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Abstract

Background: As a marker of Helicobacter pylori, Cytotoxin-associated gene A (cagA) has been revealed to be the major
virulence factor causing gastroduodenal diseases. However, the molecular mechanisms that underlie the development of
different gastroduodenal diseases caused by cagA-positive H. pylori infection remain unknown. Current studies are limited
to the evaluation of the correlation between diseases and the number of Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in the CagA
strain. To further understand the relationship between CagA sequence and its virulence to gastric cancer, we proposed a
systematic entropy-based approach to identify the cancer-related residues in the intervening regions of CagA and
employed a supervised machine learning method for cancer and non-cancer cases classification.

Methodology: An entropy-based calculation was used to detect key residues of CagA intervening sequences as the gastric
cancer biomarker. For each residue, both combinatorial entropy and background entropy were calculated, and the entropy
difference was used as the criterion for feature residue selection. The feature values were then fed into Support Vector
Machines (SVM) with the Radial Basis Function (RBF) kernel, and two parameters were tuned to obtain the optimal F value
by using grid search. Two other popular sequence classification methods, the BLAST and HMMER, were also applied to the
same data for comparison.

Conclusion: Our method achieved 76% and 71% classification accuracy for Western and East Asian subtypes, respectively,
which performed significantly better than BLAST and HMMER. This research indicates that small variations of amino acids in
those important residues might lead to the virulence variance of CagA strains resulting in different gastroduodenal diseases.
This study provides not only a useful tool to predict the correlation between the novel CagA strain and diseases, but also a
general new framework for detecting biological sequence biomarkers in population studies.
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Introduction

Helicobacter pylori (H. pylori) is a Gram-negative helix-shaped

bacterium inhabiting the human stomach and infecting more than

half of the world’s population [1,2,3]. Recent studies have shown

that it is associated with gastroduodenal diseases, including

duodenal ulcers [4], gastric ulcers [5] and chronic gastritis. More

importantly, it is a significant risk factor for developing gastric

cancer [6,7,8]. It has been classified as a Class 1 human

carcinogen by the World Health Organization since 1994 [1].

As a marker of H. pylori, the Cytotoxin-associated gene A (cagA)

has been revealed by further analysis to be the major virulence

factor. H. pylori strains carrying the cagA gene increase the risk

factor of gastroduodenal diseases by three folds over cagA-negative

strains [6,9,10]. CagA, which is encoded by the cagA gene, is a

125–140 kDa protein. It contains 1142–1320 amino acids and has

a variable region at the C-terminal region in which various short

sequences (such as EPIYA motif) repeat 1–7 times. After H. pylori

colonizing on the surface of the gastric epithelium, CagA can be

translocated into the gastric epithelial cell through a type IV

secretion system. Once injected into the host cell, CagA localizes

to the plasma membrane and can be phosphorylated by Src-family

tyrosine kinases on the specific tyrosine residues of a five-amino-

acid (EPIYA) motif [11,12,13,14]. Tyrosine-phosphorylated CagA

then binds specifically to SHP-2 tyrosine phosphatase [11,15] to

activate a phosphorylase, which causes the cascade effect that

interferes with the signal transduction pathway of the host cell,

leading to a restructuring of the host cell cytoskeleton and

formation of hummingbird phenotype [11,16]. At the same time

through activating mitogen-activated protein kinase (MAPK),

extracellular signal-regulated kinase (ERK) [17] and focal

adhesion kinase (FAK), CagA also can cause cell dissociation

and infiltrative tumor growth [18,19,20,21]. Such a process makes

CagA a most important virulence factor in H. pylori [22].

Within the variable region of CagA, there are some different

intervening sequences between those EPIYA motifs. One copy of

EPIYA plus intervening sequence is identified as an EPIYA

segment. Four unique types of EPIYA segments have been found
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in CagA, defined as EPIYA-A, -B, -C and -D [11]. The CagA

isolated from East Asian countries, designated as East Asian CagA,

contains EPIYA-A, EPIYA-B and EPIYA-D motifs. The CagA

from Western countries, EPIYA-D, is replaced by EPIYA-C.

Stronger phosphorylation motif binding activity of the EPIYA-D

motif leads to greater morphological changes than what the

EPIYA-C motif can cause in infected cells [11]. It is this EPIYA-D

motif’s increased binding activity and resultant morphological

changes that identifies it as a potential factor to explain the higher

incidence of gastric cancer in East Asian countries [23,24].

