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Abstract

Background: The organization of the connectivity between mammalian cortical areas has become
a major subject of study, because of its important role in scaffolding the macroscopic aspects of
animal behavior and intelligence. In this study we present a computational reconstruction approach
to the problem of network organization, by considering the topological and spatial features of each
area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network
connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features
are linked together, in an attempt to recover the original network structure.

Results: Inferring primate cortical connectivity from the properties of the nodes, remarkably good
reconstructions of the global network organization could be obtained, with the topological features
allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the
C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area
interconnections are relatively stronger related to the considered topological and spatial
properties than neuronal projections in the nematode.

Conclusion: The close relationship between area-based features and global connectivity may hint
on developmental rules and constraints for cortical networks. Particularly, differences between the
predictions from topological and spatial properties, together with the poorer recovery resulting
from spatial properties, indicate that the organization of cortical networks is not entirely
determined by spatial constraints.

Background

Scientific-technological advances over the last decades
have produced ever-increasing experimental knowledge
about brain organization and dynamics. In particular,
modern anatomical techniques have provided extensive
data on the interconnections of cerebral cortical areas in

the brains of animals such as the cat or rat, or non-human
primates such as the rhesus monkey. The intricate, non-
random connectivity of cortical brain regions mediates
the diverse and flexible sensory, cognitive and behavioral
functions of the mammalian brain. However, the topolog-
ical organization of these networks [1] as well as their spa-

Page 1 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/1752-0509/1/16
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Systems Biology 2007, 1:16

tial layout in the brain [2] are still incompletely
understood. This is particularly apparent for the connec-
tivity of the human cerebral cortex, which is largely
unknown, due to experimental limitations [3].

A fundamental open problem in systems neuroscience is
the relationship between specialized features of local
nodes, such as areas of the cerebral cortex, and the global
interaction and integration of these nodes in the neural
networks. One aspect of this relationship concerns the
question from which features of the local nodes structural
connectivity between them might be predicted.

We address this question with the help of network analy-
sis approaches [4]. Because cortical networks are typically
complex, little insight can be obtained through their visu-
alization alone. Therefore, useful objective and quantita-
tive characterizations of complex networks ultimately rely
on the estimation of a number of complementary meas-
urements of their properties [5]. Network measurements
typically provide information about specific topological
or geographical features of the networks. For instance, the
node degree provides a simple and valuable quantifica-
tion of the intensity of connections between a specific
node and the rest of the network. However, it says nothing
about the origin or destinations of such connections. On
the other hand, the clustering coefficient of a node pro-
vides an objective quantification of the degree in which
the immediate neighbors of a node (nodes which can be
reached directly without involving any intermediate
nodes) are interconnected, but provides no information
about the rest of the network. Because of the specificity
and complementariness of typical network measure-
ments, an essential question arises regarding what subsets
of measurements are more complete, in the sense of
allowing accurate, or at least reasonably approximate,
reconstruction of the original network from its respective
topological or geographical measurements. Remarkably,
this question has been little explored in the complex net-
works literature (however, see [6] for an initial foray in
this area).

It is important to note that the problem of network recon-
struction from topological features is in a sense circular.
Such features are derived from the complete connectivity
of the network, so global connectivity may be inferred by
taking itself into account. However, this is by no means a
trivial task. For instance, guessing which nodes are specif-
ically interconnected, based on measurements such as
their degree or clustering coefficient, is almost invariably
an impossible task. The exercise of trying to reconstruct
the connections from a collection of topological measure-
ments therefore provides an interesting new way to look
at specific properties and structural organization of a com-
plex network. For instance, in case the connectivity could
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be reasonably guessed from the node degree correlations,
this would provide a key insight about its underlying
organization.

We consider topological as well as spatial parameters, as
biological networks, and brain networks in particular, are
embedded in space. It is an interesting question to ask
how the topological and spatial organization of these net-
works relates to each other. In particular, how do the top-
ological and spatial features of individual nodes relate to
the connectivity and layout of the whole network?
Answers on these questions may inform current theories
on the evolution and development of complex biological
networks.

The Methods section of this article presents the adopted
topological and spatial features and describes the recon-
struction methodology based on similarity between sets
of features. The analysis was applied to primate cortical
brain connectivity (2,402 connections among 95 cortical
areas of the Macaque monkey). In order to provide a com-
parative case, we also describe the application of the same
methodology to C. elegans neuronal connectivity [Addi-
tional file 1].

Results

Overview and community analysis

Figure 1 presents a two-dimensional projection of the
center of mass of the cortical areas together with their
interconnections, obtained by principal component anal-
ysis [7]. This makes the three-dimensional organization of
the cortical network accessible in two dimensions.

