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Recent studies on chromosome conformation show that chromosomes colocalize in the nucleus, bringing together active
genes in transcription factories. This spatial proximity of actively transcribing genes could provide a means for RNA interaction
at the transcript level. We have screened public databases for chimeric EST and mRNA sequences with the intent of mapping
transcription-induced interchromosomal interactions. We suggest that chimeric transcripts may be the result of close
encounters of active genes, either as functional products or ‘‘noise’’ in the transcription process, and that they could be used as
probes for chromosome interactions. We have found a total of 5,614 chimeric ESTs and 587 chimeric mRNAs that meet our
selection criteria. Due to their higher quality, the mRNA findings are of particular interest and we hope that they may serve as
food for thought for specialists in diverse areas of molecular biology.
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INTRODUCTION
With the development of increasingly sophisticated large-scale

sequencing and microarray techniques, the known transcriptome

continues to grow. Even though the idea that one gene produces

one protein product has long been abandoned for more

complicated models, our understanding of transcription remains

incomplete and subject to unexpected findings.

Analyses of transcript databases via bioinformatic approaches

have described and uncovered numerous transcript classes. As an

example, alternative splicing allows the cell to increase protein

diversity – according to current estimates, 75–80% of human

genes produce splice variants [1]. Pseudo-messenger RNAs, in the

form of expressed pseudogenes or disrupted splice variants with

retained introns, have recently been described [2]. Tandem

duplication of exons generates non-linear mRNA transcripts [3].

Antisense transcription attests the existence of overlapping gene

loci in eukaryotic genomes [4–6]. Finally, the never-ending

identification of various types of non-protein-coding RNAs

(ncRNAs) continues to increase the size and complexity of the

transcriptome [7–9].

A recent addition to transcript diversity is transcription in-

duced chimerism (TIC) [10,11]. Here, tandem gene pairs are

transcribed into one chimeric transcript, thus generating a fusion

protein. The functional role of these proteins remains unclear, but

since at least 4–5% tandem gene pairs form chimeric transcripts

[11], it is not a singular event. Chimeric microRNA precursor

messenger RNA (mRNA) transcripts have also recently been

described [12].

In addition to the bioinformatical approaches, new cellular

biology techniques are providing new insights in the 3-dimensional

and topological properties of the transcription process. The

concept of transcription factories – foci for nascent RNA and

RNA polymerase II – has been proposed for some time. According

to this model, as a gene is activated for transcription, the

production of its mRNA takes place in such a transcription factory.

Several active genes may occupy the same factory [13]. Lately, it

has been shown that even genes from different chromosomes may

interact simultaneously in one transcription factory [14,15]. In

fact, the chromosome is now known to be a highly mobile

structure, with territories intermingling significantly in the nucleus

[16].

It is generally acknowledged that transcript databases in

general, and EST databases in particular, contain contaminants

of various kinds [17]. Chimeric sequences is one such example.

Traditionally, chimeric transcripts have been discarded as

artefacts, primarily causing problems in annotation and gene

indexing/clustering projects. However, in the light of the radically

new findings mentioned previously, it might have been premature

to dismiss all aberrant transcripts as artefacts. For instance, trans-

splicing [18–20], the event of joining the exons of two heterologous

transcripts, provides a mechanism for the generation of chimeric

transcripts. There are few estimates of the frequency of trans-

splicing events; one study observed <0.15% [19], indicating it is

a very rare event. Since trans-splicing products are generated by

the spliceosome machinery, there has been a focus on splicing that

occurs at consensus splice sites. However, a study of a rat mRNA,

Leukocyte Common Antigen-Related (LAR) tyrosine phosphatase

receptor, has indicated the existence of a chimeric transcript with

non-consensus splice donor and acceptor sequences [21]. More

generally, all kinds of chimeric transcripts could be the product of

the normal cell transcriptional process, not discarding the

possibility that they may constitute the ‘‘noise’’ of this process,
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and thus represent bona fide biological artefacts, with or without

function.

Chimeric cDNA clones, in that context, might be the unavoid-

able price to pay for the implementation of local, interchromo-

somal, gene-coding regulatory processes (Figure 1). Functional or

not, the chimeric mRNAs might at least serve as probes for regions

of chromosomal interaction taking place in transcription factories.

To tentatively map such putative regions of interchromosomal

contact, we revisited the specific task of identifying chimeric

sequences in transcript databases. Similar procedures have been

performed earlier [22,23], focusing on finding bona fide transcripts

with exon/exon fusion boundaries. Here, we concentrate on the

remaining cases, using the latest human reference genome build.

