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Prevention, Morgantown, WV, United States

Peak exposures are of concern because they can potentially overwhelm normal

defense mechanisms and induce adverse health effects. Metrics of peak exposure

have been used in epidemiologic and exposure studies, but consensus is lacking

on its definition. The relevant characteristics of peak exposure are dependent upon

exposure patterns, biokinetics of exposure, and disease mechanisms. The objective of

this review was to summarize the use of peak metrics in epidemiologic and exposure

studies. A comprehensive search of Medline, Embase, Web of Science, and NIOSHTIC-2

databases was conducted using keywords related to peak exposures. The retrieved

references were reviewed and selected for indexing if they included a peak metric and

met additional criteria. Information on health outcomes and peak exposure metrics was

extracted from each reference. A total of 1,215 epidemiologic or exposure references

were identified, of which 182 were indexed and summarized. For the 72 epidemiologic

studies, the health outcomes most frequently evaluated were: chronic respiratory effects,

cancer and acute respiratory symptoms. Exposures were frequently assessed using

task-based and full-shift time-integrated methods, qualitative methods, and real-time

instruments. Peak exposure summary metrics included the presence or absence of

a peak event, highest exposure intensity and frequency greater than a target. Peak

metrics in the 110 exposure studies most frequently included highest exposure intensity,

average short-duration intensity, and graphical presentation of the real-time data (plots).

This review provides a framework for considering biologically relevant peak exposure

metrics for epidemiologic and exposure studies to help inform risk assessment and

exposure mitigation.

Keywords: peak metrics, epidemiologic studies, exposure assessment (EA), acute effects, chronic effects

INTRODUCTION

Exposures vary considerably over time however, exposure dynamics are not consistently
incorporated in epidemiologic exposure-response modeling; instead, summary metrics
are used. Summary metrics ideally reflect the underlying biological processes linking
exposure to dose and ultimately to the adverse health outcome (1, 2). More commonly,
summary metrics used in epidemiologic studies are driven by the types of exposure
measurements and data available and are therefore often surrogates of dose including
qualitative and quantitative metrics of peak exposure. Peak exposures, i.e., high-intensity
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exposures over short-duration, are of concern because they
can potentially overwhelm the capacity of normal biological
defensemechanisms and induce adverse acute and chronic health
effects (3).

Peak exposure metrics are often used in studies of acute
respiratory effects (4) and some chronic disease outcomes (5).
Acute or irritant effects of peak exposures are well-recognized
and correspondingly, short-term exposure limits (STEL) or
ceiling limits have been established for many substances to
protect against the effects of intermittent high exposures (6).
Peak exposure to ammonia or hydrogen chloride can result in
mild but not trivial effects such as respiratory irritation, while
peak exposure to hydrogen cyanide or hydrogen sulfide can
cause serious acute effects which can be fatal (7). Epidemiologic
studies have also observed associations of peak exposures with
chronic conditions such as cancers or asthma, in which intense
exposure over a short-duration during a relevant time window in
the disease process surpasses a threshold, and initiates biological
responses that subsequently result in adverse health outcomes (8,
9). Recent outbreaks of acute or accelerated silicosis and rapidly
progressive pneumoconiosis associated with short-term high
silica-content dust exposures in coal miners or engineered stone
fabrication workers exemplify chronic effects of high exposures
over short periods (10–12).

While the concept of peak exposure is well-recognized, there is
little consensus in the literature on characterizing peak exposure,
specifically identifying relevant peak exposure characteristics
such as exposure intensity, duration, time interval between peaks,
frequency of peaks, aggregation of peaks or absolute (exposures
above a target value) vs. relative peaks (exposures above average
of the series) (8, 13, 14). Since peak exposure metrics are not
consistently defined or utilized, they may be overlooked as
an exposure metric in epidemiological studies where average
or cumulative exposure metrics are used instead, potentially
leading to bias in estimates of exposure-response associations
(15). Selecting an inappropriate summary metric results in a
form of non-differential exposure misclassification not often
discussed in epidemiologic studies (2), that likely includes both
random and systematic errors. While non-differential exposure
misclassification often leads to attenuation bias, i.e., bias toward
the null in the measure of association (16), systematic errors can
lead to bias toward or away from the null depending on the
direction of the systematic error. For example in two separate
studies, cumulative exposure, a commonly used summary metric
in chronic disease epidemiology was not associated with toluene
diisocyanate (TDI)-related occupational asthma or beryllium
sensitization, but significant associations were observed with
metrics of TDI peak exposure events and average or highest
beryllium job exposures, respectively (17, 18). Thus, use of
inappropriate summary metric may have led studies to miss
important associations.