Figure 2 shows the frequency histograms of Euclidean dis-
tances between all pairs of nodes (a), number of existing
edges with a given distance (b), and the ratio between the
histograms in (b) and (a). Note that (a) represents the
lengths of all potential links, while (b) shows the lengths
of the actually existing connections between nodes. A
series of interesting features can be inferred from these
results. First, we see from (a) and (b) that the cortical net-
work under analysis involves just a few pairs of edges
which are close to one another (i.e. distances smaller than
10). This is a direct consequence of the fact that each cor-
tical region has been represented in terms of its center of
mass, therefore limiting the minimal distances between
adjacent pairs. More interestingly, the ratios of existing
edges per possible pairs in histogram (b) clearly indicate
(by the decaying profile of this histogram as the distance
increases) that the further away a pair of regions is, the less
likely their interconnection.

Given a network, it is often the case that a subset of its
nodes is more interconnected with one another than with
the remainder of the network. Such a subset of nodes,
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Two-dimensional projection of the network of 95 cortical area-nodes at the centers of mass of the cortical regions, obtained
through principal component analysis and for the complete set of their existing interconnections.

together with the respective interconnections, is called a
community inside the original network. The intensity of
the separation between the community and the rest of the
network can be quantified in terms of its modularity index,
which varies between 0 and 1 [8]. In order to determine
the main communities in the cortical system, we applied
Newman's spectral method [8] and obtained the two
regions identified in Figure 3. This approach to commu-
nity detection is based on rewriting the modularity func-
tion of the network in terms of matrices, so that the best
partition in two communities can be obtained in terms of
spectral analysis of those matrices. Further subdivision of
such regions was unjustified because of the low modular-
ity values obtained for such subdivisions. Our approach
helped to ensure that the subsequent analysis was not
biased by gaps between different datasets describing the
cortical network (cf. Methods, section 'Neural network
data').

Communities 1 and 2 were of comparable size and
included N, = 44 and N, = 51 nodes, respectively, and E,
= 1326 and E, = 1280 directed edges. The clustering coef-

ficients obtained for the two identified communities were
found to be equal to 0.52 and 0.68, respectively. This
might be explained by the higher number of connections
within communities. Whereas the global edge density of
the network was 0.17, the densities within the communi-
ties were 0.50 and 0.66.

Topological characterization

Now we focus our attention on the analysis of the local
node properties and connectivity of these two communi-
ties. Figure 4 presents the histograms for node degree,
clustering coefficient, and matching index with respect to
the two identified communities. Similar histograms were
obtained for most measurements, except the node degree,
which resulted markedly different in each community,
being more evenly distributed in the case of community 2.
Clustering coefficients of individual nodes in both com-
munities were above 0.5. In addition, the average cluster-
ing coefficient was both above the global density as well
as above the edge density within the respective commu-
nity. The probability of average shortest path distances
appears to decay with the distance. The matching index
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Spatial distribution of network connections. The histograms of Euclidean distances between all pairs of edges (a), number of
existing edges with respective distance (b) and the ratio between (b) and (a).

within the communities was between 0.5 and 0.6 as
would be expected from nodes within the same commu-
nity. Note, however, that some nodes had a matching
index below 0.3 indicating outlier nodes.

Spatial characterization

Figure 5 shows the histograms for average topological dis-
tance, and average effective distance, and area obtained
for the two communities. It is clear from these results that
similar averages characterize the measurements in each
community, while the respective distribution varies mark-
edly.

An important issue to be considered while adopting sev-
eral measurements is the quantification of possible rela-
tionships between them, which can be indicated by the
Pearson correlation coefficients for all pairwise combina-
tions of measures. The Pearson coefficients calculated
independently for the topological and spatial measure-
ments are given in Tables 1 and 2. It follows from the

results in Table 1 that the node degree is strongly corre-
lated with the matching index, while exhibiting moderate
anticorrelation with the average shortest path distance. As
could be expected, the local density was found to be
weakly anticorrelated with the area size (Table 2).

Except for the strong correlation between the node degree
and matching index, all other pairs of measurements were
unremarkable, supporting the complementariness of the
adopted sets of features.

Comparison between original and reconstructed networks
Table 3 gives the expected average ratios of correct ones
and zeroes, as well as their respective geometrical aver-
ages, for the two principal communities in the cortical
networks.