RESULTS

Validation
A recent publication describes ChimerDB, a database that

catalogues EST and mRNA fusion sequences in GenBank [24].

In this database only fusion events at exon-exon borders are

considered. A natural way to validate our procedure is to compare

our chimeric sequences with those found in the database. In the

current version (0.8), which is based on NCBI Genome Build

version 35, there are 194 EST and 137 mRNA interchromosomal

chimeras, respectively. We found 88 (45.1%) of the EST chimeras,

and 94 (67.1%) of the mRNA chimeras. The selection criteria used

in ChimerDB were alignments of at least 100 bp and 93% identity

over the entire query; this difference in imposed criteria turned out

to be the main reason for the missed chimeras in the EST case. On

the other hand, the missed mRNA chimeras were mainly due to

the fact that the ChimerDB chimeras failed to comply with our

uniqueness criterion.

EST mapping results
We mapped 7684642 EST sequences to the human genome

reference sequence. 5702 ESTs passed the selection criteria

outlined in Methods; 5614 remained after removing the already

known fusion sequences found in the validation step. The mean

chimeric EST length was 507 bp (SD 131), and in total

2844067 bp were mapped.

Interaction characteristics
A summary of the partner interactions at the locus level is

displayed in Table 1. Despite the fact that EST sequences are the

basis for the observations, 1546 (27.8%) of the interactions have an

intergenic component (Table 1 A). Possible explanations for this

are either that the EST library was contaminated with genomic

DNA, or that the corresponding intergenic transcripts are not yet

annotated or characterized (as were most of them until recently)

[8,25]. The latter case would correspond to our hypothesis of

transcription-induced interchromosomal interaction.

The 4050 remaining cases (72.3%) represent potential gene–

gene interactions. The orientation could be determined for both

partners in 3621 chimeras, out of which 2651 consisted of partners

that were oriented in the same direction. Figure 2 shows the

frequency of chromosome interactions for this subset, where the

size of each square is proportional to the number of times a given

chromosome–chromosome pair is observed. Plotted above and to

the right of the cell frequencies are the gene frequencies for each

chromosome. The gene frequencies tell us what to expect if the

associations between chromosomes are non-preferential. For

instance, since the number of genes is highest on chromosome 1,

followed by chromosome 2, one would expect the highest number

of observed interactions between these chromosomes; this indeed

Figure 1. Chimeric mRNA revealing chromsome interaction. Schematic representation of regions of two chromosomes, represented by red and
blue thick lines, with accompanying mRNA transcripts in corresponding colors, represented by wavy lines, transcription factories and RNA
polymerases. When chromosomes are not in proximity, mRNAs are less likely to interact (A), whereas proximal chromosomes generate a chimeric
mRNA, revealing interchromosomal interaction (B).
doi:10.1371/journal.pone.0000254.g001
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is the case. The correlation between the observed values and

expected values as calculated with gene frequencies is 0.72,

confirming the non-preferential nature of the observed associa-

tions.

The ESTs with gene partners having the same direction are

potential sources of trans-splicing observations if the fusion point

occurred at exon boundaries for both partners. Exon boundaries

could be uniquely defined for both partners in 1852 cases.

Accepting a distance of 10 bp from a boundary, we observed only

20 potential trans-splicing cases. Consequently, trans-splicing is not

a main reason for EST chimera generation in this data set.

EST library distribution
At the time of analysis, the human EST sequences could be

derived from 8618 EST libraries. The 5614 EST sequences that

passed the validation criteria originated from 1537 libraries, with

756 libraries contributing one sequence. Figure 3 illustrates

a barplot of EST library counts for libraries with more than 10

contributing sequences.

The most commonly observed library, NCI_CGAP_GC6

(dbEST library id 1402), contributes 222 chimeric sequences,

followed by libraries Soares_NFL_T_GBC_S1 (library id 1042)

and Fetal brain, Stratagene (cat#936206) (library id 2). Table 2

lists the EST libraries with .40 chimeric sequences. Libraries

displaying high chimera counts may point to problems in library

construction, rather than reflect biologically relevant observations.

Contaminated libraries have been analysed by Sorek and Safer

(2003), but none of the libraries listed in Table 2 were identified in

that study. Nevertheless, it remains possible that the high number

of chimeras observed in these libraries is a sign of artefacts in

library construction.

mRNA mapping results
Out of 200033 mapped mRNA sequence, 681 passed the selection

criteria (Table S1), with 587 remaining after removal of known

fusion events in the validation phase. In total, 1515785 bp were

mapped, with a mean length of 2582 bp (SD 1349).