Previous studies revealed a variation in the number of EPIYA

motif repeats for both East Asian and Western CagA, which can

affect biological activities. Yamaoka et al. [25] found that in

Columbia and USA, the ability of cagA-positive H. pylori to cause

gastric mucosal atrophy and intestinal metaplasia might be related

to the number of EPIYA motifs in the CagA strain. Argent et al.

[16] came to the same conclusion later. However, contrary

opinions were published by Lai et al. [26] based on findings of no

relationship between the number of EPIYA motifs in the CagA

strain and clinical disease within 58 isolates from Taiwan.

Considering the size and geographic limitation of these studies,

the validity of this conclusion is questionable. Aside from the

number of the EPIYA motif repeats, the sequence difference of

strains in variable regions also could cause a significant difference

of virulence, which might relate to the different pathogenic

abilities of H. pylori [27].

Because of the complex and variant sequences in CagA, the

relationships between the polymorphism of CagA and clinical

diseases become a very interesting research problem. However, the

molecular mechanisms that underlie different gastroduodenal

diseases caused by cagA-positive H. pylori infection remain

unknown. Until now most studies are still limited to the discovery

or evaluation of the correlation between the number of CagA

EPIYA motifs and diseases [28].

In this paper, we propose a systematic method to analyze not

only the number of EPIYA motifs in CagA sequences but also the

specific sequence patterns of intervening regions. First, we

introduce entropy calculation to detect the residues within the

variable region of CagA as the gastric cancer biomarkers. Then we

employ a supervised learning procedure to classify cancer and

non-cancer by using the information of detected residues in CagA

as the features. We choose support vector machines (SVM) as a

binary classifier and compare our method with others. Our

approach not only proves our hypothesis that the sequence of

variable region of CagA contains information to distinguish

different diseases, but also provides a useful tool to predict the

correlation between the novel CagA strains and diseases and to

detect the biomarker as well.

Methods

Data Preprocessing
Based on the previous description in Ref. [15], we named the

EPIYA motif and the following intervening regions R1, R2, R3,

R39, R4 and R49 (Figure 1). Figure 2 shows the position relation

between the EPIYA motif (R1) and other intervening regions by

using the CagA types A-B-D (East Asian subtype) and A-B-C

(Western subtype) as examples. R2 is relatively conserved across

both subtypes, but there are significant differences between the

intervening regions R3 and R39, as well as between R4 and R49.

The East Asian subtype and the Western subtype were treated as

two independent groups. Their data was then processed and the

results were analyzed within each group individually.

All intervening regions were extracted from the CagA sequences

and put into the corresponding subtype groups, and then the

multiple sequence alignments were applied for each group

individually by using Clustal X version 2.0.3 [29]. The sequences

profiles (Figure 1) was built by using the Weblogo 3 [30].

Residue Detection
Since CagA is related to almost all gastroduodenal diseases and

simple analysis of EPIYA motif repeats does not yield any

statistically significant differences among those diseases, the

information indicating a specific disease might be hidden in the

intervening regions. This research assumes that there is a set of

residues or residue combinations that could be useful as a marker

of a specific disease. This study focuses on the gastric cancer and

uses the cancer/non-cancer groups as the example.

Based on the aligned sequences for each intervening region,

specific residues were identified by comparing the difference of

combinatorial entropy [31] between the cancer and non-cancer

groups. This procedure includes the following steps:

First of all, we divide the given multiple alignments for all

intervening regions into two groups: gastric cancer group and non-

cancer group. For each column of multiple alignments, we

compute the background entropy (Eq. 1) and the combinatorial

entropy (Eq. 2), described as follows:

Ci~
X

k

ln
Nk!

P
a~1:::20

Na,i,k!
ð1Þ

where Nk represents the number of sequences in group k. Na,i,k

indicates the number of residues of type a in the column i of group

k. Na,i is the number of residues of type a in the column i. N
represents the total number of sequences in alignment.

Bi~
X

k

ln
Nk!

P
a~1:::20

~NNa,i,k!
ð2Þ

where ~NNa,i,k~NkNa,i=N .

Then the entropy difference between the combinatorial entropy

and the background entropy is calculated:

DE~Ci{Bi ð3Þ

Figure 3 illustrates the entropy concept using three extreme

cases. In case P1, the amino acids are ‘randomly and uniformly

distributed’ over all groups and there is no significantly conserved

pattern for this position. Case P2 represents a ‘globally conserved’

pattern and all the amino acids are the same across both groups.