Biological Considerations for Defining
Peak Exposure
The relationship between exposure and adverse health outcomes
is complex, varies over time, and is linked through two

processes, exposure-burden (toxicokinetics) and burden-effect
(pharmacodynamics) relationships (1, 2, 7). Inhaled exposure
undergoes absorption, distribution, metabolism and excretion,
with burden at the target tissue accumulating over a relevant
period (dose) leading to repair processes and accumulation of
damage at the cellular level which ultimately determines the
health outcome (19, 20). The rate of accumulation at the target
tissue can affect the type and the severity of the outcome, and is
in part dependent upon exposure variability and physicochemical
characteristics of the substance; a high dose rate may alter
metabolism (e.g., via saturation), overload repair mechanisms
and amplify response leading to non-linear (not proportional
to exposure) effects (3). Peak exposures are important when
exposures are variable, and this variability is transmitted to
variability in burden through rapid kinetics and short half-
times as in the case of irritant and acute respiratory effects,
as well as for some chronic outcomes with non-linear effects;
examples of non-linear effects include changes in uptake or
susceptibility, synergism or antagonism, and allergies, all leading
to amplification of response (6, 8). In the latter case, highest
exposure, exposure excursions or upper percentiles of exposure
distribution during a biologically-relevant time window may be
more appropriate (3). The dose and the rate of accumulation
at the target tissue can be estimated using toxicokinetic models
to understand exposure kinetics and develop relevant exposure
or dose metrics for epidemiologic studies (3, 6, 21). Smith and
Kriebel propose that appropriate summary metrics of the time-
varying exposure or dose can be selected from one of four
simplified dose-effect process models obtained by combining the
time course of effects (reversible vs. non-reversible) with whether
the effect is proportional to dose (discrete vs. proportional);
episodic asthma exacerbation is an example of a reversible,
discrete disease process with a short etiologic time interval for
which peak exposure is a relevant summary metric (20).

Issues in Measuring Peak Exposure
Exposure assessment ideally includes measurement data, which
are variable in time scales (e.g., minutes, years) with different
implications for exposure assessment depending on the health
outcome. Peak exposure measurements for acute effects may be
collected in the time scale of minutes to hours over days to weeks,
whereas for chronic effects, full-shift measurements and their
distributions overmonths to years may be relevant, depending on
the observation period of the study (8). There is limited guidance
from standard setting agencies or health and safety associations
on exposure assessment strategies to define, measure, or interpret
peak exposure (22, 23). Additionally, the little guidance that exists
on sampling duration to assess peak exposures for comparison
to STELs often call for 15-min sampling or averaging times,
an approach historically based on the limitations of exposure
monitoring (3). Sampling duration determinations should ideally
account for the kinetics of the substance and the capabilities of
analytical methods or real-time instruments (7, 19).

Peaks can arise from normal process variation (regular peaks)
or from process upset conditions and non-routine operations
(irregular peaks) (24, 25). Regular peaks are more likely
identified using exposure data from routine monitoring, whereas
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irregular peaks can be missed without continuous monitoring to
account for unplanned events, non-routine operations, or less-
frequently performed tasks. Irregular peaks are more frequently
identified qualitatively through inquiries of events/activities in
questionnaire surveys or during investigations of occupational
illnesses or accidents. Quantitative peak metrics are ideally
obtained from real-time measurements however, they are often
unavailable. Additional considerations include autocorrelation
among successive measurements (6, 7) which can amplify health
effects (3), limitations of sampling and analytical methods for
short-duration measurements and performance capabilities of
real-time instruments.

A variety of approaches using different averaging times or
methods have been used to define peak exposure (4, 26). For
the most part, the definitions of peak exposure are not based
on explicit biological mechanisms and the toxicokinetics of the
substance is generally not reported. These metrics are most useful
when they are correlated with the true, biologically-relevant
peak measure. This literature review aims to summarize peak
exposure metrics commonly used in epidemiologic and exposure
studies to improve our understanding of peak exposures and
the considerations for defining peaks such as health outcome of
interest, disease mechanism, kinetics of substance and sampling,
and analytical capabilities of methods and instruments.

METHODS

Search Strategy
A comprehensive search of the published literature was
conducted to identify potentially relevant literature using peak
exposure metrics in epidemiological and exposure studies. An
initial literature search was conducted in 2014 and updated
in 2017 and 2019 utilizing multiple databases including
Medline, Embase, and Web of Science to identify articles with
the search keywords “environmental monitoring,” “maximum
allowable concentration,” “occupational exposure,” “threshold
limit values,” “peak exposure(s),” “short-term exposure,” “highest
exposures,” “exposure-tails,” “spills,” “accidental exposures,”
“acute exposures,” “exposure excursions,” “irregular exposures,”
and “intermittent exposures.” The final list of keywords was
drawn in part from how peaks were referenced in the published
literature. Bibliographies of selected articles were also searched
for relevant literature to include, as well as articles obtained from
personal archives. Overall, 652 references retrieved from these
searches were combined in an Endnote library and duplicate
references were removed resulting in 588 references. We also
searched NIOSHTIC-2, a bibliographic database of occupational
safety and health publications supported by the National Institute
for Occupational Safety and Health (NIOSH) using the search
term “peak exposure.” The search in NIOSHTIC-2 identified 563
NIOSH-supported abstracts, reports and publications.

Study Selection
Full text versions of the references were obtained and reviewed by
two reviewers. The first reviewer excluded studies that were not
available in English or did not meet inclusion criteria. References
were excluded if they used the term “peak” in the wrong

context, e.g., “peak” season, “peak” expiratory flow; evaluated
the impact of an intervention or prevention strategy without a
defined “peak”; studied a non-adult population; lacked detailed
peak metric data; or had ≤5 subjects. Literature identified
through NIOSHTIC-2 were reviewed using the above exclusion
criteria. NIOSH Health Hazard Evaluation and Survey reports
(27) were excluded. Included studies were categorized as either
epidemiological or exposure studies.