The random fusion event of two gene-coding mRNA transcripts

is likely to alter the reading frame properties of the fusion partners.

Even if the fusion occurs at exon-exon boundaries, it is possible

that an internal stop codon be introduced in the resulting fusion

transcript due to frameshifts. On the other hand, if the fusion

occurs between untranslated regions, the open reading frame

(ORF) in either partner may remain unaltered. It is often assumed

that functional peptides are longer than 100 amino acid residues,

although short proteins (e.g. ribosomal proteins) have been shown

to be common in the mammalian proteome [26]. 493 (84%)

mRNA transcripts have open reading frame lengths $300 bp; 265

(45%) have lengths $900 bp. Consequently, the majority of

mRNA chimeric transcripts code for peptides long enough to be

assumed functional.

Fusion point location in chimera
Apart from reading frame length, the likelihood that a fusion

event will affect reading frame characteristics is also dependant

on the location of the fusion point. Approximately half (3069

or 54.7%) of the EST chimeric sequences had ORFs that

overlapped the fusion point, compared to 27.3% (160 out of

587) for the mRNA chimeras. Due to the imposed selection

criteria, the fusion point will be located at least 100 bp from either

end of a chimeric sequence. For the shorter EST sequences, it is

likely that the fusion point will be distributed halfway through the

sequence. However, the mRNAs are full-length sequences, and if

the fusion of two sequences occurs in a non-random fashion, the

location of the fusion point might also display a non-random

pattern.

To investigate this hypothesis, we examined the distribution of

the fusion point location. Denote by X the fusion point location,

and by L the sequence length. Since we had imposed that each

chimeric partner be at least 100 bp long, Xg(100,L2100). By

letting Y = max(X,12X)/(L2200), Y will be uniformly distributed

in the range (0.5,1), with a mean value 0.75. Figure 4 shows

boxplots of the distribution of Y for EST and mRNA sequences.

Both plots indicate that the fusion point is randomly distributed

along sequence length.

Interaction examples
The size of each square in the mosaic plot (Figure 2) is

proportional to the number of times an EST chimera consists of

partners from two given chromosomes. Taking this a step further,

a close-up view of each chromosome interaction also provides

information about how many times, for instance, a given gene-

gene interaction occurs. The simplest way to accomplish this task

would be to examine the Ensembl gene ids of the partners in

a chimera and count the number of times every pair occurs.

However, this procedure would miss unannotated intergenic

regions, which nevertheless may be transcribed. Thus, an

alternative approach is to determine the mapping (i.e. chromo-

some start and stop coordinates) for each partner in a chimera.

Consequently, all sequences that have chromosome coordinates

that overlap are said to have the same mapping.

Table 1. Observed chimeric partner interactions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IG GENE TOTAL

IG 162 1402 1564

GENE 1402 4050 5452

A. IG and GENE interactions, 5614 in total.

IG EXON INTRON TOTAL

IG 162 474 225 861

EXON 474 775 324 1573

INTRON 225 324 68 617

B. IG, EXON and INTRON interactions, 2028 in total.

IG CDS 59UTR 39UTR INTRON TOTAL

IG 162 223 33 185 225 828

CDS 223 195 80 238 181 917

59UTR 33 80 13 35 27 188

39UTR 185 238 35 117 94 669

INTRON 225 181 27 94 68 595

C. IG, CDS, 59UTR, 39UTR and INTRON interactions, 1876 in total.

Chimeric fusions have been classified as interactions between sequence classes
59UTR, 39UTR, EXON, GENE, IG, and INTRON. For instance, in subtable C, there
are 33 IG - 59UTR interactions, meaning that there are 33 chimeric ESTs with an
interaction between an intergenic region and a gene; furthermore, the fusion
point is located in the 59UTR region of the gene partner. The GENE class
corresponds to cases where no UTR or CDS information exists for the Ensembl
gene in question, or the gene had several transcripts that prevented
unabmiguous classification of the fusion point. The TOTAL column indicates
the total number of times a given class participates in an interaction.
doi:10.1371/journal.pone.0000254.t001..
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The majority of EST chimera interactions (4774 out of 5630)