In case P3, some specific amino acids are only conserved in

particular groups, and different groups have different amino acids.

We call this case ‘locally conserved’.

According to the calculation results of the entropy difference for

the above three cases, the combinatorial entropy is Ci~0 for both

‘globally conserved’ and ‘locally conserved’ cases. For ‘randomly

and uniformly distributed’ case, Ci gets the maximum value. We

can distinguish the ‘conserved’ and ‘randomly and uniformly

distributed’ cases based on the combinatorial entropy, but it does

not help pick ‘locally conserved’ case from all ‘conserved’ cases.

When we consider the background entropy at the same time, Bi

gets the maximum value, 0 and medium value for the ‘randomly

and uniformly distributed’ case, ‘globally conserved’ case, ‘locally

conserved’ case, respectively. Finally, the differences for the above

Risk Assessment of Gastric Cancer Using CagA
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three cases are:DE1~0, DE2~0, and DE3 gets the minimum

value. Hence, the entropy difference is a proper measurement for

detecting a ‘locally conserved’ sequence pattern.

Feature-entropy Calculation
Based on the above calculation, it can be determined that

correct grouping can minimize the entropy difference for those

residues belonging to the ‘locally conserved’ case. To perform a

test, one sequence is selected while the rest of the sequences are

divided into a gastric cancer group and a non-cancer group. For

all selected residues, the selected sequence is placed into the gastric

cancer group to calculate the entropy difference DECA, and then it

is placed into non-cancer group to get the corresponding entropy

difference DENON{CA. Finally, DE0~DECA{DENON{CA is

obtained for all selected residues that are used as the feature

entropy.

Classification of CagA Sequences
Dataset. We searched the National Center for Biotechnology

Information (NCBI), the Swiss-prot/Tremble and DDBJ protein

database and obtained 535 strains of H. pylori CagA protein.

Among them, there are 287 East Asian subtype strains and 248

Western subtype strains. In the East Asian subtype group, 47 out

of 287 strains are from gastric cancer patients and the rest are from

other diseases. In the Western subtype group, there are 37 strains

from the gastric cancer patients, and the remainders are from

other diseases or the normal controls, including 24 strains from

volunteers whose health (disease) status was unknown.

Workflow. Figure 4 shows the workflow of the classification/

prediction procedure:

N Select one strain as the test strain.

N Apply a bootstrap procedure to the rest of the strains to get the

training strains.

N Calculate the feature entropy for the test strain based on

training strains and save it as the test data.

N Calculate the feature entropy for each strain in the training

strain set based on training strains and save them as the

training data.

N Generate classification model by using the training data.

N Classify the test data according to the classification model.

N Repeat this procedure five times, and then calculate the

average as the final result.

Bootstrapping. A major issue in building a classification

model in this case is the big difference of the sample sizes between

cancer and non-cancer groups, which could cause bias in the

classification results. A bootstrapping procedure was applied to

address this issue. In each subtype group, for each training/test

data sets, all non-cancer samples were included, and then strains

were continuously drawn from the cancer group on a random

basis until reaching the same size of the non-cancer group. In this

case, all the available data were used although cancer samples

were utilized multiple times given their smaller size compared to

the non-cancer group. This procedure was applied five times to

generate five independent training sets for each test sequence. The

classification/prediction result is the average of those five

independent results.

Cross-validation. Because the data size is small, a leave-one-

out (LOO) cross-validation procedure was performed. This is not

only an assessment of the classifier performance on training/test

data, but also an estimate of prediction power for novel cases.

SVM. We chose SVM as binary classifier and used the

feature-entropy vectors to train and test the classifier. In the case of

two-class soft margin classification, the decision function is a

weighted linear combination defined as follows:

f (x)~
X

xi[S
aiyiK(x,xi)zb ð4Þ

Figure 1. Profiles of the CagA repeat regions.
doi:10.1371/journal.pone.0036844.g001

Figure 2. Structure examples: A-B-D and A-B-C types of CagA sequences (not on a proportional scale to sequence length).
doi:10.1371/journal.pone.0036844.g002
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where K(x,xi) represents a user-defined kernel function that

measures the similarities between the input feature vector x and

the feature vectors xi in the training dataset S. ai is the weight

assigned to the training feature vector xi and yi indicates whether

a CagA strain has been labeled with the positive class (+1) or

negative class (21). The primal optimization problem takes the

form:minimize

t(w,j)~ 1
2

wk k2z C
m

Pm
i~1 ji ð5Þ

subject to

yi SW xið Þ,wTzbð Þ§1{ji and ji§0 i~1,:::,mð Þ ð6Þ

where WT xið ÞW xj

� �
~K(xi,xj). m is the total number of strains. ji

is a slack variable which measures the degree of misclassification of

the datum. C is a cost parameter which allows for trading off

training error against model complexity. w is the normal vector

and b is the offset.