A second reviewer examined the studies to define the
scope of the review and made a final determination on study
inclusion. For the epidemiologic studies, the review was focused
on all health outcomes associated with occupational chemical
or particulate exposures. For the exposure studies, the scope
was broadened beyond occupational chemical or particulate
exposures to also include exposure to noise, electromagnetic
radiation, and environmental pollutants. The first reviewer
then examined full text, published articles and reports, and
selected articles for indexing if the concept of peak exposure
was mentioned together with peak characteristics e.g., sampling
strategy, duration, summary metric, described in data extraction
section below; articles were excluded if they referred to highest
exposure as “exposure peaks” but did not use a peak exposure
metric in epidemiologic analysis. If a full text version was
not available but all relevant information could be extracted
from the abstract, then the reference was included. Conference
abstracts identified in the search were also included if all relevant
information could be extracted from the conference abstract. The
combined search strategies resulted in 1,215 studies from which
182 relevant studies were indexed and summarized.

Data Extraction and Summarization
Data were extracted from each reference to create a database
summarizing the health outcome for epidemiological studies
and specific exposure characteristics for all studies. For
epidemiological studies, the database included information on
epidemiologic study design, industry and occupation, health
outcome measure and classification, method and frequency of
measuring health outcome, the observation period of the health
outcome, and details on peak exposure including the substance,
sample type, sampling strategy, exposure assessment period
and frequency, averaging time, sampling instrument, and peak
exposure summary metric. For exposure studies, the database
included only information on exposure characteristics noted
above. The final step was to group all epidemiologic studies into
groups of similar health outcomes, and the exposure studies into
groups of classes of exposure.

RESULTS

After exclusions, 72 epidemiologic studies and 110 exposure
studies were retained, and relevant details, including peakmetrics
and exposure characteristics, were extracted and reported in
Supplementary Tables 1, 2, respectively.

Epidemiologic Studies Summaries
Table 1 summarizes the 72 epidemiological studies that evaluated
relationships between peak chemical or particulate exposures
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TABLE 1 | Characteristics of peak exposures metrics used in epidemiologic studies.

Health outcome/study

characteristics

Overall

N (%)

Acute

respiratory

N (%)

Chronic

respiratory

N (%)

Immune

sensitization

N (%)

Pneumoconiosis

N (%)

Cancer

N (%)

Neurobehavioral

N (%)

Cardiovascular

N (%)

Biomarker

N (%)

N (%) 72 (100) 12 (17) 20 (28) 6 (8) 4 (6) 15 (21) 9 (13) 3 (4) 3 (4)

Epidemiologic study type

Intensive and follow-up 10 (14) 5 (42) – – – – 2 (22) 2 (67) 1 (33)

Cohort 25 (35) – 11 (55) – 3 (75) 9 (60) 1 (11) 1 (33) –

Cross–sectional 23 (32) 4 (33) 7 (35) 6 (100) – – 5 (56) – 1 (33)

Case–control 8 (11) – 1 (5) – 1 (25) 6 (40) – – –

Case–series 2 (3) – 1 (5) – – – 1 (11) – –

Ecological 4 (5) 3 (25) – – – – – – 1 (33)

Health outcome classification

Acute 22 (31) 12 (100) 2 (10) – – – 4 (44) 2 (67) 2 (67)

Chronic 59 (82) 4 (33) 18 (90) 6 (100) 4 (100) 15 (100) 8 (89) 1 (33) 3 (100)

Health assessment method

Questionnaire 44 (61) 10 (83) 19 (95) 5 (83) – – 9 (100) 1 (33) –

Physical exam 4 (6) – – – – – 4 (44) – –

Physiologic/functional or

biochemical test

39 (54) 8 (67) 11 (55) 6 (100) 4 (100) – 5 (56) 2 (67) 3 (100)

Death

certificates/insurance

11 (15) – – – – 10 (67) – 1 (33) –

Registries/records 5 (7) – – – – 5 (33) – – –

Health observation period

Cross-shift 17 (24) 12 (100) – – – – 3 (33) 1 (33) 1 (33)

Cross-week 5 (7) 5 (42) – – – – – – –

Over month(s) 7 (10) 2 (17) 2 (10) – – – 1 (11) – 2 (67)

Over years 52 (72) 2 (17) 18 (90) 6 (100) 4 (100) 15 (100) 5 (56) 2 (67) –

Exposure substance

Particulate 13 (18) 8 (67) 4 (20) – – – – 1 (33) –

VOC 2 (3) 2 (16) – – – – – – –

Isocyanates (HDI, TDI, MDI) 4 (6) 1 (8) 3 (15) – – – – – –

Gases 9 (13) – 6 (30) – – – 1 (11) 1 (33) 1 (33)

Diacetyl 2 (3) – 2 (10) – – – – – –

Irritants and allergens/JEM 2 (3) – 2 (10) – – – – – –

Other chemicals 5 (7) – 2 (10) 2 (33) – – – 1 (33) –

Silica 4 (6) – – – 3 (75) 1 (7) – – –

Asbestos 2 (3) – – – 1 (25) 1 (7) – – –

Metals 8 (11) – 1 (5) 4 (66) – – 3 (33) – –

Solvents 8 (11) – – – – 3 (20) 5 (56) – –

Benzene 5 (7) – – – – 5 (33) – – –

Formaldehyde 7 (10) 1 (8) – – – 5 (33) – – 1 (33)