are observed only once. However, singleton interactions do not

necessarily imply artefactual origin [11], but may reflect low

expression levels. There are 12 interactions that are observed $5

times (Table 3). Here, except for two cases, all chimeric partners

are mapped to genes. Although these are multiple observations, in

each case all sequences are from one laboratory, most often also

deriving from one EST library. Therefore, it is difficult to ascertain

the significance of these findings since there are no independent

observations. Due to the smaller mRNA data set, there are only 16

interactions with $2 observations (Table 4), of which 5 have an

intergenic partner. As pointed out previously, intergenic sequences

might indicate that the sequence is contaminated with genomic

DNA [17]. However, it is unlikely that a randomly chosen

intergenic region would show up more than once in such a small

sample that the mRNA data set represents. The interactions IG–

GRM7, IG–CDH13, Q96PV3_HUMAN–CK016_HUMAN,

SLIT3–MAGED2, and MLL–AFF1, have furthermore been

independently observed. Here, it should be remarked that the

interactions marked with asterisks are characterized as fusion

sequence, although they were not included in ChimerDB. This

highlights the difficulty of distinguishing between transcripts that

are derived from potential interactions at the transcript level and

transcripts that arise from chromosome translocations.

DISCUSSION
We have made a tentative mapping of EST and mRNA sequences

to the human genome in the hope of identifying potential gene-

gene or locus-locus interactions. Recent findings have shown that

interchromosomal interactions upon transcription take place in

transcription factories in the nucleus [14–16,27]. As a result,

heterologous genes, and consequently transcripts, are colocalized

in the nucleus, thereby providing the spatial proximity for possible

transcript interaction. Given the recent discoveries concerning

transcriptome complexity [3,8,10], novel analyses of old transcript

data still provide a means for discovering new features in the

transcriptome. The focus on canonical splice sites will identify

trans-splicing events, but any possible alternative mechanism of

RNA interaction will go undetected. For this reason, we have

applied a search for chimeric sequences without any a priori

assumptions about the nature of RNA interactions.

At a first glance, the fact that we observe several interactions

more than once in both the EST and mRNA case, would suggest

that there is independent evidence corroborating our hypothesis.

There are 856 EST sequences that can be grouped into 366

interactions, whereas the majority of interactions are observed

once (4758 cases). As shown in Table 3, multiple interaction

observations often seem to originate from one or a few libraries. In

Figure 2. Gene interaction plot. Mosaic plot of gene interactions for 2651 EST chimeras where the direction of the participating partners is the same.
The size of each square is proportional to the number of times a fusion event is observed between chromosomes i and j, for i,jg1,2,…,22,X,Y. The
barplots represent known gene densities on each chromosome, according to Ensembl gene counts for all chromosomes.
doi:10.1371/journal.pone.0000254.g002
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fact, the 366 interaction groups correspond only to 433 libraries,

indicating that multiple observations of an interaction come from

the same library. Consequently, there are few independent

experiments that validate the multiple observations, thereby

questioning their significance.

The large number of rare events may however have other

explanations. First, due to the nature of cDNA library construc-

tion, EST libraries mostly originate from polyadenylated se-

quences - the latter may consist of as little as half of all transcribed

sequences [25]. Therefore, a large amount of transcripts will be

missing from these EST libraries. Second, the choice of mapping

parameters has a paramount effect on the number of observed

chimeras. EST data are known to contain contaminants and may

have sequence error rates as high as 3%. This, in combination

with the high repetitive content of the human genome, makes

unambiguous mapping difficult, especially for short sequences.

Third, EST sequence length limits the number of observed EST

chimeras for another reason. Even if a clone is chimeric, the fusion

point would, in our settings, have to be located at most 5–600 bp

from either clone end (average EST length is 533 bp), and at least

100 bp from either end of the EST sequence. Indeed, the

proportion p of chimeric sequences is significantly higher in the

mRNA data set (pmRNA = 2.961023 vs pEST = 7.361024, z-test, p-

value,2.2610216). A change in filtering settings would affect both

Figure 3. Chimera distributions by EST library. Distribution of chimeric observations grouped by dbEST library id. Only libraries with more than 10
observations are shown.
doi:10.1371/journal.pone.0000254.g003

Table 2. EST libraries with more than 40 observations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Library id Library name Tissue type Observations Library size