After comparing the results of polynomial, tanh and Gaussian

radial basis kernels, the result obtained with the RBF kernel

worked the best, where the Gaussian radial basis kernels (RBF:

exp ({c xi{xj

�� ��2
)) are for general-purpose learning when there

is no prior knowledge about the data. The SVMLight package

(http://svmlight.joachims.org/) [32] was employed to build our

application. The parameters C and c were tuned to get the best

model for the training data as shown in the following. All other

SVM parameters were set to their default values.
Performance evaluation. In order to evaluate the perfor-

mance of classifier, a variety of performance measures are applied:

accuracy, sensitivity and specificity. A true positive (TP) is a

cancer-related sequence classified as such, while a false positive

(FP) is a non-cancer related sequence classified as cancer-related, a

false negative (FN) is a cancer related sequence classified as non-

cancer related and a true negative (TN) is a non-cancer related

sequence classified as non-cancer related. The accuracy, sensitivity

(Sn), specificity (Sp) and Matthews correlation coefficient (MCC)

of classification is defined as follows:

Accuracy~
TPzTN

TPzFPzTNzFN
ð7Þ

Sp~
TN

FPzTN
ð8Þ

Sn~
TP

TPzFN
ð9Þ

Figure 3. An example to present different cases for the entropy
calculation.
doi:10.1371/journal.pone.0036844.g003

Figure 4. Workflow of classification/prediction procedure for
one specific CagA sequence.
doi:10.1371/journal.pone.0036844.g004
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MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p ð10Þ

Since there are only two parameters C,cð Þ for the RBF kernel and

they are independent, we applied a grid-search to determine the

optimal parameters of classifier. We used a harmonic means of

sensitivity and specificity as the objective function to optimize the

performance of the model for the training set, which is defined as

follows:

F~
2 Sp|Snð Þ

SpzSn
ð11Þ

Results

Residue Detection and Feature Calculation
Table 1 lists all detected key residues by calculating the entropy

difference in each intervening region for both Western and East

Asian subtypes. Although there are some geographic variations of

CagA sequences between the Western and East Asian subtypes,

some common residues could still be found to distinguish the

cancer and non-cancer groups. It suggests that those residues

might be very important in determining the virulence of CagA and

the relation between CagA and some specific diseases.

The residue positions are shown in Figure 5. A previous study

[27] reveals that the different EPIYA segments can bind to the

different kinases, e.g., EPIYA-R2 and EPIYA-R3/R39 bind to the

C-terminal Src kinase (Csk) while EPIYA-R4 and EPIYA-R49

bind to the SHP-2 kinase to cause the hummingbird phenotype.

The CagA-Csk interaction down-regulates CagA-SHP-2 signaling

that perturbs cellular functions to control the virulence of CagA. It

is found that most detected residues belong to R2 and R3/R39

regions and few residues in R4/R4’ regions have been detected.

This may be because R4/R4’ has more conserved sequence than

R2, and R4/R49 is shorter than R3/R39. We suggest that the

different residue patterns in R2 or R3/R39 regions might change

the ability of down-regulating CagA-SHP-2 signaling, therefore

changing the virulence of CagA.

Ren et al. found that CagA multimerizes in mammalian cells

[33]. This multimerization is independent to the tyrosine

phosphorylation, but it is related to the ‘‘FPLxRxxxVxDLSKVG’’

motif which is named CM motif in the R39 intervening region.

Since the multimerization is a prerequisite for the CagA-SHP-2

signaling complex and subsequent deregulation of SHP-2, the CM

motif plays an important role in cagA-positive H. pylori-mediated

gastric pathogenesis. With multiple CM motifs H. pylori strains are

much likely associated with severe gastroduodenal diseases

[33,34], but this observation cannot explain why different

gastroduodenal diseases can be developed with the exact same

number of CM motifs. Our study detected two residues in the CM

motif of R39 intervening region, which might lead to the change of

multimerization, thus changing the virulence of CagA. This is in

consistent with a previous discovery [35] that the sequence

difference between the East Asian CM and the Western CM

determines the binding affinity between CagA and SHP-2.