Pesticides 1 (1) – – – – – – – 1 (33)

Sampling strategy

Real-time 19 (26) 10 (83) 4 (20) – – 1 (7) 2 (22) 1 (33) 1 (33)

Task time integrated 26 (36) 5 (42) 5 (25) 5 (83) – 7 (47) 2 (22) 1 (33) 1 (33)

Full shift time integrated 24 (33) 4 (33) 6 (30) 4 (67) – 7 (47) 2 (22) – 1 (33)

Modeling 2 (3) 1 (8) – – 1 (25) – – – –

Qualitative/Judgment/

JEM

20 (28) 1 (8) 13 (65) – 3 (75) 5 (33) 2 (22) 1 (33) –

(Continued)
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TABLE 1 | Continued

Health outcome/study

characteristics

Overall

N (%)

Acute

respiratory

N (%)

Chronic

respiratory

N (%)

Immune

sensitization

N (%)

Pneumoconiosis

N (%)

Cancer

N (%)

Neurobehavioral

N (%)

Cardiovascular

N (%)

Biomarker

N (%)

Biomarkers 3 (4) – – – – – 3 (33) – –

Sample type

Personal 33 (46) 10 (83) 11 (55) 3 (50) – – 6 (67) 2 (67) 1 (33)

Area 16 (22) 3 (25) 4 (20) 5 (83) – – 2 (22) – –

Sample averaging time

Instantaneous/

instrument

7 (10) 4 (33) 2 (10) – – – 1 (11) – –

Short-duration (15min.) 19 (26) 7 (58) – – – 8 (53) 2 (22) 1 (33) 1 (33)

Variable task duration

(0.5–4 h)

11 (15) 3 (25) 4 (20) 3 (50) – – – 1 (33) –

Full-shift/session (4–8 h) 16 (22) 1 (1) 6 (30) 4 (67) – 3 (20) 2 (22) – –

Peak exposure summary metric

Average intensity

short-term

16 (22) 7 (58) – 2 (33) – 4 (27) 2 (22) – 1 (33)

Highest intensity/category 24 (33) 4 (33) 5 (25) 4 (67) 1 (25) 5 (33) 2 (22) 2 (67) 1 (33)

Duration > target 5 (7) 2 (17) – 1 (17) – 2 (13) – – –

Frequency #/% > target 17 (24) 4 (33) 2 (10) 1 (17) – 8 (53) 2 (22) – –

Yes/no event, > target 27 (38) 1 (8) 14 (70) 3 (50) 3 (75) 2 (13) 3 (33) – 1 (33)

95th percentile 2 (3) – 1 (5) 1 (17) – – – – –

Variability (GSD) 1 (1) – – 1 (17) – – – – –

Note: percentages can be >100 when multiple characteristics are present in one study, or <100 when looking at only a sub portion of the data.

and health outcomes. Chronic respiratory effects were most
frequently examined (28%) followed by various cancers (21%)
and acute respiratory and irritation effects (17%). Most studies
(82%) evaluated a chronic health outcome and ascertained
health outcomes using questionnaire (61%) and/or physiological,
functional, or biochemical testing (54%). Studies evaluated
peak exposure to particulates, gases, metals, solvents, or other
substances often using personal sampling methods and task-
based (36%) or full-shift (33%) time-integrated monitoring,
qualitative assessments (28%), or real-time monitoring (25%).
The most common peak exposure summary metrics included
“Yes/No event” to an event ormeasurements above a target (62%)
and the highest measured exposures (33%).

Of the 12 studies evaluating acute respiratory and irritation
effects (4, 28–38), all studies evaluated cross-shift acute effects
while four studies also evaluated chronic effects by follow-
up assessments. Questionnaires were commonly used to assess
health outcomes (83%), while spirometry or biochemical
tests were conducted in 67% of studies. Most studies (67%)
evaluated exposures to particulate matter including dust, welding
fumes, wood dust, nano materials, and sodium borate, using
personal monitoring (83%) and real-time instruments (83%).
For averaging times, 92% of studies utilized 15-min averages
or instantaneous measurements (recording interval depended
on the instrument). Peak metrics used included average short-
duration intensity (58%), highest intensity (33%), and frequency
greater than a target concentration (33%).

Most of the 20 studies evaluating chronic respiratory effects
(39–58) were cohort studies (55%) focused on asthma (55%),
and two also evaluated acute health effects. Questionnaires were
used to assess health outcomes in most studies (95%) along
with spirometry or biochemical tests (55%). Asthma, respiratory
symptoms, and other acute respiratory diseases were most
frequently inferred through questionnaire or self-reports. Studies
most frequently (30%) evaluated exposure to gases (ozone, sulfur
dioxide, and chlorine), and the remainder included particulates
(soy dust, metal dust, rayon, and nylon flock dust), isocyanates,
diacetyl, other chemicals, and irritants and allergens from a job-
exposure matrix (JEM). Qualitative assessment of peak events
(65%) was common, as was personal monitoring (55%) using
full-shift (30%) sampling. Peak metrics used included Yes/No
event (70%) and highest intensity (25%). Some studies collected
real-time particulate measurements (42, 44, 45) or real-time or
time-integrated diacetyl measurements (51, 52) to characterize
peak exposures during specific tasks, but used qualitative
metrics indicating the performance or frequency of a task in
the analysis.