We performed an exhaustive search while taking into
account all 1-by-1, 2-by-2 and 3-by-3 combinations of
each of the two types of considered measurements for a
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The two identified communities represented in terms of the center of mass of each cortical region. Communities | and 2 are

identified respectively by 'x' and **'.

whole sequence of threshold values T (ranging from 0.1 to
7 in steps of 0.1) in order to identify those combinations
producing reconstructed networks which are most similar
to the original network G. Table 4 presents the combina-
tions of measurements and respective geometrical average
of R, and R, with respect to the two main cortical commu-
nities considered in this work. It is clear from this table
that the best synthesized networks were obtained by the
matching index for the first community and the combina-
tion of (clustering coefficient, matching index) for the sec-
ond community.

Figure 6 shows the adjacency matrices of the original com-
munities (a,b) and those of the respective most similar
networks (c,d) obtained by considering the topological
properties at each node. Remarkably, the networks con-
structed on the basis of the combinations of measure-
ments appeared reasonably similar to the respective
original networks.

The qualities of the reconstructions obtained by consider-
ing the 4 spatial features are given in Table 5. The best
reconstruction of communities 1 and 2 were obtained for
the local density and local density/area size, respectively.

In order to investigate how the combinations of topolog-
ical and spatial features perform with respect to the net-
work reconstruction, we also considered hybrid
combinations between the two topological (i.e. clustering
coefficient and matching index) and the two spatial (i.e.
local density and area size) features which were found to
produce the best results in Table 4 and 5, respectively. The
results are given in Table 6. The best reconstruction of
community 1 was obtained as before by considering only
the matching index. However, a small improvement was
observed for community 2 as allowed by the combination
between the two topological features plus the area size.
The respective network reconstruction is not shown as it is
very close to that obtained for the two topological features
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of the communities were very similar for all measures.
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Table I: Correlations of topological node-based measures.

Node degree Clustering coefficient Avg. shortest path distance Matching Index
Node degree 1.00 --- -
Clustering coefficient 0.36%* --- ---
Avg. shortest path distance -0.46** 1.00 -
Matching index 0.94%* 0.46™* 1.00

Pearson correlation coefficients were obtained for all pairs of considered topological measurements (** indicates that correlation is significant at

the 0.01 level, two-tailed).
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Table 2: Correlations of spatial node-based measures.
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Local density Coeff. variation nearest distances Area

Local density 1.00 - -

Coeff. Variation nearest distances 0.22%* 1.00 -
Area -0.10 0.11 1.00

Pearson correlation coefficients were obtained for all pairs of considered spatial measurements (* indicates that correlation is significant at the 0.05

level, two-tailed).

(i-e. clustering coefficient and matching index, see Figure
5b).

Figure 7 shows the original and reconstructed matrices
considering the 4 spatial features.

Interestingly, a comparison between the adjacency matri-
ces in Figure 6 and 7 immediately shows that the networks
inferred on the basis of the measurements of topological
properties at each node reproduced the original connec-
tivity better than networks constructed by the considera-
tion of the spatial properties.

It is quite surprising that such good reconstructions of the
original matrices could be obtained by considering rela-
tively simple topological and spatial features. Table 7
summarizes the comparison between the original and
reconstructed communities while considering topology
and geometry. It is clear from this table that reasonable
reconstruction can be obtained for the global organiza-
tion of the cortical communities based on their local node
properties. The geometrical averages also indicate that the
two communities are possibly organized according to dif-
ferent topological and spatial influences, with community
1 being more strongly constrained by the adopted meas-
urements.

Predicting unknown connections

Connections which have not yet been tested in tract trac-
ing studies were so far treated as absent in this study. This
is due to the fact that only one of the three compilations
contributing to the present dataset distinguished between
absent and unknown connections. For this compilation
[9], which forms a 32 x 32 area subgraph, we reviewed
reconstructed networks in the light of whether they were

able to predict previously unknown connections. In this
analysis, one area, VP, had to be excluded from the origi-
nal matrix due to its unknown spatial position. For the
combination of the best two topologic and two spatial
measures, 111 currently unknown projections were pre-
dicted to exist, and 174 connections were predicted to be
absent, yielding a realistic ratio for predicted existing con-
nections of 39%, out of all unknown connections. The
predicted projections are shown as yellow fields in the
reconstructed subgraph matrix in Fig. 8. The figure also
indicates mismatches (red fields) between the original
and reconstructed matrices, either existing connections
that were left out of the reconstructed matrix (90 cases) or
absent connections filled in the reconstructed matrix (106
cases). Most entries (in green fields), however, were con-
firmed to exist (207 cases) or to be absent (212 cases).