While the key residues detected can reveal some difference

between cancer and non-cancer groups, no single residue can be a

Figure 5. Comparison of sequence profiles between cancer and non-cancer groups and selected features (residues marked with
arrows) based on entropy calculation in the R3’/R3 region.
doi:10.1371/journal.pone.0036844.g005

Table 1. Detected residues by calculating entropy difference
for each intervening region between Western and East Asian
subtypes.

Intervening regions Western subtype East Asian subtype

R2 1, 8, 10, 12 1, 8, 10, 12

R3’/R3 7, 8, 14, 35, 38 2, 4, 17, 31, 39, 48

R4’/R4 9, 14 16

doi:10.1371/journal.pone.0036844.t001
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marker for cancer as shown in Figure 5. This research predicts that

one special combination of all or partial detected residues could

have a high correlation with one particular disease. To verify,

several linear statistical models, e.g. linear regression and logistic

regression, were applied to the detected features to evaluate the

importance of each residue and the correlation between selected

residues and cancer. However, none of above models were able to

produce a statistically significant result. Since the features cannot

be fitted by simple linear models for predicting cancer, applying a

machine learning method to analyze and classify these data

becomes necessary.

Parameter Training for Classification
Using the Western subtype group as the example, a loose grid-

search was first performed on C~2{5, ::: ,210 and c~2{10, ::: ,25

(Figure 6A) and found that the best C,cð Þ is around 22,2{5
� �

to

get the highest F value with the LOO cross-validation rate 76%.

Then a finer grid search was conducted on the neighborhood

22,2{5
� �

and a better F value was obtained with 79.7% LOO

cross-validation at 22:25,2{4:75
� �

. The same procedure was utilized

for the East Asian subtype group and the best LOO cross-

validation rate 72.6% was reached at 22:25,2{4:75
� �

.

Since there are no previous studies or computational methods

on the same topic, evaluating the performance of this research’s

new method is difficult. To assess the information content of the

sequences in terms of their discerning power to predict cancer, a

random shuffling procedure was employed to build the control

group. First, all sequences from the Western subtype were placed

together to build a sequence pool. Second, we randomly picked

the same number of sequences as cancer group from the sequence

pool and treated the rest of the sequences as the non-cancer group.

Then, the whole training procedure was applied to newly shuffled

data to find the best C,cð Þ. The above steps were repeated five

times to generate five independent shuffled data sets. The one with

the highest F value, which equals 46.6% was selected and its

contour plot is shown in Figure 6B. This randomly shuffling

evaluation was also applied to the East Asian subtype data and the

best F value was at 54.3%. Comparing the two plots shows the

significant difference of F values between the data with correct

grouping of cancer and non-cancer cases in training and the best

randomly shuffled data. The result suggests that the intervening

regions are informative to distinguish between the cancer and non-

cancer groups and our method can use the information effectively.

Classification Performance
There are mainly three categories of sequence classification

methods: feature based, sequence distance based and model based.

The method that we described in this paper belongs to the feature-

based category. We selected two of the most popular sequence

classification tools as the representative methods of other two

categories for comparison. BLAST [36] was chosen for the

sequence distance based category, since it is the most widely used

sequence comparison tool. For the model-based category, the

hidden Markov model is the typical method for sequence analysis

and its widely used tool, HMMER [37], was selected. For the

classification procedure of both BLAST and HMMER, we used

the default parameters of the tools, applied the same LOO cross-

validation as our method, and used the same evaluation formulas

listed in the Method section.

Table 2 lists the classification results for all three methods. The

SVM method performs significantly better than the other two

approaches. BLAST achieved close accuracy to the Entropy-SVM

method, but it predicted many false negatives with low sensitivity.

HAMMER achieved high sensitivity but with little specificity.

Considering F values and MCC values, the prediction results from

BLAST and HAMMER are almost random.

The classification result and the contour plot (Figure 6) strongly

support our hypothesis, i.e., the information of the selected

residues in intervening regions can be used to classify the relation

between CagA sequences and gastric cancer, although the

difference between the profiles of cancer and non-cancer groups

is not very strong.

Figure 6. Grid-search for determining the optimal parameters C,cð Þ of classifier, with color indicating the F value. (A) The
contour plot of F value resulting from a loose grid-search on a hyper parameter range for the Western subtype group. (B) The contour plot of F value
resulting from a loose grid-search on a hyper parameter range for a randomly shuffled Western subtype group with the highest F value.
doi:10.1371/journal.pone.0036844.g006
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Comparison among Different Diseases
H. pylori infection is associated with most gastroduodenal

diseases, among which gastric cancer is the most severe one

causing more than 700,000 deaths worldwide every year [38].