All six sensitization studies (18, 59–63) were cross-
sectional and evaluated sensitization from beryllium (67%)
and hexahydrophthalic anhydride or methylhexahydrophthalic
anhydride (33%) via serological testing. All studies conducted
either personal (50%) or area monitoring (83%), using full-shift
sampling (67%) or short duration task sampling (83%); real-time
instruments were not used in any of the studies. Frequently
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reported peak metrics included highest intensity (67%) and
Yes/No event (50%).

The four pneumoconioses studies (8, 64–66) evaluated
silicosis and pneumoconiosis from silica and dust exposures
(75%) and pleural plaques from asbestos exposure (25%)
via radiographic methods. Some exposure monitoring was
conducted to create qualitative peak metrics but was not directly
used in epidemiologic studies. Peak metrics used included
Yes/No event (75%) and highest intensity (25%).

Of the 15 studies evaluating cancer (67–81), most (67%) were
mortality studies from death certificates and insurance records,
and 33% identified cases from cancer registries and medical
records. Studies evaluated exposures to formaldehyde, benzene,
silica, asbestos, total hydrocarbons, styrene, and acrylonitrile. The
most common exposure assessmentmethods were short duration
task and full-shift monitoring (47% each) and 53% of studies had
averaging times of 15min or less. The most used summary metric
was frequency greater than a target concentration (53%) and
highest intensity (33%). Several studies (67, 69, 70, 79, 81) did not
report details of exposure assessment methods e.g., measurement
type or type of sampling. Most studies examined multiple peak
exposure metrics.

Of the nine neurobehavioral studies (82–90), eight studies
(89%) evaluated a chronic outcome, while four studies (44%)
also evaluated acute effects. All studies assessed health effects
by questionnaire and a combination of clinical evaluation and
physiological or functional testing. Exposures most frequently
evaluated included organic solvents (vinyl chloride, trichloro
ethylene, styrene, etc., n= 5), while three studies (33%) evaluated
metals exposures (mercury, lead). Personal monitoring was
conducted in 67% of studies and over half (55%) reported 15-
min averages or full-shift exposures. A variety of summary peak
exposure metrics were used including Yes/No event (33%), yet
several studies (82, 84) did not utilize the exposure metrics in
epidemiological analysis.

Of the three studies on cardiovascular outcomes (91–93), two
were panel studies and one was a historical cohort evaluating
cardiovascular mortality from death certificates. Substances
evaluated included PM2.5, carbon disulfide and dioxin. Two
studies conducted personal exposure monitoring utilizing 24-h
real-time monitoring and short duration sampling. Peak metrics
included highest intensity (67%) and Yes/No event (33%).

Of the three studies assessing biomarkers (94–96),
all were assessed via physiologic or biochemical testing.
Substances evaluated included pesticides, carbon monoxide, and
formaldehyde. Two studies conducted exposure monitoring, one
utilizing real-time monitoring and one short-duration/full-shift
sampling. Peak metrics included highest intensity (33%), average
short duration (33%), and Yes/No event (33%).

Exposure Studies Summaries
Table 2 summarizes the 110 studies that evaluated a peak
exposure to a chemical, particulate, or physical exposure in
occupational or environmental settings. Exposures evaluated
included environmental exposures (31%), organic chemicals
(28%), particulates (22%), gases (12%), and physical agents
(12%). Exposure studies most frequently assessed exposure by

personal monitoring sampling (66%), using real-time sampling
strategies (76%), and short-duration sample averaging time
(24%). Averaging times varied and highest exposure intensity
(93%) was the most frequently reported peak exposure
summary metric.

The 24 (22%) studies measuring peak particulate matter
exposure (14, 26, 97–118) included assessments for fine, ultrafine,
and nanoscale particulates (50%), respirable, inhalable or total
dust (38%), or specific substances (21%) (e.g., beryllium, black
carbon). For quantitative exposure, 63% conducted personal
monitoring mostly using real-time instruments (83%). Over half
(58%) reported instantaneous measurements and 29% reported
variable short-duration average intensity. The most frequently
reported peak metrics included highest intensity (88%), plots
(46%), and average short-duration intensity (46%).

The 31 (28%) studies measuring peak exposure to organic
chemicals (13, 116, 119–147) included assessments for
volatile organic compounds (VOCs) (29%), solvents (32%),
formaldehyde (16%), and other hydrocarbons (19%). Personal
monitoring was conducted in 55% of studies using short-
duration (55%) and real-time monitoring (42%). Time intervals
for sampling included instantaneous measurements (42%), 15-
min (39%) and variable short-duration (25%) average exposures,
and peak metrics included highest intensity (87%) and average
short-duration intensity (68%).

The 13 (12%) studies measuring peak exposure to gases
(104, 108, 119, 123, 148–155) included assessments for carbon
monoxide (46%), oxides of nitrogen (31%), carbon dioxide and
ammonia (23% each), hydrogen sulfide (15%), and sulfur dioxide
and chlorine (8% each). Personal monitoring was conducted in
77% of studies most frequently utilizing real-time instruments
(92%) and instantaneous measurements (69%). Peak metrics
used most frequently included highest intensity (92%), plots
(46%), and average short-duration intensity (38%).