We also explored the impact of the potential existence of
the currently unknown connections, by creating two addi-
tional simulated versions of the 31 x 31 area subgraph
matrix, in which (a) all unknown connections were
assumed to exist (‘full’ version), (b) 31% of the unknown
connections were assumed to exist (this reflects the aver-
age edge density in cortical networks, 'relative’ version).
Reasonable reconstructions were obtained in all these
three cases, as demonstrated by the respective Hamming
distances and geometrical average errors (Table 8).

Discussion

We have explored the role of local topological and spatial
features in determining cortical connectivity. Topological
features had been analyzed before [6] with a measure sim-
ilar to the matching index used here as a predictor of pri-
mate visual cortex connectivity. Previous studies were also
applying the notion of neighborhood as a predictor of

Table 3: Expected ratios of correct ones and zeroes, and respective geometrical average.

Network R, =r, Ry=r1

RiRy
Cortical community | 0.68 0.32 0.46
Cortical community 2 0.49 0.51 0.50

Theoretically expected average ratios of correct ones and zeroes, as well as their respective geometrical averages, obtained for the two cortical

communities.
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Table 4: Network reconstruction from individual and combined
topological node measures.

Community| Community2

Measurements

RiRy RiRy
| 0.797 0.647
2 0.563 0.577
3 0.539 0611
4 0.810 0.664
1,2 0.637 0.706
1,3 0.770 0.670
1,4 0.802 0.663
2,3 0.532 0.638
2,4 0.704 0.750
3,4 0.782 0.678
1,2,3 0.688 0.694
1,2,4 0.782 0.720
1,3,4 0.800 0.678
2,3,4 0.689 0.703

Geometrical averages of the connectivity estimation obtained for the
two communities while considering the 14 combinations of
measurements listed in the first column. The best combinations for
communities | and 2 were respectively the matching index (4) and the
pair of measurements involving the clustering coefficient (2) and
matching index (4). The configurations leading to the best matches
have been emphasized.

connectivity which suggests that spatially close regions
tend be connected by fiber tracts [10]. In this article, we
have expanded such notions by testing the relative impact
of several topological and spatial constraints on neural
network organization.

In general, a small number of local features is sufficient
for predicting connections between regions. In the case of
the topological features, the matching index represented
the most effective individual feature for reconstruction of
both communities, while the best selection for commu-
nity 2 also required the clustering coefficient. This result
substantiates the particular role of this feature for cortical
organization [11] and means that cortical areas which
have similar inputs and outputs also tend to be connected
with each other. The best reconstructions obtained from
spatial features were obtained by considering the local
density for both communities. The area size was also
required for the best reconstruction of community 2.
These results suggest that regions with similar local densi-
ties tend to connect to one another. In the case of commu-
nity 2, region interconnections also appear to favor
similar area size.

Concerning single features for the prediction of connec-
tions, topological features led to a better estimation than
spatial features. This may be partly explained by the fact
that topological node features by their definition are indi-
rectly linked to global network organization, as men-

http://www.biomedcentral.com/1752-0509/1/16

tioned previously. It is, however, surprising that the
'purest’ spatial parameter (parameter 8: area coordinates,
which expresses the proximity between areas) did not
result in a strong prediction for connectivity, as spatial dis-
tance has been previously put forward as an important
factor in primate cortical connectivity [10]. This can be
explained by the existence of a significant number of long-
range connections in cortical networks, resulting from the
fact that some regions are part of a network cluster but
nonetheless spatially distant. In these cases, such as the
frontal eye field being spatially distant from the rest of the
visual cortex, spatial proximity would not predict a con-
nection. Indeed, there exists a significant proportion of
long-distance connections in biological neural networks
[12] which ensures a low number of processing steps
across these systems [2].

Since previous tract tracing studies have focused on the
visual cortex, there might exist additional connections
mainly within and between motor, auditory, and somato-
sensory cortices. As demonstrated for a smaller subgraph
of the primate cortical network, our reconstruction
approach could be used to guide future experimental
studies, by deriving hypotheses about currently unknown
projections which would be expected to exist or be absent.
The analysis of different versions of this subgraph, with
varying proportions of unknown connections assumed to
exist, also demonstrated that the principal conclusions of
this study do not depend on the number of currently
unknown connections which may be discovered in the
future.

An earlier analysis of the relationship between the surface
size of cortical areas and the number of projections they
send or receive found no significant correlation between
these parameters [13]. The present analysis suggests that
area size may be a factor contributing to the prediction of
connections, after all (Results, section 'Comparison
between original and reconstructed networks'). Thus, per-
haps what matters is not the absolute area size, but the
matched size of the connected regions.