1402 NCI_CGAP_GC6 pooled germ cell tumors 222 40,001

1042 Soares_NFL_T_GBC_S1 NA 83 68,488

2 Fetal brain, Stratagene (cat#936206) NA 78 4,222

843 Soares_total_fetus_Nb2HF8_9w NA 55 27,766

10275 UI-E-EO1 fetal eye 52 7,558

595 NCI_CGAP_GCB1 germinal center B cell 49 52,221

16960 Homo sapiens pancreatic islet pancreatic islet 48 14,978

589 Soares_NhHMPu_S1 Pooled human melanocyte, fetal heart, and
pregnant uterus

47 44,292

452 Soares_fetal_liver_spleen_1NFLS_S1 NA 45 30,928

628 Soares_testis_NHT NA 42 51,082

1184 Soares_NSF_F8_9W_OT_PA_P_S1 NA 41 26,732

NA indicates that no tissue or cell type specification was available for a given dbEST library. Observations indicates the number of chimeric observations, and Library
size indicates the number of EST sequences in a given library.
doi:10.1371/journal.pone.0000254.t002..
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data sets, with the difference remaining, and it is likely that this

difference can be attributed to sequence length (average mRNA

length 1784 bp).

While it is expected that EST sequences are prone to artefacts

and contamination problems, the mRNA data set consists of

assembled sequences from full-length, cDNA clones, with a higher

sequence quality than that of the EST sequences. Still, some 600

intergenic mRNA sequences have been found, of which most are

not examples of regular splicing events. The majority have ORFs

$300 bp; however, only a quarter of ORFs overlap the fusion

point, meaning three out of four fusions do not alter reading frame

and protein characteristics.

This work presents the first tentative mapping of interchromo-

somal interactions using EST and mRNA data. The essence of this

work is contained in the list of putative locus-locus interactions

shown in Table S1. This should be considered as a resource on

future work on the biological significance of this phenomenon. It is

our hope that some of these putative chromosomal interactions

might correlate with interesting phenotypes, related to such diverse

topics as cytogenetic aberrations in tumours, mutational and

recombinational hotspots, and disease-related chromosomal re-

gions. These correlations could be spotted by the trained eye of

specialists in their respective fields of research. In addition to the

interaction resource, we propose a novel type of transcriptome

component that could be derived from the juxtaposition of two

regions of different chromosomes. Whether the resulting chimeric

transcript solely reports an interaction, or has a specific function,

remains to be assessed.

MATERIALS AND METHODS

Data sets
Homo sapiens sequence data was taken from GenBank, release 153

(ftp://ftp.ncbi.nih.gov/genbank/). The EST division consisted of

7684642 sequences; 200033 mRNA sequences were obtained

from the PRI and HTC divisions. The human genome reference

build, release 36.1, was used for the alignments (ftp://ftp.ncbi.nih.

gov/genomes/H_sapiens/Assembled_chromosomes). The EST

and mRNA data sets were aligned to the human genome

reference build, using BLAT [28]. The Ensembl database

homo_sapiens_core_40_36b was downloaded from ftp://ftp.

ensembl.org/pub/current_homo_sapiens/data/mysql/homo_

sapiens_core_40_36b. Finally, dbEST report files were down-

loaded from ftp://ftp.ncbi.nih.gov/repository/dbEST/.

Selection of chimeric transcripts
Simply put, the selection of chimeric sequences consists of selecting

queries (EST or mRNA) that map to loci on two different

chromosomes. For each query, all alignments to distinct chromo-

somes with alignment length $100 base pairs (bp) and identity

$95% were collected and processed. Alignments were sorted

Figure 4. Boxplots of fusion location. Distribution of fusion location for
5614 EST and 587 mRNA chimeras. The fusion location is represented as
a fraction X of sequence length. Fractions Y,0.5 have been transformed
to X = 12Y.
doi:10.1371/journal.pone.0000254.g004

Table 3. Most common interactions for EST data.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Left partner Right partner Counts

HUGO gene symbol Locus HUGO gene symbol Locus Observations Libids Labs Tissuetypes