The 13 (12%) studies measuring peak exposure to physical
agents (110, 156–167) included assessments for noise (46%)
and electromagnetic frequency (54%). Personal monitoring was
conducted in 85% of studies, all utilizing real-time instruments.
Studies reported variable short-duration average intensity (46%),
full-shift measurements (46%), and instantaneous measurements
(38%). Most frequently reported peak metrics included highest
intensity (92%), average short-duration intensity (38%), and
frequency greater than a target concentration (38%).

One occupational study (168) developed a qualitative (Yes/No
event) peak accidental exposure metric based on professional
judgment for a JEM, which did not fit into any of the above
exposure categories and was not included in Table 2.

Environmental exposure studies reported a variety of peak
exposure metrics. The 34 (31%) studies measuring peak
exposure to environmental pollutants (125, 169–201) included
assessments for particulate matter (53%), polycyclic aromatic
hydrocarbons (PAH)/VOCs (21%), oxides of nitrogen, carbon
monoxide/dioxide and black carbon (12% each), ozone (6%)
and ammonia, metal and noise (3% each). Personal monitoring
was conducted in 59% of studies most often utilizing real-
time instruments (76%) and short-duration monitoring (12%).
Most studies (53%) reported variable short-duration average
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TABLE 2 | Characteristics of peak exposures metrics described in exposure studies.

Study characteristic Overall Particulate matter VOC/solvents Gases Physical agents Environmental pollutants

N (%) N (%) N (%) N (%) N (%) N (%)

N (%) 110 (100) 24 (22) 31 (28) 13 (12) 13 (12) 34 (31)

Sampling strategy

Real-time 84 (76) 20 (83) 13 (42) 12 (92) 13 (100) 26 (76)

Grab-instantaneous 4 (4) – 3 (10) – – 1 (3)

Task time integrated 26 (24) 4 (17) 17 (55) 1 (8) – 4 (12)

Full shift time integrated 7 (6) 2 (8) 1 (3) – – 4 (12)

Modeling 3 (3) – 2 (6) – – 1 (3)

Qualitative/Judgment/JEM 3 (3) – 2 (6) – – –

Sample type

Personal 73 (66) 15 (63) 17 (55) 10 (77) 11 (85) 20 (59)

Area 50 (45) 13 (54) 14 (45) 5 (38) 4 (31) 14 (41)

NA or Not reported 9 (8) – 7 (23) – – 1 (3)

Sample averaging time

Instantaneous/instrument 53 (48) 14 (58) 13 (42) 9 (69) 5 (38) 12 (35)

Short-duration (15min.) 18 (16) 2 (8) 12 (39) 3 (23) – 1 (3)

Variable task (0.5–4 h) 47 (43) 7 (29) 11 (35) 5 (38) 6 (46) 18 (53)

Full-shift/session (4–8 h) 18 (16) 1 (4) 1 (3) – 6 (46) 10 (29)

Not reported 5 (5) 1 (4) 2 (6) – – 1 (3)

Peak exposure summary metric

Highest intensity/category 102 (93) 21 (88) 27 (87) 12 (92) 12 (92) 30 (88)

Plots 35 (32) 11 (46) 6 (19) 6 (46) – 12 (35)

Average intensity short-term 51 (46) 11 (46) 21 (68) 5 (38) 5 (38) 9 (26)

95th percentile 21 (19) 5 (21) 5 (16) 1 (8) 3 (23) 7 (21)

Duration > target 10 (9) 2 (8) 2 (6) 1 (8) 2 (15) 2 (6)

Frequency #/% > target 24 (22) 4 (17) 7 (23) 3(23) 5 (38) 5 (15)

Yes/No event, >target 2 (2) 1 (4) – – – –

Variability (GSD) 7 (6) 3 (13) 2 (6) – 2 (15) –

Other 7 (6) 1 (4) 1 (3) 1 (8) 3 (23) 1 (3)

Percentages can be >100 when multiple characteristics are present in one study, or <100 when looking at only a sub portion of the data.

intensity or instantaneous measurements (35%). The most
reported peak metrics included highest intensity (88%) and
plots (35%).

DISCUSSION

A comprehensive literature review was conducted to summarize
peak exposures in epidemiologic and exposure studies in order
to better understand peak exposures and instill consistency
in measuring and creating peak metrics for future studies.
Most epidemiologic studies evaluated a chronic effect, and
fewer considered acute effects for which peak or short-
duration exposures would be relevant and advantageous,
and for which STELs are more often specified. Interestingly,
quantitative exposure data were available for most studies, but
were not of adequate quality or detail to construct more
complex metrics beyond binary, maximum or average
exposure metrics. Most studies did not explicitly note the
disease mechanism or biological basis for the postulated
peak exposure-response relationships which are necessary
to construct biologically valid peak exposure summary

metrics to ensure valid health risk estimates (9, 20). Future
studies could benefit from multi-disciplinary collaborations
in developing novel metrics of peak exposure and to
better capture the biological processes underpinning the
exposure-response relationships.