For the feature analysis we transformed unidirectional
projections into bidirectional connections. This resulted
in 3,044 directed edges compared to the original 2,402
directed edges. This step was necessary as the reconstruc-
tion based on spatial distance depends on the Euclidean
distance which is symmetric in both directions. It may be
an interesting task for the future to repeat the topological
analyses based on unidirectional measures.

The observed relationships between local node properties
and global connectivity may hint on developmental rules.
As the reconstruction approach worked well for the pri-
mate network, but not for the neuronal connections in C.
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Adjacency matrices of the original communities (a,b) and those of the respectively most similar reconstructed networks (c,d)
considering topological features. The reconstructions in this figure correspond to the highlighted configurations in Table 4.

Black points indicate presence of connections.
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Table 5: Network reconstruction from individual and combined
spatial node measures.

Community| Community2

Measurements

JRiRy VRiRy
5 0.725 0612
6 0471 0.587
7 0.498 0.554
8 0.503 0.552
56 0.602 0.635
57 0.654 0.643
58 0.503 0.554
6,7 0451 0.621
6,8 0.503 0.554
7,8 0.504 0.555
56,7 0.574 0.638
56,8 0.503 0.554
57,8 0.504 0.556
6,7,8 0.504 0.554

Geometrical averages of connectivity estimation obtained for the two
cortical communities while considering the 14 combinations of
measurements listed in the first column. The best combinations for
communities | and 2 were respectively the local density (5) and the
pair of measurements including the local density (5) and cortical area
(7). The configurations leading to the best matches have been
emphasized.

Table 6: Network reconstruction from combinations of
topological and spatial node measures.

Community| Community2

Measurements

VRiRg VRiRg
2 0.563 0.577
4 0.810 0.664
5 0.727 0612
7 0.498 0.584
2,4 0.710 0.750
2,5 0.590 0.650
2,7 0.495 0.634
4,5 0.790 0.685
4,7 0.753 0.727
57 0.654 0.643
2,4,5 0.753 0.721
2,4,7 0.688 0.775
2,57 0.595 0.673
4,57 0.753 0.708

Geometrical averages of connectivity estimation obtained for the two
cortical communities while considering the 14 combinations of
measurements listed in the first column. The best combinations for
communities | and 2 were respectively the local density (5) and the
pair of measurements including the local density (5) and cortical area
(7). The configurations leading to the best matches have been
emphasized.

http://www.biomedcentral.com/1752-0509/1/16

elegans [see Additional file 1], it appears that the organiza-
tion of neural networks is subject to different constraints
in these two systems. One possibility is that the neuronal
network of C. elegans, which is identical in each organism,
could be largely determined by genetic factors [14] which
may prescribe a specific connectivity independent of sim-
ple topologic or spatial rules. For larger neural systems,
however, it may be impossible to encode the entire con-
nectivity between cortical regions within the genome,
resulting in a larger contribution of spatial and topologic
constraints in the self-organization of systems connectiv-

ity.

Although the connectivity in non-human primates such
as the macaque monkey is relatively well known, there is
still only little information available about human con-
nectivity. New methods such as diffusion tensor imaging
[15] or post-mortem tract tracing [16] are applied to
human brains but are still hindered by severe experimen-
tal limitations. It is our hope that the topological and spa-
tial features reported in this study may complement and
steer the current experimental approaches. These features
could provide a basis for assessing the reliability of fiber
tract predictions that are based on non-invasive methods.

Conclusion

The reconstruction of neural connectivity from local node
properties offers insights into constraints of network
organization. In particular, it suggests that neuronal net-
works in C. elegans and neural networks in the primate
cerebral cortex developed under different constraints, and
that the layout of primate cortical brain networks is not
entirely determined by spatial properties.

Methods

Neural network data

We analyzed the organization of 2,402 projections among
95 cortical areas and sub-areas of the primate (Macaque
monkey) brain. The connectivity data were retrieved from
CoCoMac ([17,18]) and are based on three extensive neu-
roanatomical compilations [9,19,20] that collectively
cover large parts of the cerebral cortex. In the database,
reported projections between cortical areas are based on
anatomical tract tracing studies where dyes were injected
into one cortical area, and anterograde or retrograde trans-
port of the dye indicated target or source areas for projec-
tion fibers. Spatial positions of cortical areas were
estimated from surface parceling using the CARET soft-
ware http://brainmap.wustl.edu/caret. The spatial posi-
tions of areas were calculated as the average surface
coordinate (or center of mass) of the three-dimensional
extension of an area (cf. [2]). While this cortical data set is
more extensive than those used in previous studies, it may
still be partially incomplete, particularly for connections
of motor, auditory and somatosensory areas. The restric-
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Figure 7
Adjacency matrices obtained for the two networks constructed based on the 4 spatial features. Original communities (a,b) and
the respectively most similar reconstructed networks (c,d). Black points indicate presence of connections.
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Table 7: Comparison of network reconstructions with random benchmarks.