SAPS2 22q13.33 INTS3 1q21.3 11 2 1 1

RPGF2_HUMAN 4q32.1 IG 7 11 2 1 2

COL6A1 21q22.3 DOT1L 19p13.3 11 1 1 1

FAF1 1p33 DSCR1L1 6p12.3 7 1 1 1

Q96NA9_HUMAN 14q32.2 OGFOD1 16q12.2 6 3 1 2

DDX42 17q23.3 ANKRD44 2q33.1 6 1 1 1

CD40 20q13.12 SEZ6L 22q12.1 5 1 1 1

ATF6 1q23.3 IGF2 11p15.5 5 1 1 1

EIF4G1 3q27.1 RABEP1 17p13.2 5 1 1 1

IG 22 KIAA1279 10q22.1 5 1 1 1

PSMD6 3p14.1 ZNF646 16p11.2 5 1 1 1

SLC5A10 17p11.2 FGG 4q31.3 5 1 1 1

The symbol IG indicates that a partner has aligned to a specific intergenic region which is the same for all observations for a given interaction. Observations indicates
how many times a given interaction has been observed, Libids how many different dbEST library ids these observations represent, and similarly for Labs and
Tissuetypes.
doi:10.1371/journal.pone.0000254.t003..
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according to score, and a transcript was reconstructed by fusing

two partner sequences which are defined by the query regions of

the two best alignments. A 10 bp overlap between the partner

sequences was allowed at the fusion point to account for alignment

uncertainties. A query was classified as a chimeric transcript if the

number of identities in the two best alignments together

constituted $95% of the query length.

In addition, the following uniqueness criterion was imposed to

make sure that the two best alignments were unambiguous: for

a query with three or more alignments, the alignments ranking

third or worse were compared with the second best alignment

(constituting the ‘‘short’’ partner of the reconstructed transcript). If

the ratio of correctly aligned bases between any such alignment

and the second alignment was .0.8 and the subject regions didn’t

overlap, then that part was considered to be ambiguously mapped.

As a final quality check, the chimera was discarded from further

analysis if a restriction recognition site for the enzyme used in

library construction was found at the fusion point.

Classification of interactions
By our selection criteria, the two partners of a chimeric sequence

map to loci on two different chromosomes. As a consequence,

a chimeric transcript can be viewed as the result of a potential

transcriptional interaction between interchromosomal loci. For

instance, a potential gene-gene interaction is observed if both

partners of a chimeric sequence map to genes. Comparison with

the Ensembl database allowed us to classify the fusion point in

both partners according to whether they mapped to a gene or an

intergenic region, denoted as GENE and IG, respectively (Table 1

A). Moreover, mappings to genes could be classified as EXON or

INTRON if the corresponding Ensembl gene contained tran-

script(s) with exon/intron information (Table 1 B). Finally, if also

CDS information existed for the Ensembl gene, for a partner

mapping to an exon the fusion point could be further classified as

59UTR, 39UTR or CDS (Table 1 C). Alignment of a sequence to

gene regions with known transcripts also enabled the inference of

sequence orientation.

Data analysis
We stored EST and mRNA sequences in a MySQL database

using the BioSQL schema (http://obda.open-bio.org), adding

extra tables for alignment results and dbEST clone library

information. The Ensembl database homo_sapiens_core_40_36b

was installed for the classification of chimera partners and fusion

point. Statistical analyses were performed using the software R.

SUPPORTING INFORMATION

Table S1 Mapping results for mRNA sequences. The symbol IG

indicates an alignment to an intergenic region.

Found at: doi:10.1371/journal.pone.0000254.s001 (1.92 MB

DOC)
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Table 4. Most common interactions for mRNA data.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Left partner Right partner Counts

HUGO gene symbol Locus HUGO gene symbol Locus Observations Labs

IG 19 GRM7 3p26.1 4 2

IG 22 CDH13 16q23.3 3 2

IG 10 NP_057109.2 16p12.2 2 1

Q96PV3_HUMAN 5q33.3 CK016_HUMAN 11p15.4 2 2

KCNJ13 2q37.1 Q96DH5_HUMAN 19p13.3 2 1

IG 12 NIPBL 5p13.2 2 1

TMEFF1 9q31.1 PRKDC 8q11.21 2 1

SLIT3 5q34 MAGED2 Xp11.21 2 2

*MLL 11q23.3 AFF1 4q21.3 2 2

APP 21q21.3 RAB11FIP1 8p12 2 1

HKR2_HUMAN 19q13.43 KIAA1244 6q23.3 2 1

*IG 12 LMBRD1 6q13 2 1

*MLL 11q23.3 Q6AI58_HUMAN 4p12 2 1

*CREB3L2 7q33 FUS 16p11.2 2 1

FOXK2 17q25.3 RAB22A 20q13.32 2 1

C16orf33 16p13.3 HNRPU 1q44 2 1

The symbol IG indicates that a partner has aligned to a specific intergenic region which is the same for all observations for a given interaction.
*Corresponds to known fusion events.
doi:10.1371/journal.pone.0000254.t004..
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