The expanded search of exposure studies to include physical
hazards and environmental pollutants provided a broader
context of peak characterization. Most exposure studies utilized
real-time or short-duration task-based sampling with sampling
duration ≤15min. Highest exposure intensity was the most
frequently reported peak exposure summary metric, but average
short-duration intensity and plots were also common. Statistical
methods that account for non-stationary autocorrelation or
measurements below the detection limit in real-time exposure
data were not considered, instead favoring examples of plots
and highest measured exposure. Peak metrics can be used in
epidemiologic studies, or in industrial hygiene applications to
make decisions on interventions, or to evaluate the efficacy of
control measures (112). Peak exposures during specific tasks can
have a substantial impact on full-shift average exposures, and
this information can be used to design efficient control strategies
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focused on limited high-exposure tasks (14) and to demonstrate
the benefits of changing work practices when linked to video
exposure monitoring.

Epidemiologic studies of acute effects were predominantly
for respiratory outcomes utilizing personal real-time exposure
measurements summarized over 15min or less. The most
common peak exposure summary metrics were average and
highest short-duration exposure, as well as the frequency and
duration of measurements above a target value. Even within
this narrower class of health outcomes focused on acute
respiratory effects, there was little consistency in exposure data
used or summary metrics created, and little discussion on
biological basis for defining peak exposure and the underlying
biological processes linking exposure to health outcome. Notable
exceptions include a set of studies on the acute respiratory effects
of sodium borate dust which measured real-time exposures
of 106 participants on 4 consecutive days and real-time self-
reported symptoms and their severity, as well as symptoms and
spirometry at hourly interval during work hours (4, 26, 29, 37,
202). These studies used 15-min average exposure and nasal
dose estimates and explained their choice of averaging time
in terms of the underlying biological processes and the time
course of experiencing respiratory irritation (29, 38). From the
review of exposure studies, novel and interesting metrics of peak
exposures based on intensity, duration, time interval between
peaks, frequency, and aggregation of peaks, and absolute vs.
relative peaks from real-time data have been proposed but not
utilized in epidemiologic studies. A study of healthcare workers
utilized a Bayesian approach to model VOC exposure time-series
to estimate 5- and 15-min, task-specific exposure summaries
including (posterior distributions of) geometric means (GM),
geometric standard deviations (GSD), and quantiles such as
95th percentile (P95) (147). In another study of electric utility
workers exposed to extremely low-frequency magnetic fields,
exposure patterns were described by conducting a frequency-
domain time-series analysis and grouping workers based on the
frequency patterns of exposure time series (203). Studies of VOC
exposures in spray painting operators (13) and dust exposures
in flour processing workers (14), created a range of relative
or absolute peaks using 5-s, 1- or 15-min moving averages,
including: number of peaks per hour, duration of peaks, average,
and maximum concentrations of the peaks and their ratios,
and average duration between peaks. Understanding the effect
of short-duration exposures, there are efforts to develop task
or job-task exposure matrix for use in epidemiological studies
(204, 205).

Epidemiologic studies of chronic effects evaluated various
health outcomes including respiratory, cancer, cardiovascular
and neurobehavioral outcomes. Quantitative measurements were
available for many studies, however, most used peak exposure
summary metrics including Yes/No to an event and the highest
or average intensity. Notably, a study of berylliummanufacturing
workers created and evaluated a range of qualitative and
quantitative peak exposure metrics including summaries (GM,
GSD, Maximum, P95, frequency > target, duration of exposure,
duration > target) from full-shift and short-duration exposure
measurements; qualitative metrics included company recorded

events such as leaks and upset conditions, ventilation or
equipment failure and reportable spills, and instances of
evacuations, and self-reported high exposures, and participation
in decontamination and spills clean-ups, to assess their utility
in predicting beryllium sensitization (61). This study reported
the biological processes underpinning the relationship between
peak exposure and sensitization and found moderate to high
correlation among the various metrics with most performing
equivalently in epidemiological analyses. Notably, the reviews by
Checkoway et al. (8, 9) highlight the challenges of assessing peak
exposures for chronic disease where the timing of exposure is
often important and detailed information on peak exposures over
a period of years is often lacking.

Of the 72 epidemiologic studies, 52 evaluated multiple
metrics in their study, such as peak, average or cumulative
(Supplementary Table 1). Of these studies, many did not observe
significant associations between the health outcome and any of
the exposuremetrics or did not report all measures of association.
However, in 10 studies, peak metrics were reported to perform
better than average or cumulative exposure metrics in terms of
the magnitude of effect, albeit not always statistically or clinically
significant. In these studies, exposure-response relationships
based on accepted biological plausibility often demonstrated
significant associations with peak metrics (44, 64, 66, 69, 75, 87).
For example, risk of silicosis was better predicted by brief, short-
term quartz exposure (64) and relative peak quartz exposures
(as well as average non-peak exposures) compared to cumulative
exposures (69). Likewise, high dust levels from peak quartz
measures were a better predictor of pneumoconiosis than average
exposures in a study of iron ore mine and beneficiation plant
workers (66). Many studies evaluating multiple exposure metrics
reportedmoderate to high correlations between average and peak
exposure metrics that often resulted in either an association with
all exposure metrics or no association with any exposure metrics.
Ultimately, consideration of biological processes that underlie the
exposure-response relationship in creating or selecting exposure
metrics will lead to a more systematic and justified approach to
defining peak metrics, though not necessarily a unified definition
of peaks.