Network Hamm. Dist. R, Ry R,R, Random

JRiR,
Cortex/Comm. | 1486 0.793 0.831 0.46 0.810
Features reconstr.
Cortex/Comm. | 711 0.664 0.792 0.46 0.725
Distance reconstr.
Cortex/Comm. | 1486 0.793 0.831 0.46 0.810
Mixed feats. reconstr.
Cortex/Comm. 2 898 0.641 0.921 0.50 0.750
Features reconstr.
Cortex/Comm. 2 764 0.513 0.807 0.50 0.643
Distance reconstr.
Cortex/Comm. 2 520 0.954 0.628 0.50 0.775

Mixed feats. reconstr.

Overview of measurements comparing the original and reconstructed networks: ratio of overall matches, percentage of correct zeros, percentage
of correct ones, and geometrical averages between the two latter percentages expected for random comparisons and obtained from the
considered experiments. It is apparent that the topological and spatial reconstructions of the two cortical communities have quality substantially

superior to the random reference.

tion arose from the fact that only studies could be used for
which a parcellation scheme with spatial coordinates
existed in CARET. In order to avoid potential artifacts
associated with the segregation of the data in available
reports, we first performed a community analysis of the
cortical network and then analyzed the identified two
communities separately (Results, section 'Overview and
community analysis').

For comparison, we also analyzed two-dimensional spa-
tial representations of the rostral neuronal network (131
neurons, 764 connections) of the nematode C. elegans
[see Additional file 1]. Spatial two-dimensional positions
(in the lateral plane), representing the position of the
soma of individual neurons in C. elegans, were provided
by Y. Choe [21]. Neuronal connectivity was obtained
from [22]. The dataset was slightly modified as described
in detail in [2].

The cortical as well as the C. elegans datasets are available
at [23].

Graph-theoretical representation

The connections between cortical regions can be repre-
sented and understood as a graph, eg, [10,24], or complex
network, eg, [1]. More specifically, the N = 95 cortical
areas considered in this work are represented as nodes
while the existing connections between such nodes are
expressed in terms of edges. More formally, the cortical
network is represented in terms of its adjacency matrix K,
with dimension N x N, with the presence of a connection
extending from node j to node i being indicated as K(i, j)
= 1. The adjacency matrix only gives information about

whether a connection between two nodes exists in the net-
work; in particular, it contains only topological informa-
tion about the network and is not related to the colloquial
meaning of adjacent as spatially nearby. A non-directed
version K, of the adjacency matrix K can be obtained as

%Kmm(i,j)ZI if (K(i,j)+K(ji))>0 (1)
FKon (i, j) =0 otherwise

Because we also have information about the spatial posi-
tion of each cortical region, it is possible to construct a dis-
tance matrix D such that D(i, j) represents the Euclidean
distance between nodes i and j. Note that both matrices
K,,, and D are symmetric by construction, i.e.: K,,,,,(i,j) =
K,,,(j,i) and D(i,j) = D(j,i) for any i and j. It is possible to
calculate a series of measurements from matrices K, K,
and D in order to characterize the topological and spatial
properties of the original network. For these measure-
ments, we used the symmetric topological adjacency
matrix K,,,, to be comparable with the symmetric spatial
distance matrix D. While such measurements are often
performed for the network as a whole, here we focus on
local measurements obtained for each network node.

Network characterization indices
The following 8 node-based measurements (4 topological
and 4 spatial) were considered in the analysis.

Feature | (Topological) — Node degree

This simple but informative measurement quantifies the
number of edges attached to a node. In the case of non-
directed networks, the node degree of node i can be calcu-
lated from the respective adjacency matrix as:
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Confirmation or mismatch of connections, and prediction of unknown connections in a reconstructed submatrix of the cortical
network. Data for the reconstruction of this 3|1 % 3| graph was based on ref [9]. Green fields denote confirmed existing (1)
and absent (0) connections, respectively, whereas red fields indicate a mismatch between the original and the shown recon-
structed connectivity (either by inserting connections into the matrix or removing them from the original). Yellow fields high-
light connections that were predicted to exist (|) or to be absent (0) by the reconstruction approach and whose status was

previously not known.