Since H. pylori is a main risk factor of gastric cancer (GC),

discovery of the mechanism of H. pylori mediating GC becomes a

top priority task in this field. Comparing to other diseases, the

diagnosis information of GC from public data is relatively

accurate, and it is another important reason to focus on GC in

this paper. Our studies are not limited to GC, though. We also

tried to evaluate the relations between the variance of CagA

sequences and different diseases.

Since most data were collected from public databases without

accurate diagnosis information, before applying our method to

CagA data, we manually curated the disease annotations for all

strains by reviewing the literature. Table S1 lists the distributions

of major diseases for both the Western and the East Asain subtype

groups. Due to the limitation of strain numbers of some diseases,

such as atrophic gastritis (AG) and gastric ulcer (GU), we

eventually picked chronic gastritis (CG) and duodenal ulcer

(DU) as the control groups for evaluation. The DU group in the

East Asian subtype contains 79 strains, and a bootstrapping

procedure was applied to all other groups to make the same

number of strains as the East Asian DU group. This step

guarantees all comparisons on the same scale, since the value of

combinatorial entropy depends on the number of sequences. We

used Formula (3) to calculate the entropy difference of each

position between GC and CG/DU groups, and then added up all

entropy differences as the total difference between GC and CG/

DU groups, as shown in Table S2. By comparing results between

two groups within the same geographic subtype (East Asian or

Western subtype), it is consistent with the clinical view that gastritis

has stronger relations to cancer than to DU [39] (generally,

gastritis cases might contain some unreported or undiagnosed

chronic atrophic gastritis and intestinal metaplasia cases, with

which patients have a high risk to develop GC). By considering the

same disease-pair between two geographic subtypes, it also

explained the virulent difference between the East Asian and the

Western subtypes. In addition, due to the high similarity between

different disease groups of the East Asian subtype, even with more

data, we still cannot reach the same classification accuracy as the

Western subtype group.

Based on the above results, CagA sequences show potential to

distinguish multiple gastroduodenal diseases. In order to evaluate

the classification performance, we used DU group to replace non-

Cancer group, and then applied the whole classification procedure

again without bootstrapping, since those two diseases groups have

comparable sizes. Table S3 shows the classification results.

Although from the clinical point of view, DU has the negtive

correlation with GC among all gastroduodenal diseases [40], the

classification performance of two subtype groups was only slightly

improved. Thus cancer-related CagA strains might have some

unique sequence patterns comparing to all other gastroduodenal

diseases. Hence, tuning a subset of the control group may not be

able to improve the classification accuracy.

Discussion

Although research indicates that there are sequence markers to

differentiate between cancer group and non-cancer group, the

major profiles of those two groups are too similar to distinguish by

using traditional methods since the CagA sequences are overall

highly conserved. Therefore, we focused on identifying the

informative residues, quantifying information of these selected

residues, and then using it to design a classifier that can predict

whether a new sequence belongs to the cancer group or the non-

cancer group. This method not only sheds light on the relations

between CagA sequences and gastric cancer, but also may provide

a useful tool for gastric cancer diagnosis or prognosis.

The mechanisms of H. pylori causing the different gastroduode-

nal diseases are still unclear, however it is likely that various

gastroduodenal diseases caused by H. pylori infection share some

sequence patterns in the intervening regions. Small variations of

amino acids in those important residues might lead to the

virulence variance of CagA strains resulting in different gastrodu-

odenal diseases. While CagA could be a marker for detecting

potential cancer risk, using CagA alone to distinguish all

gastroduodenal diseases is not realistic. As a future study, we will

develop new models that differentiate various gastroduodenal

diseases from cagA and other genes.
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Table 2. Classification performance.

Subtype No. of cancer cases
No. of non-cancer
cases Method Sn Sp Accuracy F value MCC

Western 37 211 Entropy-SVM 0.86 0.74 0.76 0.80 0.45

BLAST 0.22 0.77 0.69 0.34 20.01

HMMER 0.94 0.005 0.14 0.009 20.16

East Asian 47 240 Entropy-SVM 0.74 0.71 0.71 0.73 0.35

BLAST 0.17 0.75 0.65 0.28 20.07

HMMER 1 0.003 0.19 0.05 0.06

doi:10.1371/journal.pone.0036844.t002
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