The often-used time-integrated sampling methods, while
specific, are not time-resolved and do not capture peaks,
requiring use of peak surrogates. There is renewed and growing
interest in the development of direct reading instruments
that have improved sensitivity, detection limit, specificity,
multiplexing capability, and other enhanced performance
characteristics (206), which hold tremendous promise of novel
peak exposure metrics for use in epidemiologic studies of acute
effects (13, 14, 203, 207). Real-time exposuremonitoring provides
flexibility in post-hoc definitions of peaks, and in examining
the correlations among the various peak metrics and their
utility in predicting risk of health effects. To emphasize the
importance of developing and using direct reading real-time
instrumentation in exposure assessment, NIOSH launched the
direct reading exposure assessment methods (DREAM) initiative
and established the NIOSH Center for Direct Reading and
Sensor Technologies (NCDRST) to coordinate research and
develop guidance on direct reading and sensor technologies.

Frontiers in Public Health | www.frontiersin.org 8 January 2021 | Volume 8 | Article 611693

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Virji and Kurth Review of Peaks

Despite the historical use and renewed interest in direct reading
instruments for exposure assessment, there is limited quantitative
exposure metrics generated by these instruments for use in
occupational exposure assessment and epidemiology. As shown
in this review, while real-time data are often used in exposure and
epidemiologic studies, they are not appropriately summarized or
fully utilized, often resorting to calculating averages, selecting
highest exposures, or displaying plots of typical profiles. Some
studies have provided guidance on extracting various metrics
of peak exposure in the time or frequency domains of real-
time data based on intensity, duration, time interval between
peaks, frequency, aggregation of peaks, and patterns based on the
frequencies at which high amplitude (peaks) occur (13, 14, 203).
Principal components analysis of these peak metrics revealed
three independent factors related to intensity, variability, and
duration that sufficiently characterized peak exposures (13),
which is consistent with their expression in terms of real-
time exposure distribution parameters and autocorrelation, i.e.,
the GM, GSD, and autocorrelation coefficient (207). Recently,
a statistically rigorous method was proposed to analyze real-
time data that simultaneously accounts for censored data,
fixed-effects covariates, hierarchical random-effects, and non-
stationary autocorrelation and was fit using Markov-Chain
Monte Carlo within a Bayesian context; the model provides
a range of summary measures such as the mean, standard
deviation and various quantiles of interest for a choice of
short-durations e.g., 15-min (208). This method was used in a
study of healthcare workers’ exposure to VOCs in which peaks
were quantified as the median of the posterior distributions of
the 95th percentile of short-duration (15-min averages) task,
a metric that is easy to interpret when used in epidemiologic
studies, to make decisions on interventions, or to evaluate
the efficacy of control measures (147). While limited guidance
and examples exist on analyzing real-time data, these methods
are complex, requiring familiarity with advanced statistical
methods and packages making their wide-spread use unlikely.
More user-friendly tools are needed to encourage more regular
use and application of such complex methods to analyze
real-time data.

Certain limitations exist in this study. While a comprehensive
literature search was conducted involving searching multiple
databases and references of identified studies to protect against
selection bias, the search was not exhaustive. In addition, we
found peak metrics to be highly diverse and inconsistent across
studies resulting in challenges summarizing the reviewed studies
and deriving generalizable definition of peaks and performance
of various peak metrics. Only one reviewer selected studies
for the review; two independent reviewers may have decreased
the chance of systemic error and bias. The search terms were
designed to be more inclusive of studies, especially given the
variety of terms used to describe the concept of peak exposure;
the search also included abstracts with sufficient information on
the peak exposure metrics to complete the data extraction table
(Supplementary Tables 1, 2) e.g., sampling strategy, duration,
summary metric. However, studies of short-duration task
exposures that did not address the concept of peak exposures
were excluded. Studies were included without consideration of

the magnitude or statistical significance of association, as the
objective was to summarize the metrics used and not the strength
of any particular exposure-response relationship. Restricting this
review to epidemiologic studies of chemical and particulate
peak exposures kept the scope of the review manageable but
limited its comprehensiveness as peak exposures to physical
and environmental hazards in epidemiological studies were
not assessed.

CONCLUSION

Peak or short-duration exposures are important in studying acute
effects as well as some chronic conditions, but peaks are not
consistently defined or used in epidemiologic studies and limited
guidance exists on strategies for monitoring peak exposures. This
review provides an overview of peak exposure metrics commonly
used in epidemiologic and exposure studies and identifies the
challenges of conducting exposure assessments. While consensus
recommendations are not provided or a single peak metric
is not recommended, examples of peak exposure approaches
and considerations for defining peak are provided. Exposure
assessment for epidemiologic studies requires consideration of
the complex biological processes underlying exposure-response
relationships, which are often unknown. Numerous factors
determine the assessment of peak exposures including exposure
patterns and variability, physicochemical properties of the
exposure substance, the disease mechanism and time course,
as well as exposure levels at which effects occur. This review
summarizes peak exposure metrics, highlights examples of
studies, and identifies factors to consider in developing peak
exposure metrics for epidemiologic exposure-response studies
that will result in accurate estimates of health risks and
appropriate exposure mitigation strategies to reduce morbidity
and mortality.
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