(2)

Note that the node degree provides a direct measurement
of the degree in which the specific node is connected to
the rest of the network.

N N
ki = anon(ilj) = anon(j'i)
j=1 j=

Feature 2 (Topological) — Clustering coefficient
Given a subset S of the network nodes, the clustering coef-
ficient of this set [25] can be defined as the ratio between

the number of edges between the elements of S and the
maximum possible number of such connections. There-
fore, the clustering coefficient of a specific node i can be
more formally defined as

£(w) »
Wi|w; -1
where W, is the set containing the immediate neighbors of

i, E(W;) is the number of edges between such neighbors,
and |W;| is the number of elements in the set S. The clus-

CCi =2
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Table 8: Potential impact of unknown data.
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Version of matrix

Hamming error

Geometrical error

Orriginal
Relative
Full

307
356
278

0.655
0.612
0.731

Assessment of reconstructions for a 31 X 3| subgraph, based on data from ref. [9], which either was considered in its 'original' state, with all
currently absent connections assumed to exist ('full’), or with about 1/3 of the absent connections assumed to exist ('relative').

tering coefficient of node i therefore expresses how
intensely interconnected the neighbors of the reference
nodes are concerning direct connections between the
nodes. Note that 0 < C C;< 1.

Feature 3 (Topological) — Average shortest path distance

Given any two nodes i and j of a network, they are said to
be connected in case there is a sequence of edges extend-
ing from one of those nodes to the other, possibly passing
through several relay nodes. The shortest path s;; between
the two nodes i and j corresponds to the path involving
the smallest sum of involved edge segments. The shortest
path distance is defined as being equal to the respective
sum of edge segments. Note that the shortest path may
not be unique, but all such paths will have the same short-
est path distance. Because the shortest path is defined with
respect to a pair of nodes, and we want to assign a related
measurement to each node i, we henceforth consider the
average of the shortest paths between i and all the other
network nodes as a feature of node i, represented as s;.
Note that all nodes in the cortical network are connected.

Feature 4 (Topological) — Matching index

This measurement, introduced in [26,27] applies to any
pair of nodes i and j (connected or not) and can be con-
ceptually defined as the amount of connectivity overlap
between each of those nodes and the remainder of the
network. More specifically, in case of non-directed net-
works, [a; A aj] is the number of common projections that
occur in nodes i as well as j denoting the number of com-
mon target or source nodes for projection fibers. The total
number of connections that occur in node i, in node j, or
in both nodes is denoted as |a; v a;|. The matching index
is then calculated as:

_|a; Oaj |

(4)

A low matching index value indicates that the nodes have
diverging input and output and are linked to substantially
different parts of the network. As with the shortest path,
the matching indices are averaged for all nodes.

Mmoo =
" |a; Da; |

Feature 5 (Spatial) — Local density

It is often the case with point distributions (as the centers
of mass of the cortical areas) that the number of points per
unit area varies along the space. In such cases, it is inter-
esting to consider the local density around each point. This
value can be estimated by dividing the number P; of
neighboring points contained in a sphere of small radius
R centered at the reference point i by the volume of that
sphere, i.e.

1wy =240

(5)

The quantity P;(R) has been calculated with respect to
each node i by counting how many nodes are at distance
smaller or equal to R = 15, which corresponds to about 1/
4 of the maximum internode distances in the cortical net-
works. Note that this measurement is influenced by the
volume of each cortical region. The larger the volume, the
smaller the local density.

Feature 6 (Spatial) — Coefficient of variation of the nearest distances
Given a reference point i and a maximum radius R, the
nearest neighbors Q of that point can be defined as those
points which are contained in the sphere of radius R
center at point i. The measurements in this work assumed
R = 15. The nearest distances of point i are therefore defined
as the set of the Euclidean distances between it and each
of the nearest neighboring nodes in Q. The coefficient of
variation (i.e. the standard deviation divided by the aver-
age) of the nearest distances provides an interesting indi-
cation about the local distance regularity around each
reference point. For instance, a low value of this coeffi-
cient indicates that the nearest neighbors of a point are
almost equidistant. As with the previous measurement,
the coefficient of variation of the nearest distances can
also be affected by the volume of the cortical region. More
specifically, the larger the volume, the larger this measure-
ment tends to be.

Feature 7 (Spatial) — Area size of each cortical region

This measurement corresponds simply to the area size of
the two-dimensional surface of each cortical region. The
surface area was measured directly within three-dimen-
sional space; that means, we did not use a flattened two-
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dimensional map to estimate the surface extent of a corti-
cal region.

