer is a placebo-controlled study, 
where patients were randomized 2:1:1 to veliparib 50 mg 
twice daily in combination with the standard chemotherapy 
doublet of carboplatin and paclitaxel, versus paclitaxel plus 
carboplatin plus veliparib placebo (twice daily), versus 
paclitaxel plus carboplatin placebo plus veliparib placebo 
[105]. Pathologic CR for the experimental arm was not 
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significantly better than standard chemotherapy. As such, 
subtherapeutic tolerated doses of PARP inhibitors with 
chemotherapy may not potentiate therapeutic efficacy.

Among studies that investigate the utility of a combina-
tion of immune checkpoint blockade with PARP inhibitors, 
a phase Ib/II JAVELIN PARP MEDLEY (NCT03330405) 
trial is currently recruiting patients with germline BRCA1/2 
mutations or ATM-deficient advanced solid tumors includ-
ing breast and ovarian cancers, for evaluation of talazoparib 
in combination with PD-L1 inhibitor avelumab [106]. Given 
the non-overlapping toxicities of immune checkpoint thera-
pies and PARP inhibitors, the combination is expected to 
be well tolerated.

Α study demonstrated that combination treatment of 
talazoparib and the next-generation DNA methyltrans-
ferase inhibitor guadecitabine optimized PARP inhibitors’ 
response in breast and high-grade serous EOC cell lines, 
both in vitro and in vivo, regardless of BRCA status [107]. 
Indeed, the combination of guadecitabine and talazoparib 
in vitro decreased clonogenic survival, cell proliferation, and 
increased caspase 3/7 cleavage, whereas, in vivo, it reduced 
tumor burden in BRCA-proficient ovarian and breast can-
cer xenograft models, and prolonged survival. Furthermore, 
enhanced PARP activation by guadecitabine was in part 
dependent on reactive oxygen species and protein kinase A 
(PKA) activation, which represents the major regulator of 
PARP activation, and which may have led to PARP inhibitor 
response. Tolerance in mice was not problematic and this 
treatment doublet should be further explored for patients 
with either intrinsic or treatment-induced resistance to the 
PARP inhibitors. Table 4 depicts the ongoing studies of tala-
zoparib in combination with immunotherapy and cytotoxic 
chemotherapy.

13  PARP Inhibitors Resistance

PARP inhibitor research has led to important new under-
standings about PARP inhibitor resistance mechanisms. 
Each PARP inhibitor has a separate chemical structure with 
diverse off-target effects [108]. This indicates that the utili-
zation of a secondary PARP inhibitor could be therapeuti-
cally beneficial in a resistant tumor. Among the resistance 
mechanisms identified to date, restoration of homology-
directed DNA repair is frequently observed in vitro and 
in vivo. Indeed, the restoration of BRCA activity starts from 
BRCA-deficient and chemo-sensitive cells as a result of sev-
eral mutations that are induced by platinum agents. This 
initial restored clone expands in the setting of treatment-
specific selective pressure [109].

Compensatory deleterious mutations have also been 
detected to confer PARP inhibitor resistance. TP53 binding 
protein 1 (53BP1) maintains the balance between HR and 

NHEJ [110]. Loss of 53BP1 function by either mutation or 
downregulation accelerates the BRCA1-independent end-
resection and provides PARP inhibitor resistance [111]. It 
has been demonstrated that the inactivation of downstream 
factors of 53BP1-mediated repair, typically RIF1 and REV7, 
also leads to the restoration of DNA end resection, and con-
sequently promotes homology-mediated repair [112]. Loss 
of the 53BP1-RIF1-REV7 pathway in PARP inhibitor-
resistant BRCA1-deficient cells results in hypersensitivity 
to ionizing radiation.

The knockdown of cyclin-dependent kinase 12 (CDK12) 
is associated with concomitant downregulation of DNA 
repair proteins. In  vitro, pharmacological inhibition of 
CDK12 with dinaciclib reverses acquired PARP inhibitor 
resistance [113]. Furthermore, it has been shown that the 
inhibition of cell cycle regulator WEE1 leads cells to enter 
the S-phase of the cell cycle. This enforces accumulation 
of DNA DSBs in the context of HR deficiency and PARP 
inhibition [114]. Overall, a combined inhibition of CDK12 
or WEE1 could be therapeutically indicated for overcoming 
HR-restored PARP inhibitor resistance.

Beyond mechanisms of HR restoration in BRCA1-defi-
cient cells, it has been recently observed in vitro that loss 
of PAR glycohydrolase (PARG), responsible for degrading 
nuclear PAR, is involved in a major resistance mechanism 
[112]. Endogenous PARG activity is crucial for the suc-
cess of PARP inhibition and PARG suppression restores 
PARP1 signaling upon PARP inhibitor treatment. Based 
on that, PARG activity may serve as a predictive marker 
for PARP inhibitor therapy. Furthermore, there is a correla-
tion between increased radiosensitivity of PARP inhibitor-
resistant tumors and lost PARG [112]. As such, radiotherapy 
could be a therapeutic option for PARP inhibitor-resistant 
tumors in patients without BRCA1/2 reversion mutations. 
However, radiotherapy is not typically included in the treat-
ment of EOC. Consequently, alternating treatment cycles 
of PARP inhibitor and radiomimetic drugs would be more 
effective than the PARP inhibitor maintenance treatment in 
platinum-sensitive EOC.

Another mechanism of inherent or acquired resistance 
is the upregulation of genes encoding p-glycoprotein efflux 
pumps, related to decreased intracellular drug levels. This 
resistance can be reverted by the ABCB1 inhibitors vera-
pamil, elacridar, and tariquidar [115].

Overall, there are several ongoing combination clinical 
trials seeking to abrogate PARP inhibitor resistance up front, 
and we eagerly anticipate results.
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14  Conclusions and Future Perspectives

More research is required to improve our understanding of 
DNA repair mechanisms. With a multitude of ongoing stud-
ies in different patient populations and clinical settings, it 
is likely that the indications for PARP inhibitors in ovarian 
cancer will continue to expand. The analytical validation and 
clinical qualification of biomarkers enabling patient stratifica-
tion are of critical importance to deliver precision treatment. 
In this regard, several assays have already been developed to 
test tumor tissue for a BRCA -like phenotype, loosely defined 
as HR repair deficiency. Indeed, molecular signatures for the 
prediction of response to PARP inhibitors include DNA repair 
and replication defects, expression of SLFN11, and hyperactive 
drug efflux pumps. Furthermore, widespread somatic BRCA  
testing should be incorporated in routine clinical practice, 
given that somatic BRCA1/2 mutants are potentially PARP 
inhibitor candidates. An open question is whether HER2-
negative breast cancers harboring somatic mutations may also 
benefit from this novel agent.

Resistance to PARP inhibitors also needs to be further 
explored. The most common acquired resistance mechanism 
to PARP inhibitors consists of secondary mutations restor-
ing the BRCA1/2 protein functionality. Recently, secondary 
mutations that restored the open reading frame of BRCA  or 
HR-related genes have been detected by NGS in ovarian cancer 
patients at disease progression during treatment with PARP 
inhibitors. Therapeutically, combinations of PARP inhibitors 
with drugs that inhibit HR might be an effective approach to 
sensitize ovarian cancers with de novo or acquired HR profi-
ciency to PARP inhibitors. The discovery and characteriza-
tion of talazoparib as a potent, selective, orally bioavailable 
PARP1/2 inhibitor provides an important addition to the field 
of PARP inhibitors. Its potency in PARP trapping is the early 
evidence that talazoparib could potentially lead to improved 
clinical outcomes in BRCA  mutant malignancies.
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