Feature 8 (Spatial) — Cartesian coordinates of the cortical areas
center of mass

These features, considered together for simplicity's sake,
correspond to the x, y and z coordinates of the center of
mass of each cortical area. By application of the wiring
rule described below to this feature, network nodes were
linked that are spatially close to each other.

Table 9 summarizes the eight measurements considered
in this work and their respective identifications.

Network reconstruction from node features

Hypothetical cortical networks were created by assessing
the pairwise similarity of nodes with respect to each of the
eight features. Undirected links were created between
nodes, if their similarity exceeded a threshold. In order to
avoid the need to specify this threshold, we considered a
sequence of equally spaced thresholds during the recon-
struction and took as result the threshold leading to the
best results (i.e., best recovery of the original connectiv-

ity).

The topological and spatial context around each node i in
the two communities can be characterized in terms of

respective feature vector v; containing a subset of selected

measurements at that node. In this work, we consider 1-
by-1, 2-by-2 and 3-by-3 combinations of the six measure-
ments described in the section 'Network characterization
indices' above. In order to avoid bias implied by the dif-
ferent ranges of each measurement, these values have
been standardized [28]. More specifically, for each type of
measurement, each value was subtracted from the respec-
tive average and divided by the respective standard devia-
tion. Note that these new measurements have zero
average and unit standard deviation.

Table 9: Node-based characterization measures used for
network reconstruction.

MEASUREMENTS IDENTIFICATION NUMBER

Node degree
Clustering coefficient
Avg. shortest path distance
Matching index
Local density
Standard deviation of nearest distances
Area size
Cartesian coordinates (x, y, z)

NS DA WN—

The table lists node-based measurements for network reconstruction
by considering topological (in bold) and spatial (in italics) properties
of the cortical data.

http://www.biomedcentral.com/1752-0509/1/16

Now it is possible to use the methodology suggested in
[29,30] in order to obtain networks from the feature vec-
tors v; . Note that each element v,(p) in such a vector rep-

resents a possible measurements. In order to do so, we
start with N = 95 isolated nodes and, for each possible pair
of nodes (i, j), we establish a connection between them,
by making and K(i,j) = 1 and K(j,i) = 1, whenever the fol-
lowing condition is met

a(i)= |3 () -vm) <7 (6)

p=1

where 1 is the number of chosen measurements and T'is a
pre-fixed threshold. Note that the smaller the value of this
threshold, the less intensely connected the respective net-
work will result.

Network comparisons

Because the reconstructed networks are fully congruent
with the original data, in the sense that they have the same
number of nodes and each node refer to the same cortical
region, it is possible to obtain a simple and effective meas-
urement of the difference between the original network G
and each of the networks F obtained from the topological
and spatial features in terms of the distance defined as
being equal to the number of different entries in the
respective adjacency matrices. More formally, we have
that

H(G,F):;EJNZ—225(Kc(i,j),1<p(i,j))§ (7)

where K and K are the adjacency matrices of the original
and reconstructed matrices, and ¢ (a, b) is the Kronecker
delta function, which results 1 whenever a and b are equal
and 0 otherwise. The 1/2 factor is necessary in order to
account for the fact that in a non-directed graph each edge
appears twice in the respective adjacency matrix.

However, this measure, the Hamming distance, provides
a biased quantification of the similarity between any two
matrices in case the number of zeros and ones is signifi-
cantly different. For instance, in case a matrix contains few
ones and many zeros, its Hamming distance to a null
matrix (all entries equal to zero) will be very small. In
order to provide a more balanced overall measurement of
the similarity between two adjacency matrices A and B,
both with the same dimension N x N, we consider the
geometrical average g(A, B) between the ratios of correct
ones (R,) and correct zeros (R,). More specifically, in case

matrix A contains A, zeroes and A, ones, and matrix B
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contains b, zeroes coinciding with the zeroes of A and b,
coinciding ones, we define R, = b;/A; and R, = by/A,. The
two matrices will be maximally similar in case g (A, B) =
\/m = 1, which is verified if and only R, = R, = 1.

It is possible to obtain a random reference for the compar-
ison between any two adjacency matrices A and B as fol-
lows. Let the ratio of ones in A be r; = A;/N2 and the ratio
of zeroes be r, = A,/N2. It can be shown that the average
expected ratios of correct ones and zeros while comparing
matrix A with matrices B generated randomly (uniform
probability) with the same ratio r, of ones are given as R,
=r;and R, = 1,

These comparisons with the original connectivity and ran-
dom benchmarks were applied to all adjacency matrices
reconstructed from individual and combined node fea-
tures.
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